亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        隱蔽型真菌毒素的形成及降解方法的研究進(jìn)展

        2014-03-08 06:14:02王彥蘇周佳宇謝星光丁成龍戴傳超
        食品科學(xué) 2014年21期
        關(guān)鍵詞:菌素乳酸菌水解

        王彥蘇,周佳宇,謝星光,丁成龍,戴傳超,*

        (1.南京師范大學(xué)生命科學(xué)學(xué)院,江蘇省微生物資源產(chǎn)業(yè)化工程技術(shù)研究中心,江蘇 南京 210023;2.江蘇省農(nóng)業(yè)科學(xué)院畜牧研究所,江 蘇 南京 210014)

        隱蔽型真菌毒素的形成及降解方法的研究進(jìn)展

        王彥蘇1,周佳宇1,謝星光1,丁成龍2,戴傳超1,*

        (1.南京師范大學(xué)生命科學(xué)學(xué)院,江蘇省微生物資源產(chǎn)業(yè)化工程技術(shù)研究中心,江蘇 南京 210023;2.江蘇省農(nóng)業(yè)科學(xué)院畜牧研究所,江 蘇 南京 210014)

        真菌毒素廣泛分布于霉變的或受霉菌污染的糧食、谷物、飼料中,對(duì)人類和家畜健康造成嚴(yán)重威脅。植物和微生物可以降解真菌毒素為弱毒性的毒素,但是這種降解并不徹底,隱蔽型的真菌毒素依然存在于植物體內(nèi)或環(huán)境中。本文主要從真菌毒素的分布及危害、植物生長(zhǎng)和儲(chǔ)存過程中降解真菌毒素的不完全性、微生物轉(zhuǎn)化或降解真菌毒素形成“隱蔽型真菌毒素”、隱蔽型真菌毒素降解過程這四個(gè)方面進(jìn)行論述,希望為今后真菌毒素的完全降解研究提供參考。

        真菌毒素降解;植物轉(zhuǎn)化;微生物降解;隱蔽型真菌毒素

        真菌毒素是絲狀真菌產(chǎn)生的有毒次級(jí)代謝產(chǎn)物。莊稼收獲的前后容易感染真菌,如果谷物儲(chǔ)存條件潮濕并且溫度有利于真菌生長(zhǎng),就會(huì)有大量真菌毒素的產(chǎn)生。主要產(chǎn)毒素的真菌屬有:鐮刀菌屬(Fusarium)、青霉屬(Penicillium)、曲霉屬(Aspergillus)、鏈格孢霉屬(Alternar ia)。儲(chǔ)存谷物中也常常會(huì)有真菌毒素,污染了真菌毒素的食品或飼料對(duì)人體或動(dòng)物有一定危害。許多方法可以減弱或消除真菌毒素:通過非營(yíng)養(yǎng)吸附化合物如:活性碳、膨潤(rùn)土、沸石等,可以減少動(dòng)物胃腸道對(duì)毒素的吸收,最終可以減少毒素轉(zhuǎn)移到動(dòng)物產(chǎn)品中[1];一些動(dòng)植物或微生物可以通過改變真菌生長(zhǎng)環(huán)境條件抑制真菌毒素的產(chǎn)生,來自植物宿主的次級(jí)代謝物質(zhì)可以參與調(diào)節(jié)真菌毒素合成途徑,減少毒素積累;植物在生長(zhǎng)和儲(chǔ)存過程中會(huì)降解一部分真菌毒素,微生物也可以通過吸附、水解、還原、糖苷化、甲?;确绞剑瑢?duì)真菌毒素起到解毒作用。但是用以上方法處理過的食品看似安全,實(shí)際上卻存在著被植物或微生物代謝轉(zhuǎn)化的隱蔽型真菌毒素。隱蔽型真菌毒素不容易被檢測(cè)到,常常以共軛形式存在,如Deoxynivalenol(DON)的糖苷式(deoxynivalenol-3-D-glucopyranoside,D3G),Zearalenone(ZON)的硫化物Zearalenone-14-sulfate(Z14S),存在一定毒性,危害人體或動(dòng)物健康,對(duì)于形成的隱蔽型真菌毒素的完全降解方 法也很少有研究。因此隱蔽型真菌毒素的檢測(cè)技術(shù)、解毒機(jī)制和降解方法還需要進(jìn)一步深入研究。

