崔蘇雯,盛正印,李 巖
(1.海司信息化部,北京100841;2.海軍航空工程學(xué)院,煙臺264001 )
由于永磁同步電動機(以下簡稱PMSM)具有高功率因數(shù)、高慣性力矩比、高功率質(zhì)量比、高效、低功耗、維護(hù)簡單等特點,所以其在驅(qū)動系統(tǒng)方面得到了廣泛的應(yīng)用[1]。然而在傳統(tǒng)矢量控制和直接轉(zhuǎn)矩控制方法下,PMSM 伺服驅(qū)動系統(tǒng)不能夠表現(xiàn)出優(yōu)異的性能,主要原因是沒有采用非線性的思想解決非線性系統(tǒng)的問題[2](如僅采用PI、PID 控制)。
隨著控制方法的發(fā)展,許多非線性控制方法逐步應(yīng)用到PMSM 這個非線性系統(tǒng)中。如反饋線性化[3],其思想是把非線性系統(tǒng)逐步轉(zhuǎn)換成線性系統(tǒng)來分析,但是受到不確定參數(shù)變化的干擾。無源控制[4-5],其核心思想是利用輸出反饋使得電機閉環(huán)系統(tǒng)特性表現(xiàn)為一無源映射,從電機的能量方程入手,利用不影響穩(wěn)定性的無功率簡化控制器的設(shè)計,但是負(fù)載變化抗干擾能力較弱。
反步法[6-7]相比于其他方法的靈活性在于其可以解決許多在限定環(huán)境下的設(shè)計問題。反步法的基本思想是將復(fù)雜的非線性系統(tǒng)分解成不超過系統(tǒng)階數(shù)的子系統(tǒng),然后為每個子系統(tǒng)設(shè)計部分Lyapunov函數(shù)和中間虛擬控制量,一直“后退”到整個系統(tǒng),將它們集成起來完成整個控制律的設(shè)計。
本文在假設(shè)已知電參數(shù)的情況下,考慮參數(shù)的不確定性和有限界干擾,利用反步法來設(shè)計非線性反饋控制。
在d,q 軸下的PMSM 的電學(xué)和機械方程如下:
式中:
機械方程:
電磁轉(zhuǎn)矩:
通過選擇id,iq,ωr作為狀態(tài)變量,PMSM 系統(tǒng)表示如下:
非線性系統(tǒng)是由上述方程組成,可以采用遞歸反步來設(shè)計控制器。構(gòu)造Lyapunov 函數(shù)和相配的控制律,設(shè)計一個PMSM 速度跟蹤非線性控制器。
假設(shè)已知系統(tǒng)參數(shù)。
第一步,定義速度跟蹤控制誤差:
通過式(9)可以推導(dǎo)出:
第二步,利用反步設(shè)計法,設(shè)d,q 坐標(biāo)下的電流id,iq作為虛擬控制量及設(shè)定其期望值,即穩(wěn)定函數(shù):
電流id,iq不是控制輸入,定義其穩(wěn)定誤差:
把式(12)~式(15)代入式(11)得到:
而且動態(tài)穩(wěn)定誤差可以給出如下:
第三步,閉環(huán)系統(tǒng)定義Lyapunov 函數(shù)如下:
對式(19)求導(dǎo),并把式(16)~式(18)代入得到:
如果d,q 軸控制電壓:
代入式(20)得Lyapunov 函數(shù)的導(dǎo)數(shù):
式中:K1,K2和K3都是正常數(shù)的反饋增益。在t→∞時,這就意味著誤差信號θ,z1,z2,z3漸進(jìn)趨向于0。
我們可以通過MATLAB/Simulink 建立系統(tǒng)的仿真模型,證明非線性控制器的優(yōu)越性及證明系統(tǒng)的穩(wěn)定性和速度跟蹤特性??刂葡到y(tǒng)的仿真模型如圖1 所示,它包含非線性速度跟蹤控制模塊、逆變器模塊、PMSM、坐標(biāo)變換模塊。
圖1 PMSM 反步控制系統(tǒng)模型
初始給定的負(fù)載轉(zhuǎn)矩為一階躍信號,如圖2 所示。
圖2 負(fù)載轉(zhuǎn)矩
電機參數(shù):J=0.003 kg·m2,p =2,R =6.8 Ω,B=0.009 N·m·s/rad,Ld=0.011 H,Lq=0.011 H,φm=0.42 Wb;控制器增益:K1=800,K2=300,K3=320。
首先選擇參數(shù)K4=0,即不加積分器。此時的轉(zhuǎn)速以及轉(zhuǎn)速跟蹤誤差如圖3 所示。
圖3 無積分轉(zhuǎn)速跟蹤及跟蹤誤差
此時得到的其中一相穩(wěn)態(tài)電壓如圖4 所示。
圖4 一相穩(wěn)態(tài)電壓
然后選擇參數(shù)K4=108,即加入積分器。此時的轉(zhuǎn)速以及轉(zhuǎn)速跟蹤誤差如圖5 所示。
從以上仿真結(jié)果可以分析出,無積分時轉(zhuǎn)速跟蹤的穩(wěn)態(tài)誤差相比帶積分時較大。很明顯,由于積分器的加入使得其性能得到了提高,即系統(tǒng)拒絕干擾能力得到提高。
圖5 帶積分轉(zhuǎn)速跟蹤及跟蹤誤差
對于PMSM 非線性系統(tǒng)來說,負(fù)載轉(zhuǎn)矩的干擾限制了傳統(tǒng)的線性控制方法的應(yīng)用,所設(shè)計的反步法控制器,考慮了負(fù)載轉(zhuǎn)矩的變化,其中積分器的加入提高了系統(tǒng)的穩(wěn)態(tài)特性,得到了較好的速度跟蹤和穩(wěn)態(tài)誤差。仿真結(jié)果分析可以證明帶積分器的反步控制器具有較快的響應(yīng)速度及較好的跟蹤效果。
[1] 鄭新才,陳剛.電機原理及其應(yīng)用[M]. 北京:中國水利水電出版社,2008.
[2] 王久和.交流電機的非線性控制[M].北京:電子工業(yè)出版社,2009.
[3] 王友利.永磁同步電機反饋線性化控制系統(tǒng)研究[D]. 無錫:江南大學(xué),2006.
[4] 紀(jì)志成,薛花,沈艷霞. 感應(yīng)電動機無源性控制方法研究[J].電工技術(shù)學(xué)報,2005,20(3):1 -6.
[5] 張興華,戴先中.基于無源性的感應(yīng)電機控制系統(tǒng)設(shè)計[J].電工技術(shù)學(xué)報,2001,16(4):34 -38.
[6] 沈艷霞,林瑾,紀(jì)志成.自適應(yīng)反步法感應(yīng)電機控制器的設(shè)計和仿真研究[J].系統(tǒng)仿真學(xué)報,2006,18(2):451 -455.
[7] ISMAIL K B,ABDELDJABBAR H.Direct field -oriented control using backstepping strategy with fuzzy rotor resistance estimator for induction motor speed control[J]. Information Technology and Control,2006,35(4):403 -411.