亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        The Poincaré Series of Relative Invariants of Finite Pseudo-reflection Groups in Finite Fields

        2014-03-19 09:34:18QINXiaoerYANLi

        QIN Xiaoer, YAN Li

        (College of Mathematics and Computer Science, Yangtze Normal College, Chongqing 408100)

        1 Introduction

        Invariants theory is an important branch of algebra. In 1890, using the Hilbert basis theorem, Hilbert[1]proved the invariants ofGLn(C) is finitely generated. In 1955, for every finite reflection group, Chevalley[2]got that each invariant of finite reflection groups can be represented by the polynomial of elementary invariants, and this result was extended to finite pseudo-reflection groups. Poincaré series is an algebraic invariant. In 1897, Molien[3]gave a formula to compute the Poincaré series of the general linear groups. The invariants and relative invariants have relations with Poincaré series, such as the coefficients of Poincaré series are the dimensions of the invariants corresponding degrees. The relative invariants of finite pseudo-reflection groups are similar to the invariants of finite pseudo-reflection groups, and the relative invariants of finite pseudo-reflection groups have some relation with the 1-dimension representation of the groups. Wan[4]introduced the invariants and relative invariants theory of finite reflection groups. Smith[5]gave the relation between invariants and relative invariants of finite pseudo-reflection groups. Nan and Qin[6]did some researches on relative invariants of finite pseudo-reflection groups in the general fields, and computed the Poincaré series of relative invariants of finite pseudo-reflection groups. Recently, invariants of groups have been an interesting subject of study. Nan and his students[7-11]did many researches on this topic, and more and more scholars begin to study invariants, we refer the readers to [12-15].

        LetFqbe a finite field withq=pm,m≥1, andVbe then-dimensional vector space overFq. The pseudo-reflection and the reflecting hyperplane are defined as follows

        σ∈GL(V),H={ξ∈V|σξ=ξ}.

        If dimH=n-1, thenσis called a pseudo-reflection, and subspaceHis called the reflecting hyperplane ofσ. A vectorv≠0 in Im(σ-1) is called a reflecting vector ofσ.

        For convenience, we always supposeGis a finite pseudo-reflection group that is generated by the fundamental pseudo-reflectionss1,s2,…,sn,Fqdenotes a fixed finite field with characteristicp, unless the contrary is explicitly stated.σhas finite order,pdoes not divide the order ofσ(which we shall call the nonmodular case), thusσmust be diagonalizable.

        2 The 1-dimensional representation of finite pseudo-reflection groups in finite field

        We can now give the first main result of this paper.

        Theorem2.1LetPbe aχ-relative invariant of the groupG, i.e. for eachσ∈G,σ·P=χ(σ)P,P≠0,Fqbe a finite field andGbe a finite pseudo-reflection group. Forσ∈G, let |σ|=r. Ifr|q-1, thenχ(σ)=1 orχ(σ)=(detσ)α, where 1≤α≤r-1.

        ProofLetUbe a reflecting hyperplane of a pseudo-reflectionσ, letGU=〈σ〉,|σ|=r. Take a basisε1,ε2,…,εn, such that

        σi(εj) =εj, 1≤j≤n-1,

        σ·P=χ(σ)P,

        Suppose that

        then

        which is equivalent to

        Sincer|q-1, comparing coefficients of thexn, we get that

        χ(σ)=1 orP0=0;

        χ(σ)ξσ=1 orP1=0;

        ……

        0≤m1,m2≤r-1,

        0≤α≤r-1.

        This completes the proof of Theorem 2.1.

        In what follows we shall characterize the relation between theχ-relative invariants and invariants ofG. LetH(G)={Hs|s∈G} denote the set of reflecting hyperplanes of all pseudo-reflections inG,

        Hs={λ∈V|ls(x1,x2,…,xn)(λ)=0}

        is defined byls(x1,x2,…,xn)=0, wherels(x1,x2,…,xn)=0 is a homogeneous linear polynomial. IfU∈H(G) is a reflecting hyperplane ofG, denotesGUthe pointwise stabilizer ofUinG. This is the group generated by all the pseudo-reflections inGwithUa reflecting hyperplane together with 1. For everyU∈H(G), chooseaU∈Nminimal such that

        χ(sU)=det(sU)aU

        and introduce the form

        In the following, we shall show that

        divides everyχ-relative invariant ofG. We need the following lemmas.

        If none ofl1,l2,…,lkis nonzero multiples ofls, thenα1α2…αk=1 andL=α1α2…αkis a invariant ofs.

        Writing

        Thus

        i.e.

        is aχ-relative invariant.