        1 真菌毒素的分布

        真菌毒素是絲狀真菌產(chǎn)生的有毒次級(jí)代謝產(chǎn)物,主要的真菌毒素有:玉米赤霉烯酮、單端孢霉烯族毒素、黃曲霉毒素、赭曲霉毒素、麥角生物堿、伏馬菌素、展青霉素等,容易污染玉米、麥類等谷物、食品、飼料。Richard等[2]在成熟玉米青貯樣品中檢測(cè)到7種真菌毒素,如黃曲霉毒素B1、橘霉素、脫氧雪腐鐮刀菌烯醇、伏馬菌素B1、膠霉毒素、赭曲霉素、玉米赤霉烯酮。小麥貯藏中比較常見的真菌污染有棒曲霉(Aspergillus alternata)(14.6%)、煙曲霉(Aspergillus fumigatus)(10.5%)、黑曲霉(Aspergillus niger)(8.3%)、橘青霉(Penicillium citrinum)(3.8%)[3]。大麥儲(chǔ)存過程中,主要被鐮刀菌(Fusarium)污染,鐮刀菌所產(chǎn)生的毒素有伏馬菌素、脫氧雪腐鐮刀菌烯醇等。Sulyok等[4]在小麥和玉米中分離出39 種毒素,其中包括單端孢霉烯族毒素類、玉米烯酮、伏馬菌素、麥角生物堿等,如果食用了感染絲狀真菌的糧食和飼料,會(huì)對(duì)人體或動(dòng)物造成一定危害。DON是單端孢霉烯族類毒素B中最主要的一種,能引起胃腸障礙、造血機(jī)能障礙、臟器出血,并具有致癌、致突變作用。DON的糖基化衍生物DON-3-glucoside(DON3Glc)被發(fā)現(xiàn)存在于谷物和啤酒中[5-6]。Shephard等[7]發(fā)現(xiàn)在家庭釀造的大麥啤酒可以檢測(cè)出伏馬菌素B1(fumonisins,F(xiàn)B1)、B2(FB2)和B3(FB3)。Siegel等[8]在啤酒和飲料中檢測(cè)到交鏈孢菌酮酸(tenuazonic acid,TA),平均含量達(dá)到11 μg/kg,最高達(dá)到了175 μg/kg。在飼料中,特別是青貯飼料中,如果青貯原料感染真菌或青貯過程不嚴(yán)格厭氧,造成真菌繁殖,會(huì)使青貯飼料中存在真菌毒素,對(duì)家畜健康造成危害[9]。Lepom[10]研究發(fā)現(xiàn),如果使用感染了大刀鐮刀霉(Fusarium culmorum)的玉米進(jìn)行青貯,11 d后檢測(cè)不到F. culmorum,但是該菌所產(chǎn)生的玉米烯酮(zearalenone)含量卻在整個(gè)12 周內(nèi)沒有變化。

        2 植物對(duì)真菌毒素的代謝轉(zhuǎn)化以及隱蔽型真菌毒素的存在

        真菌毒素和其他異源物質(zhì)一樣,可以被活體植物代謝,形成共軛的真菌毒素。病原菌在感染植物過程中,病原菌細(xì)胞壁降解酶基因表達(dá)上調(diào),降解植物細(xì)胞壁侵染植物細(xì)胞[11]。Hariprasad等[12]研究發(fā)現(xiàn),綠色蔬菜可吸收并通過疏水組織運(yùn)輸真菌毒素到地上部分。植物種子可以通過被 動(dòng)運(yùn)輸,在水通道蛋白的參與下,吸收真菌毒素,并通過植物蒸騰作用吸收到葉部,也可積累到植物根內(nèi)皮層[13]。真菌毒素 作為異源生物在植物體內(nèi)被識(shí)別需要經(jīng)歷3 個(gè)化學(xué)修飾階段,第一個(gè)階段是還原、氧化和乙?;?,這個(gè)階段可能導(dǎo)致激活衍生型分子的毒性變高;第二個(gè)階段是酶轉(zhuǎn)化活性基團(tuán)如進(jìn)行結(jié)合、糖苷化、硫基化作用,形成親水性化合物,更好地消除真菌毒素、減弱毒性;第三個(gè)階段是隔離真菌毒素,使毒素區(qū)域化,如將真菌毒素包裹在植物細(xì)胞液泡內(nèi),或結(jié)合在植物細(xì)胞壁上[14]。

