朱長(zhǎng)榮
(重慶大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院, 重慶 401331)
由方程導(dǎo)出的動(dòng)力系統(tǒng),一直以來(lái)都是動(dòng)力系統(tǒng)研究的重要內(nèi)容.考慮下面的方程
(1)
其中,f∈Cr,r≥1.在滿足初值x(0)=x0時(shí),方程(1)的解是存在唯一的.如果存在x=x0,使得f(x0)=0,則稱(chēng)x0為方程(1)的平衡點(diǎn),有時(shí)也稱(chēng)之為平衡解.如果方程(1)有平衡點(diǎn)x0,作適當(dāng)平移以后,可以將x0移到原點(diǎn),而系統(tǒng)的動(dòng)力性態(tài)不改變.因此,以下總假設(shè)x0=0為系統(tǒng)的平衡點(diǎn).記方程的解為x(t)=φt(x0).令U?RN為原點(diǎn)的適當(dāng)開(kāi)領(lǐng)域,下面定義原點(diǎn)的局部穩(wěn)定流形和不穩(wěn)定流形:
當(dāng)t→∞,
且φt(x)∈U對(duì)所有t≥0},
且φt(x)∈U對(duì)所有t≤0}.
(2)
其中Df(0)是函數(shù)f在0點(diǎn)處的雅可比矩陣.如果Df(0)的所有特征值的實(shí)部不為零,則稱(chēng)0為雙曲平衡點(diǎn).由常微分方程的基本理論可知:方程(2)在雙曲平衡點(diǎn)附近,會(huì)有維數(shù)分別為ns、nu的穩(wěn)定和不穩(wěn)定的不變子空間.方程(2)在雙曲平衡點(diǎn)附近的穩(wěn)定和不穩(wěn)定的不變子空間與方程(1)在原點(diǎn)附近的局部穩(wěn)定流形和不穩(wěn)定流形之間,由下面的穩(wěn)定流形定理說(shuō)明了它們的關(guān)系[1-2].
正在研究的系統(tǒng)(1),是實(shí)際問(wèn)題經(jīng)過(guò)高度抽象和舍棄許多細(xì)枝末節(jié)而得到的抽象系統(tǒng).當(dāng)補(bǔ)充上這些被舍棄的小節(jié)后,實(shí)際問(wèn)題應(yīng)該是下面的系統(tǒng):
(3)
對(duì)這個(gè)問(wèn)題的研究,一直以來(lái)有2個(gè)主要的方法:幾何的方法和分析的方法.這2個(gè)方法現(xiàn)在任然是研究同宿軌的保持性和破裂的重要方法.令x∈R2,g關(guān)于t是周期的,g(0,t,)=0(這個(gè)條件不是本質(zhì)的,因?yàn)橹灰鰝€(gè)平移,總可以辦到).1963年,V. K. Melnikov[5]從幾何的觀點(diǎn)入手,應(yīng)用Poincaré映射的方法,來(lái)研究系統(tǒng)(3)在很小的參數(shù)時(shí)的同宿軌的存在性.因?yàn)?對(duì)方程(1)是雙曲的,它有一維的穩(wěn)定流形和不穩(wěn)定流形.則對(duì)于方程(3),它的平衡點(diǎn)附近也有在γ附近的一維的穩(wěn)定流形和不穩(wěn)定流形.在γ(0)處取一小段橫截痕Σt0,則(3)的穩(wěn)定流形和不穩(wěn)定流形與Σt0分別相交于和定義距離
d
很顯然d0(t0)=0,并且如果存在t0,使得d(t0)=0,則擾動(dòng)方程在γ附近就存在同宿軌γ.定義Melnikov函數(shù)
其中∧是外積.如果將d(t0)沿著展開(kāi),M(t0)與展開(kāi)式的一次項(xiàng)緊密相關(guān).可以證明,如果存在t0,使得M(t0)=0,DM(t0)≠0,則方程(3)在γ附近就存在同宿軌γ.這個(gè)方法就是著名的Melnikov方法.