        By Lemma 2.5, we can make the conclusion that the difference between relative invariants and invariants is only one divisor

        3 The Poincaré series of relative invariants of finite pseudo-reflection groups in finite fields

        Fq[V*] is a gradedFq-algebra, the Poincaré series ofFq[V*] is defined as follows

        whereFq[V*]dis aFq-subspace consisting of all homogeneous polynomial functions of degreedinFq[V*]. For the finite subgroup of the general linear group, its Poincaré series of invariants can be characterized by Molien’s Theorem. In what follows, we give the second main result of this paper.

        Theorem3.1LetVbe a finite dimensionFqvector space. LetG∈GL(V) be a finite nonmodular subgroup. Ifpdoes not divide |G|, then

        we defineσ·fas

        then

        Supposeλ1(σ-1),λ2(σ-1),…,λn(σ-1) are the eigenvalue of the linear tranformationσ-1, then

        Sinceλi(σ-1)=λi(σ)-1,i=1,2,…,n,

        Thus

        [1] Hilbert D. Uber die theorie der algebarischen[J]. Math Ann,1890,36:473-534.

        [2] Chevallay C. Invariants of finite groups generated by reflections[J]. Am J Math,1955,77:778-782.

        [3] Molien T. Uber Die Invarianten Der Lenear Substitutions Gruppen[M]. Berliner:Sitzungsberichte,1898:1152-1156.

        [4] Wan Z X. Invariants Theory of Finite Reflection Groups[M]. Shanghai:Shanghai Jiao Tong University Press,1997.

        [5] Smith L. Free modules of relative invariants and some rings of invariants that are Cohen-Macaulay[J]. Proc Am Math Soc,2006,8:2205-2212.

        [6] Nan J Z, Qin X E. The Poincaré series of relative invariants of finite pseudo-reflection groups[J]. J Math Research and Exposition,2010,30:338-344.

        [7] Nan J Z, Chen Y. The invariants of the groups of lower triangular matrices over finite fields[J]. Acta Math Scientia,2011,A31:678-681.

        [8] Nan J Z, Chen Y. Ring of invariants of general linear group over local ring[J]. Front Math China,2011,6:887-899.

        [9] Nan J Z, Zhao H F. Modular vector invariants of cyclic groups[J]. Math Research and Exposition,2011,6:997-1002.

        [10] Nan J Z, Zhao J. Rational invariants of the generalized classical groups[J]. Commun Math Research,2011,2:127-138.

        [11] Nan J Z, Qin Y F. On invariants of some maximal subgroups of finite classical groups[J]. Algebra Colloquium,2012,19:149-158.

        [12] Sezer M. Explicit separating invariants for cyclicP-groups[J]. J Combinatorial Theory,2011,A118:681-689.

        [13] Chuai J. Invariants of modular groups[J]. J Algebra,2007,318:710-722.

        [14] Dufresne E. Separating invariants and finite reflection groups[J]. Adv Math,2009,221:1979-1989.

        [15] Derksen D, Kemper G. Computing invariants of algebraic groups in arbitrary characteristic[J]. Adv Math,2008,217:2089-2129.

        国产亚洲午夜精品| 午夜男女很黄的视频| 中文字幕一区在线观看视频| 欧美性福利| 日本在线一区二区三区观看| 国产高清在线一区二区不卡| 久久久www成人免费毛片| 亚洲的天堂av无码| 亚洲成AV人片无码不卡| 精品一区二区三区亚洲综合| 成人试看120秒体验区| 老头巨大挺进莹莹的体内免费视频| 日韩精品久久久中文字幕人妻| 亚洲中文字幕综合网站| 日本顶级metart裸体全部| 成年无码aⅴ片在线观看| 国产片三级视频播放| 男人天堂亚洲一区二区| 国产太嫩了在线观看| 国产真实乱人偷精品人妻 | 丰满少妇人妻无码超清| 国产三级精品三级男人的天堂| 久久天堂综合亚洲伊人hd妓女 | 少妇性l交大片免费1一少| 久久不见久久见免费视频6 | 蜜桃精品免费久久久久影院 | 久久99国产精品久久99密桃| 人人妻人人添人人爽欧美一区| 性欧美暴力猛交69hd| 亚洲高清视频在线播放| 日韩五码一区二区三区地址| 国产在线精品一区二区三区直播| 五月天激情小说| av中文码一区二区三区| 免费久久99精品国产| 熟妇人妻无乱码中文字幕| 99在线视频精品费观看视| av一区二区在线免费观看| 内射人妻少妇无码一本一道 | 国产在线一区二区三区四区乱码 | 免费国产黄网站在线观看|