        植物代謝物質(zhì),如一些植物揮發(fā)性物質(zhì)也可以減少毒素積累,甚至?xí)龠M(jìn)植物降解真菌毒素。丁香、山百里香等植物揮發(fā)油可以抑制黃曲霉毒素(aflatoxin B1,AFB1)的積累[15]。3 種藥用植物(Thy mus daenensis、Satureja khozistanica和Satureja macrosiphonia)揮發(fā)油、乙醇提取物可以抑制曲霉屬(Aspergillus)的生長(zhǎng),但水萃取物可以不同程度降解AFB1[16-18]。玉米烯酮是一種鐮刀菌毒素, Berthiller等[19]使用玉米烯酮溶液處理擬南芥(Arabidopsis thaliana)植物,液相色譜-質(zhì)譜聯(lián)用檢測(cè)后發(fā)現(xiàn)有17 種代謝物質(zhì),主要有糖苷、丙糖苷、玉米烯酮雙已糖和已糖-戊糖二糖,α-和β-玉米烯酮等。真菌毒素的降解并不完全,會(huì)形成共軛真菌毒素并積累在植物體內(nèi)或表面。

        真菌毒素的發(fā)生、生物代謝還不是很清楚,并且用于分析真菌毒素的儀器大都不能檢測(cè)到共軛的真菌毒素。還有一個(gè)令人頭疼的問題是減毒后的共軛真菌毒素被人類或動(dòng)物消化后可以重新激活,也有人把這種真菌毒素稱為隱蔽型真菌毒素[20]。以DON和ZON為例,在糧食儲(chǔ)存和啤酒發(fā)酵過程中,會(huì)容易形成共軛的DON和ZON,危害人類健康。

        2.1 DON

        Tran和Smith在澳大利亞多個(gè)地區(qū)對(duì)DON進(jìn)行的一項(xiàng)調(diào)查中顯示。2009—2011年污染樣品中都檢測(cè)到以共軛形式存在的隱蔽型DON,污染率分別達(dá)到61%、87%、68%。共軛DON對(duì)作物存在潛在影響[21]。啤酒是比較受人們歡迎的飲品,麥芽是其基本的原料之一,在釀造過程中特別容易污染鐮刀菌(Fusarium)毒素,如DON、3-Acetyldeoxynivalenol(3ADON)、D3G。Varga等[22]發(fā)現(xiàn)啤酒所含D3G和DON平均質(zhì)量濃度分別是6.9 μg/L和8.4 μg/L。

        2.2 ZON

        1990年,Gareis等[23]在谷物樣品中發(fā)現(xiàn)玉米烯酮的糖苷式Zearalenone-glycoside,用含有zearalenone-4-p-D-glucopyranoside的飼料飼喂豬14 d后,在消化過程中,糖苷被水解掉,又會(huì)形成ZON和α-Zearalenol。這種 不容易被檢測(cè)到,但對(duì)人體或動(dòng)物存在潛在危害的真菌毒素被Gareis為“masked mycotoxin”。Vendla等[24]發(fā)現(xiàn)以谷物為基礎(chǔ)的產(chǎn)品中發(fā)現(xiàn)大量毒素,如Deoxynivalenol、Zearalenone,還存在它們的代謝物質(zhì)D3G、3ADON l、Zearalenol-4-glucopyranoside、α-Zearalenol、β-Searalenol、α-Zearalenol-4-glucopyranoside、β-Zearalenol-4-glucopyranoside和Zearalenone-4-sulfate。其中,豐富度最高的是Zearalenone-4-sulfate。麥麩中有較高的毒素含量,其中DON 254 ng/g、Zearalenone-4-sulfate 6 ng/g和ZON 44 ng/g。