在接下來(lái)的近20年中,人們?cè)谘芯客捃壍谋3中詴r(shí),大都采用幾何的方法.直到1980年,在文獻(xiàn)[10]中,S. N. Chow等從幾分析的觀點(diǎn)出發(fā),考慮如下系統(tǒng)的同宿軌問(wèn)題
(4)
其中f(t+T)=f(t).很顯然,當(dāng)λ=(λ1,λ2)=(0,0)時(shí),系統(tǒng)(4)有一對(duì)同宿軌,并且(0,0)也是當(dāng)λ=(0,0)時(shí),系統(tǒng)(4)的雙曲平衡點(diǎn).他們?cè)趨?shù)原點(diǎn)附近找到一個(gè)領(lǐng)域U以及通過(guò)原點(diǎn)的曲線Cm、CM,Cm、CM將U分成4個(gè)部分.當(dāng)參數(shù)在其中的2個(gè)部分時(shí),系統(tǒng)(4)會(huì)出現(xiàn)同宿軌;當(dāng)參數(shù)在另外的兩個(gè)部分時(shí),系統(tǒng)(4)就不會(huì)出現(xiàn)同宿軌.
現(xiàn)在對(duì)(3)式作一些假設(shè):
(A1)f和g都是C3的;
(A2)f(0)=0并且矩陣Df(0)的特征值的實(shí)部不等于零;
(A3) 系統(tǒng)(1)有一條同宿于原點(diǎn)的同宿軌;
(A4)g(0,t,)=0;
(A5)g(x,t,)=g(x,t+T,).
到1984年,K. J. Palmer[7]應(yīng)用分析的方法,在方程(1)有一條非退化的同宿軌的假設(shè)下,將文獻(xiàn)[10]中的結(jié)果推進(jìn)到RN.在文獻(xiàn)[7]中,K. J. Palmer不僅得到了這條非退化同宿軌得到保持的條件,還給出了關(guān)于(3)的“Shadowing Lemma”.具體情況如下:
令n為正整數(shù),為ψn雙邊無(wú)窮序列所構(gòu)成的集合:a=(…,a-1,a0,a1,…),其中ak∈{0,1,…,n-1}.在乘積拓?fù)湎拢譶是一個(gè)完全不連通的緊Housdorff空間(Cantor集).定義同胚映射β為(β(a))k=ak+1,β常稱(chēng)為Bernoulli平移.在文獻(xiàn)[7]中有下面的結(jié)論:
定理2[7]在假設(shè)(A1)~(A5)下,如果方程(3)有一個(gè)T-周期解u和另一個(gè)解v滿足:
(I) (3)式沿著v的線性變分方程在(-∞,∞)上有指數(shù)二分性;
(II) |v(t)-u(t)|→0當(dāng)|t|→∞.
|xa(t+(2k-1)mT)-v(t+akT)|≤,
其中k為整數(shù),-mT≤t≤mT.映射φ(a)=xa(0)是RN中的一個(gè)緊子集上的同胚,在這個(gè)緊子集上,(3)式的解的周期映射F的2m-次迭代F2m是不變的且滿足:F2m°φ=φ°β.
定理2常常用來(lái)證明具有周期映射的系統(tǒng),如果存在橫截的同宿軌,則在橫截的同宿軌附近會(huì)出現(xiàn)馬蹄形混沌.因?yàn)槎ɡ?是說(shuō),對(duì)于解v,它有n段相應(yīng)于時(shí)間[-mT,mt],[-(m-1)T,(m+1)T],…,[-(m-n+1)T,(m+n-T)]的弧,周期系統(tǒng)有一條在這些弧之間可以任意轉(zhuǎn)換的軌道xa,它在每一時(shí)間段[(2k-2)mT,2kmT]上“shadow”了這些弧.