        3 微生物對(duì)真菌毒素的不完全降解

        3.1 乳酸菌的抑菌作用

        生物防治病原菌是抑制食品腐敗提高食品保質(zhì)期的有效方法,乳酸菌作為益生菌可以抑制食品中的腐敗菌,提高食品保質(zhì)期[25]。乳酸菌抑制腐敗菌生長(zhǎng)的作用機(jī)理分為幾個(gè)原因:乳酸菌產(chǎn)生細(xì)菌素(蛋白類物質(zhì)抗菌多肽)、乳酸、乙酸、苯基乳酸、脂肪酸、酚類化合物[26],許多乳酸菌可以產(chǎn)生黃素蛋白氧化酶類但不產(chǎn)生過氧化氫酶,在氧氣存在的條件下產(chǎn)生H2O2,使具有強(qiáng)氧化作用的H2O2可以破壞細(xì)菌細(xì)胞蛋白。乳酸菌(Lactobacillus paracasei ssp. tolerans)對(duì)真菌和霉菌(如Fusarium proliferatum M5689、M5991、Fusarium graminearum R4053)有一定的抑制作用[27]。Magnusson從環(huán)境中分離37株抑制真菌活性的乳酸菌,能夠抑制A. fumigatus、Aspergillus nidulans、Penicillium commune和Fusarium sporotrichioides的生長(zhǎng)[28]。表1顯示了乳酸菌能夠抑制的一些病原菌或腐敗菌類型。

        表1 乳酸菌抑制菌種Table1 Strains against lactic acid bacteria

        3.2 乳酸菌對(duì)真菌毒素的結(jié)合及降解作用

        乳酸菌細(xì)胞壁與真菌毒素可以通過氫鍵、離子鍵、疏水作用力進(jìn)行結(jié)合,減弱樣品毒性[36]。Wu等[37]發(fā)現(xiàn)酵母和乳酸菌作為黃曲霉霉素的生物吸附劑可以阻止其進(jìn)入人類和動(dòng)物腸道。乳酸菌(Lactobacillus casei、Lb. plantarum和Lactobacillus fermentum)等一些傳統(tǒng)的益生菌可以結(jié)合黃曲霉毒素,起到對(duì)食品進(jìn)行解毒的作用。被鐮刀菌毒素污染的玉米青貯中可以分離到8 株乳酸桿菌屬(Lactobacilli)和3 株明串珠菌屬(Leuconostoc),研究發(fā)現(xiàn)這幾株菌可以將ZON轉(zhuǎn)化成 α-Zearalenol,但是不能轉(zhuǎn)化DON和伏馬菌素(fumonisins),許多菌可以和這些毒素結(jié)合[38]。Fazeli等[38]從酸面包和奶制品中分離得到乳酸菌(Lb. casei、Lb. plantarum和Lb. fermentum),發(fā)現(xiàn)所有菌株都有能力去除AFB1,Lb. fermentum和Lb. plantarum可以快速去除AFB1,去除率達(dá)到61%~65%。根據(jù)以上結(jié)果,乳酸菌與AFB1可以有效結(jié)合,但是,Niderkorn等發(fā)現(xiàn)[39]結(jié)合不是很緊密,經(jīng)過離心后,會(huì)有AFB1脫離菌體,不同菌體與不用毒素的結(jié)合能力不同,可能與毒素結(jié)構(gòu)和菌體表面結(jié)構(gòu)不同。Franco等[40]發(fā)現(xiàn)不管是活體乳酸菌細(xì)胞還是熱滅活的乳酸菌細(xì)胞,乳酸菌在體外可以去除DON,pH值和培養(yǎng)基濃度都不會(huì)影響去除能力,并且發(fā)現(xiàn)熱滅活的細(xì)胞有更強(qiáng)的去除真菌毒素的能力,DON減少率35%~67%,活體細(xì)胞只達(dá)到16%~56%。Niderkorn等[41]發(fā)現(xiàn)乳酸菌與毒素結(jié)合反應(yīng)涉及到乳酸菌中的肽聚糖和TCA循環(huán),特別是細(xì)胞壁肽聚糖中部分肽結(jié)構(gòu)在與伏馬菌素B1和B2結(jié)合的過程中起到明顯作用,熱激或酸處理后的細(xì)胞結(jié)合真菌毒素的能力增強(qiáng),可能是熱激和酸處理后細(xì)胞壁表面結(jié)合位點(diǎn)暴露。乳酸菌在植物加工或貯存過程中,是可以減弱真菌毒素污染的良好菌劑,也可以提高食物風(fēng)味,可以作為糧食儲(chǔ)存保護(hù)劑或修復(fù)劑[42]。在啤酒發(fā)酵過程中,麥芽是不可缺少的原料,在麥芽浸泡過程中,乳酸菌數(shù)量達(dá)到108CFU/g,其中異型發(fā)酵明串珠菌屬占優(yōu)勢(shì)地位[43-44],乳酸菌在麥芽發(fā)酵過程中,可以產(chǎn)生細(xì)菌素,抑制腐敗菌生長(zhǎng)[45]。