在這之前,人們大都在做關(guān)于非退化同宿軌方面的工作,J. K. Hale在文獻(xiàn)[11]中建議考慮帶多參數(shù)的具有退化同宿軌的分岔問(wèn)題.20世紀(jì)90年代,許多人[12-19]開(kāi)始研究具有兩個(gè)參數(shù)的帶退化同宿軌的問(wèn)題:g(x,t,)=1g1(x,t,)+2g2(x,t,).在文獻(xiàn)[15]中,J. Gruendler考慮了g不依賴(lài)于時(shí)間t的自治擾動(dòng),在文獻(xiàn)[16]中,他將擾動(dòng)推進(jìn)到一般的非自治擾動(dòng).更進(jìn)一步,如果擾動(dòng)g是周期的,J. Gruendler在文獻(xiàn)[17]中證明,被保持下來(lái)的同宿軌是橫截的,因此周期擾動(dòng)系統(tǒng)就具有混沌特性.在考慮退化的同宿軌時(shí),擾動(dòng)函數(shù)不僅依賴(lài)于沿著同宿軌的切方向,還有沿著同宿軌的法方向;而如果同宿軌是非退化的,則只有切方向.為了解決法方向帶來(lái)的困難,J. Gruendler先對(duì)線性變分方程的解進(jìn)行分類(lèi),分類(lèi)如下:
引理1[16]在假設(shè)(A1)~(A3)下,方程(2)存在矩陣解U,正常數(shù)K,α以及4個(gè)投影算子Pss、Psu、Pus、Puu滿足Pss+Psu+Pus+Puu=I并且,
(a) 當(dāng)0≤s≤t時(shí),|U(t)(Pss+Psu)U(s)-1|≤Ke2α(s-t),
(b) 當(dāng)0≤t≤s時(shí),|U(t)(Pus+Puu)U(s)-1|≤Ke2α(t-s),
(c) 當(dāng)t≤s≤0時(shí),|U(t)(Pss+Pus)U(s)-1|≤Ke2α(t-s),
(d) 當(dāng)s≤t≤0時(shí),|U(t)(Psu+Puu)U(s)-1|≤Ke2α(s-t).
并且Rank(Pss)=Rank(Puu):=d.
令ui(t)是U(t)的第i-列.則相應(yīng)于投影算子Pss、Psu、Pus、Puu,這4類(lèi)解為:
?ui∈PusU,
?ui∈PsuU,
?ui∈PuuU,
?ui∈PssU.
不失一般性,可以假設(shè):
令U-1為U的逆,則有:
PuuU=[u1,…,ud],
PssU=[ud+1,…,u2d].
引入記號(hào),令
Φi(λ,,θ)
其中
J. Gruendler在文獻(xiàn)[16]中得到下面的結(jié)論:
定理3[16]在假設(shè)(A1)~(A4)下,如果存在θ使得(Φi(λ(θ),(θ),θ))=0(λ(θ),(θ))θ,并且矩陣C(θ)=(cij(θ))(d-1)×(d-1)滿秩:
cij(θ)=ηij+1-d(θ),j=d,d+1,
則存在開(kāi)集0∈I?R以及可微函數(shù)ψ:I→R2,使得方程(3)在=s2((θ)+ψ(s))時(shí)有同宿軌,s∈I.
在1996年,J. Gruendler在文獻(xiàn)[17]中推廣文獻(xiàn)[13]關(guān)于混沌的結(jié)果證明了:如果擾動(dòng)函數(shù)是周期的,則擾動(dòng)方程的解決定的周期映射在同宿軌附近會(huì)出現(xiàn)馬蹄形混沌B,該結(jié)果后來(lái)被推廣到高維空間中[21-23].
上面的結(jié)論能夠回答這樣的問(wèn)題:在沒(méi)有擾動(dòng)的系統(tǒng)存在同宿軌的情況下,在適當(dāng)?shù)臋M截性條件下,擾動(dòng)系統(tǒng)會(huì)出現(xiàn)同宿軌.但不能回答這樣的問(wèn)題:在沒(méi)有擾動(dòng)的系統(tǒng)的同宿軌是退化的情況下,擾動(dòng)系統(tǒng)能有多少條同宿軌.這個(gè)問(wèn)題直到最近才有了答案:沿用引理1的符號(hào),C. Zhu等在文獻(xiàn)[24]中證明了,對(duì)任意的,擾動(dòng)系統(tǒng)可以存在條不同的同宿軌.在(3)式中,研究者們把∈R作為參數(shù),這是一個(gè)一維的擾動(dòng)問(wèn)題.如果增加擾動(dòng)函數(shù)的自由度,將整個(gè)函數(shù)空間C3(RN×R,RN)作為擾動(dòng)參數(shù),則問(wèn)題就變?yōu)橄旅娴膯?wèn)題:
(5)
其中‖g‖C3很小.在C3(RN×R,RN)中定義子空間:
={g∈C3(RN×R,RN)|g(0,t)=0,
C. Zhu等在文獻(xiàn)[24]中得到了下面的結(jié)論:
定理4[24]如果假設(shè)(A1)~(A3)成立,并且ζijj≠0.則在中存在領(lǐng)域和d個(gè)余維為kd的經(jīng)過(guò)原點(diǎn)的子流形Γk,k=1,…,d,使得當(dāng)g∈∩(Γk(Γk+1∪…∪Γd))時(shí),方程(5)有k個(gè)不同的同宿軌.