        研究發(fā)現(xiàn)乳酸菌可以有效降解真菌毒素,在酸面團(tuán)發(fā)酵中,乳酸菌與酵母混合接菌可以降解赭曲霉素(ochratoxin A)[46]。被毒素污染的玉米與乳酸菌共培養(yǎng)處理組相比于未用乳酸菌處理組,對(duì)SNO細(xì)胞(人類食道癌細(xì)胞系)毒性較弱[47]。Roig從腸道分離得到9 株乳酸菌(Bif i dobacterium longum、Bif i dobacterium bif i dum、Bifidobacterium breve、Bifidobacterium adolescentes、Lactobacillus rhamnosus、Lactobacillus casei-casei、Streptococcus termofilus、Lactobacillus ruminis、Lb. casei)和22株釀酒酵母(Saccharomyces cerevisiae),所有菌株在體外培養(yǎng)基中降解范圍為5%~99%,在小麥粉食物系統(tǒng)中Enniations(ENs)的降解1.3%~49.2%[48]。

        食品安全是食品行業(yè)和消費(fèi)者越來越關(guān)注的問題,乳酸菌可以抑制病原菌的生長(zhǎng)、吸附或降解真菌毒素。因此,今后應(yīng)加強(qiáng)乳酸菌與病原菌拮抗機(jī)理的研究,探討乳酸菌在食品生產(chǎn)加工過程微生物群落中生態(tài)作用,使乳酸菌菌劑可以應(yīng)用于食物防腐工業(yè)中。乳酸菌會(huì)產(chǎn)生一些代謝產(chǎn)物,如細(xì)菌素、有機(jī)酸等,對(duì)病原菌具有良好的抑制作用,如果能大規(guī)模生產(chǎn)使用,在糧食儲(chǔ)存、食品加工過程中有廣闊的應(yīng)用前景。但是以上研究顯示,乳酸菌只能部分降解或結(jié)合真菌毒素,并沒有完全消除真菌毒素的危害,對(duì)于乳酸菌是否能完全徹底的降解真菌毒素還需要進(jìn)一步研究。