以上介紹的是正常擾動(dòng)條件下的同宿軌分岔問(wèn)題.還有一類(lèi)擾動(dòng)—奇異擾動(dòng)問(wèn)題:
g(x,t,),
(6)
方程(6)與方程(3)有很大的區(qū)別:前者對(duì)參數(shù)是不連續(xù);當(dāng)把方程(6)轉(zhuǎn)化為等價(jià)的積分方程時(shí),積分方程的解的增長(zhǎng)性不能較好地控制.基于這些困難C. Zhu等在文獻(xiàn)[25]中考慮了如下的方程的同宿軌的分岔問(wèn)題:
(x,t,).
(7)
方程中的g任然看做在C3(RN×R×R,RN)中的擾動(dòng)函數(shù).在引進(jìn)截?cái)嗪瘮?shù)等新的工具后,作者在文獻(xiàn)[25]中得到與定理4相似的結(jié)果.
文獻(xiàn)[24-25]的工作表明:當(dāng)沒(méi)有擾動(dòng)的方程的同宿軌是退化的情況下,作適當(dāng)?shù)臄_動(dòng),擾動(dòng)系統(tǒng)可能會(huì)出現(xiàn)從1到d條不同的同宿軌.當(dāng)擾動(dòng)系統(tǒng)出現(xiàn)一條同宿軌時(shí)(即擾動(dòng)系統(tǒng)存在同宿軌),文獻(xiàn)[24-25]中的結(jié)果表明:擾動(dòng)參數(shù)需要d維,即擾動(dòng)余維為d.與前面的定理2、3相比較,他們的工作表明,如果只考慮擾動(dòng)系統(tǒng)的同宿軌的存在性,擾動(dòng)維數(shù)只需要1維就夠了.從這個(gè)角度講,文獻(xiàn)[24-25]中的擾動(dòng)維數(shù)太大,可能擾動(dòng)系統(tǒng)出現(xiàn)k條同宿軌,并不需要kd維的擾動(dòng)余維數(shù).這個(gè)問(wèn)題正在考慮中.
以上討論同宿軌的分岔時(shí),都是確定性系統(tǒng).最近,很多學(xué)者[26-31]討論了由Brownian運(yùn)動(dòng)引起的隨機(jī)過(guò)程擾動(dòng)下,同宿軌的保持性以及由此產(chǎn)生的混沌運(yùn)動(dòng).就一般而言,Brownian運(yùn)動(dòng)是一個(gè)無(wú)界運(yùn)動(dòng),因此這個(gè)問(wèn)題就不是剛才的小擾動(dòng)問(wèn)題.
令(Ω,,)表示經(jīng)典的Wiener概率空間,在緊開(kāi)拓?fù)湎拢?/p>
Ω={ω(t)|ω(·):R→Rω(0)=0}
dx(t)=f(x(t))dt+g(x(t))°dB(t),
(8)
θtω(·)=ω(t+·)-ω(t).
對(duì)任意給定的Δ>0,令:Ω→R定義為:
對(duì)每個(gè)ω∈Ω,得到由此可以看出,(ω)可以被看做白噪聲在t=0時(shí)刻的離散情形.在定義了,得到
(9)
這是一個(gè)帶有正態(tài)分布的平穩(wěn)隨機(jī)過(guò)程.由Brownian的特性,(θtω)幾乎處處無(wú)界,且(θtω)可看做白噪聲的離散形式.在文獻(xiàn)[31]中,K. Lu等用幾何的方法,考慮了如下系統(tǒng)的同宿軌的保持性與混沌:
其中μ是小參數(shù),f,g,P,Q在原點(diǎn)附近是Cr的,r>2.假設(shè)f(0,0)=g(0,0)=P(0,0)=Q(0,0)=0,且μ=0時(shí),方程(10)有一條同宿軌γ(t)=(a(t),b(t)),通過(guò)在同宿軌附近引入回復(fù)映射,他們得到下面的結(jié)論:
定理5[31]如果存在t∈R使得
b′(t)P(a(t),b(t))-a′(t)Q(a(t),b(t))≠0,
對(duì)于有同宿軌或異宿軌的系統(tǒng),在白噪聲下的在同宿軌或異宿軌附近的動(dòng)力行為還有很多沒(méi)有解決.在同宿軌非要進(jìn)還有另外一種十分重要的現(xiàn)象,次調(diào)和分叉,就是當(dāng)同宿軌在小擾動(dòng)下不能保持而破裂,在破裂的同宿軌附近出現(xiàn)周期解的現(xiàn)象[8-9,32-36]等.對(duì)于在同宿軌或異宿軌附近發(fā)生的分叉或它們的保持性,還有很多學(xué)者得到了很好的結(jié)果,比如文獻(xiàn)[37-52]等等.
[1] Hale J K. Ordinary Differential Equations[M]. New York:Wiley-Interscience,1969.
[2] Chow S N, Hale J K. Methods of Bifurcation Theory[M]. New York:Springer-Verlag,1982.
[3] Palmer K J. Transversal heteroclinic orbits and Cherry’s example of a non-integrable hemiltonian system[J]. J Diff Eqns,1986,65:321-360.
[4] Zeng W. Exponential dichotomies and transversal homoclinic orbits in degenerate cases[J]. J Dyn Diff Eqns,1995,7:521-548.
[5] Melnikov V K. On the stability of the center for time periodic perturbations[J]. Trans Moscow Math Soc,1963,12:1-57.
[6] Neimark J I, Silnikov L P. A case of generation of periodic motions[J]. Soviet Math Docl,1965,6:1261-1264.
[7] Palmer K J. Exponential dichotomies and transversal homoclinic points[J]. J Diff Eqns,1984,55:225-256.
[8] Silnikov L P. A case of the existence of a countable number of periodic motions[J]. Soviet Math Dokl,1965,6:163-166.
[9] Silnikov L P. On a Poincaré-Birkhoff problem[J]. Math USSR-Sb,1967,3:353-371.
[10] Chow S N, Hale J K, Mallet-Paret J. An example of bifurcation to homoclinic orbits[J]. J Diff Eqns,1980,37:551-573.
[11] Hale J K. Bifurcation theory and applications[C]//Lecture Notes in Mathematics. Berlin:Springer-Verlag,1984,1057:106-151.
[12] Battelli F, Lazzari C. Exponential dichotomies, heteroclinic orbits, and Melnikov functions[J]. J Diff Eqns,1990,86:342-366.
[13] Battelli F, Palmer K J. Tangencies between stable and unstable manifolds[J]. Proc Roy Soc Edin,1992,A121:73-90.
[15] Gruendler J. Homoclionic solutions for autonomous systems in arbitrary dimension[J]. SIAM J Math Anal,1992,23:702-721.
[16] Gruendler J. Homoclinic solutions for autonomous ordinary differential equations with nonautonomous perturbations[J]. J Diff Eqns,1995,122:1-26.
[17] Gruendler J. The existence of transversal homoclinic solutions for higher order equations[J]. J Diff Eqns,1996,130:307-320.
[18] Hale J K, Lin X B. Heteroclinic orbits for retarded functional differential equations[J]. J Diff Eqns,1986,65:175-202.
[19] Knobloch J. Bifurcation of degenerate homoclinic orbits in reversible and conservative systems[J]. J Dyn Diff Eqns,1997,9:427-444.
[20] Battelli F, Palmer K J. Chaos in the Duffing equation[J]. J Diff Eqns,1993,101:276-301.
[21] Luo G, Zhu C. Transversal homoclinic orbits and chaos for functional differential equations[J]. Nonlinear Anal:TMA,2009,71:6254-6264.
[22] Zhu C, Luo G, Shu Y. The existences of transverse homoclinic solutions and chaos for parabolic equations[J]. J Math Anal Appl,2007,335:626-641.
[23] Awrejcewicz J, Holicke M M. Smooth and Nonsmooth High Dimensional Chaos and the Melnikov-Type Methods[M]. Singapore:World Scientific,2007.
[24] Zhu C, Zhang W. Linearly independent homoclinic bifurcations parameterized by a small function[J]. J Diff Eqns,2007,240:38-57.
[25] Zhu C, Luo G, Lan K. Multiple homoclinic solutions for singular differential equations[J]. Ann Inst H Poincare:AN,2010,27:917-936.