        3.3 其他降解菌對(duì)真菌毒素的降解作用

        研究發(fā)現(xiàn)許多從土壤、水體等自然環(huán)境中獲得真菌毒素降解菌[49-50],也有許多研究發(fā)現(xiàn)從人體或動(dòng)物胃腸道獲得的微生物可以抑制真菌生長(zhǎng)或降解真菌毒素。Kusumaningtyas等[51]研究將釀酒酵母(S. cerevisiae)和寡孢根霉菌(Rhizopus oligosporus)分別接種和組合接種被黃曲霉毒素污染的雞飼料中,在處理第5天后,AFB1達(dá)到最大降解率,R. oligosporus接種的處理組降解AFB1活性最高。被赫曲霉素污染的大麥固體發(fā)酵物,在接種白腐真菌Pleurotus ostreatus 4周后,OTA降解到23%,OTB降解到3%,在降解過程中OTB水解為Ochratoxin β[52]。Zuo等[53]發(fā)現(xiàn)Lb. casei、枯草芽孢桿菌(B. subtilis)和異常畢赤酵母(Pichia anomala)混合培養(yǎng)可以有效地降解AFB1,在12 h內(nèi)可去除59.3%,在48 h內(nèi)可去除87.04%。非病原菌嗜吡啶紅球菌(Rhodococcus pyridinivorans)K408與ZON孵育5 d后可以達(dá)到87.21%的降解率[54]。

        以上研究發(fā)現(xiàn)微生物對(duì)真菌毒素具有良好的降解或轉(zhuǎn)化能力,可能是微生物產(chǎn)生一些物質(zhì)(如酶類)作用于腐敗真菌,使菌體生長(zhǎng)減弱,或作用于真菌毒素,使毒素降解或使毒性減弱。Meca等[55]研究發(fā)現(xiàn)釀酒酵母(S. c erevisiae LO9、YE5、A34和A17)混合粗酶液,加到白僵菌毒素(beauvericin)標(biāo)準(zhǔn)溶液中,毒素降解率為83%~100%,以污染白僵菌毒素的玉米粉為基質(zhì),降解率為66%~91%。細(xì)菌和黑酵母降解伏馬菌素的途徑,首先是伏馬菌素羧酸脂酶水解兩個(gè)三羧酸側(cè)鏈,第二步是在黑色酵母中胺氧化酶作用水解后的伏馬菌素B1脫氨基作用,或是在細(xì)菌中氨基轉(zhuǎn)移酶作用轉(zhuǎn)氨基。Hartinger等[56-60]發(fā)現(xiàn)鞘脂單胞菌(Sphingopyxis sp. MTA144)編碼氨基轉(zhuǎn)移酶FumⅠ,F(xiàn)umⅠ能夠催化水解了的伏馬菌素B1脫氨基作用,F(xiàn)umⅠ和伏馬菌素羧酸脂酶Fum D聯(lián)合作用,使伏馬菌素解毒成為可能。

        圖1 黃曲霉毒素BB1水解過程Fig.1 Hydrolysis of aflatoxin B1

        AFB1通過環(huán)氧化物水解酶水解為AFB1-8-9-二氫二醇(AFB1-8,9-dihydrodiol)(圖1),Wang等[61]對(duì)來自白腐真菌Phanerochaete sordid YK-624的錳過氧化物酶可以有效消除AFB1,5 nkat的MnP與AFB1共培養(yǎng)48 h AFB1的最大消除達(dá)到86.0%,錳過氧化物酶將ABF1環(huán)氧化成AFB18,9-epoxide,再水解為AFB1-8,9-二氫二醇(AFB1-8,9-dihydrodio l)。羧肽酶A 、胰蛋白酶、α-糜蛋白酶和組織蛋白酶C能在體外條件下水解赭曲霉毒素OTA為弱毒性的OTα[62-63](圖2)。

        圖2 赭曲霉毒素A水解過程Fig.2 Hydrolysis of ochratoxin A

        不同種類的微生物對(duì)真菌毒素的降解途徑不同,以微生物降解DON為例,革蘭氏陽性菌和革蘭氏陰性菌對(duì)DON具有不同的降解作用,革蘭氏陽 性菌可以吸收DON,將DON作為碳源利用,而革蘭氏陰性菌則不能吸收利用,需要在含有DON培養(yǎng)一段時(shí)間后才能起到降解DON的作用。革蘭氏陽性菌與革蘭氏陰性菌存在不同DON降解途徑,在這兩種途徑中有不同的降解酶基因表達(dá)調(diào)控機(jī)制,但Sato等[64]發(fā)現(xiàn)兩種菌的降解產(chǎn)物均為3-Epi-deoxynivalenol。