[26] Arnold L. Random Dynamical Systems[M]. New York:Springer-Verlag,1998.
[27] Jaeger L, Kantz H. Homoclinic tangencies and non-normal Jacobians-effects of noise in nonhyperbolic chaotic systems[J]. Physica,1997,D105:79-96.
[28] Kennedy J, York J. Topological horseshoes[J]. Trans Am Math Soc,2001,353:3513-2530.
[29] Lu K, Wang Q. Chaos in differential equations driven by a nonautonomous force[J]. Nonlinearity,2010,23:2935-2975.
[30] Lu K, Wang Q. Chaos behavior in differential equations driven by a Brownian motion[J]. J Diff Eqns,2011,251:2853-2895.
[31] Chow S N, Deng B, Terman D. The bifurcation of homoclinic and periodic orbits from two heteroclinic orbits[J]. SIAM J Math Anal,1990,21:179-204.
[32] Guckenheimer J, Holmes P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields[M]. New York:Springer-Verlag,1983.
[33] Hale J K, Spezamiglio A. Perturbation of homoclinics and subharmonics in Duffing’s equation[J]. Nonlinear Anal:TMA,1985,9:181-192.
[34] He Z, Zhang W. Subharmonic bifurcations in a perturbed nonlinear oscillation[J]. Nonlinear Anal:TMA,2005,61:1057-1091.
[35] Zhu C. The coexistence of subharmonics bifurcated from homoclinic orbits in singular systems[J]. Nonlinearity,2008,21:285-303.
[36] Bulsara A R, Schieve W C, Jacobs E W. Homoclinic chaos in systems perturbed by weak Langevin noise[J]. Phys Rev,1990,A41:668-681.
[37] Deng G, Zhu D. Homoclinic and heteroclinic orbits for near-integrable coupled nonlinear Schr?dinger equations[J]. Nonlinear Analysis:TMA,2010,73:817-827.
[38] Freddy D, Li C, Zhang Z. Unfolding of a quadratic integrable system with two centers and two unbounded heteroclinic loops[J]. J Diff Eqns,1997,139:146-193.
[39] Gan S, Wen L. Heteroclinic cycles and homoclinic closures for generic diffeomorphisms[J]. J Dyn Diff Eqns,2003,15:451-471.
[40] Han M, Hu S, Liu X. On the stability of double homoclinic and heteroclinic cycles[J]. Nonlinear Anal:TMA,2003,53:701-713.
[41] Li W, Lu K. Sternberg theorems for random dynamical systems[J]. Commun Pure Appl Math,2005,58:941-988.
[42] Lin X. Using Melnikov’s method to solve Silnikov’s problem[J]. Proc Roy Soc Edin,1990,A116:295-325.
[43] Lin X, Vivancos I B. Heteroclinic and periodic cycles in a perturbed convection model[J]. J Diff Eqns,2002,182:219-265.
[44] Liu B, Zanolin F. Boundedness of solutions of nonlinear differential equations[J]. J Diff Eqns,1998,144:66-98.
[45] Luo G, Liang J, Zhu C. The transversal homoclinic solutions and chaos for stochastic ordinary differential equations[J/OL]. J Math Anal Appl,2013,doi:10.1016/j.jmaa.2013.10.055.
[46] Palmer K J. Exponential dichotomies for almost periodic equation[J]. Proc Am Math Soc,1987,101:283-298.
[47] Palmer K J, Stoffer D. Chaos in almost periodic systems[J]. Z Angew Math Phys,1989,40:592-602.
[48] Palmer K J. Existence of transversal homoclinic points in a degenerate case[J]. Rocky Mount J Math,1990,20:1099-1118.
[49] Wiggins S. Global bifurcations and chaos-analytical methods[J]. New York:Springer-Verlag,1988.
[50] Zhang W. Bifurcation of homoclinics in a nonlinear oscillation[J]. Acta Math Sinica:Engl,1989,5:170-184.
[51] Deng B. The bifurcations of countable connections from a twisted heteroclinic loop[J]. SIAM J Math Anal,1991,22:653-679.
[52] Holmes P, Marsden J. Horseshoes in perturbations of Hamiltonian systems with two degrees of freedom[J]. Commun Math Phys,1981,82:523-544.