        圖3 脫氧雪腐鐮刀菌烯醇結(jié)構(gòu)式Fig.3 Structure of deoxynivalenol

        DON毒性主要是中間環(huán)氧鍵的存在(圖3)[65]。許多胃腸道微生物可以將DON還原去環(huán)氧基團(tuán),一些來自動(dòng)物消化系統(tǒng)的微生物代謝可以降解DON為弱毒性的Deepoxy-deoxynivalenol (DOM-1)[66]。Gratz等[67]發(fā)現(xiàn)人類糞便微生物可以解毒DON,形成DOM-1。Yu等[68]從雞腸道中分離得到DON降解細(xì)菌,將DON轉(zhuǎn)化成DOM-1。許多研究都是胃腸道微生物在厭氧環(huán)境下通過還原去環(huán)氧化作用解毒DON[69-71]。Islam等[72]用農(nóng)田土壤制備培養(yǎng)基,在有氧條件下可以降解DON、去環(huán)氧化。

        圖4 脫氧雪腐鐮刀菌烯醇乙?;苌锝Y(jié)構(gòu)式Fig.4 Structure of acetylated derivatives of deoxynivalenol

        DON存在下常常伴隨著兩個(gè)乙酰化衍生物:3-ADON和15-ADON(圖4)。Pinton等[73]通過對(duì)細(xì)胞增殖、胃腸道屏障功能和腸道形態(tài)結(jié)構(gòu)等觀察研究,比較體內(nèi)體外條件下DON、3-ADON、15-ADON毒性,發(fā)現(xiàn)15-DON因?yàn)槟芗せ頜APK途徑使其具有更高的毒性。Pinton等[74]對(duì)DON、3-DON、15-DON毒性進(jìn)行了分析,它們的毒性大小依次為3-ADON≤DON<15-ADON。但是DON雖然被轉(zhuǎn)化和降解,但是降解并不徹底,其衍生物依然有弱毒性,危害人類健康。

        3.4 微生物對(duì)真菌毒素降解的不完全性

        真 菌毒素的降解取決于環(huán)境條件,如:微生物的種類、數(shù)量、化合物結(jié)構(gòu)等。往往微生物對(duì)真菌毒素具有一定 的降解作用都具有不完全性,雖然降解率較高,但降解產(chǎn)物具有不徹底性,只能減弱毒性,被人體或動(dòng)物吸收后,經(jīng)過胃腸道微生物作用和修飾,降解產(chǎn)物又會(huì)回復(fù)到原來的毒性較強(qiáng)的化合物,很少會(huì)轉(zhuǎn)變成無機(jī)礦物質(zhì)、H2O、CO2、。

        4 真菌毒素檢測(cè)與降解存在的問題

        對(duì)于真菌毒素的檢測(cè)存在許多種方法薄層層析法、酶聯(lián)免疫分析方法、氣相色譜法、高效液相色譜法等。這幾種方法各有優(yōu)缺點(diǎn)。由于真菌毒素有不同的化學(xué)式和物理化學(xué)性質(zhì),特殊的提取、凈化、合適的檢 測(cè)器,只能有效的檢測(cè)一種或一類真菌毒素。Tanaka等[76]論述了水稻真菌毒素的檢測(cè)方法,脫氧雪腐鐮刀菌烯醇(deoxynivalenol,DON)、鐮刀菌烯酮和雪腐鐮刀菌醇一般使用氣相色譜-質(zhì)譜聯(lián)用檢測(cè),單 端孢霉烯族化合物使用氣相色譜-電子捕獲檢測(cè)(gas chromatography and electron capture detection,GC-ECD)確定。雜色曲霉素(sterigmatocystin,ST)是曲霉屬或其他一些真菌產(chǎn)生的致癌性化合物,氣相色譜-質(zhì)譜聯(lián)用(gas chromatography-mass spectrometry,GC-MS)、液相色譜-質(zhì)譜聯(lián)用(liquid chromatography-mass spectrometry(LC-MS)、LC-MS/MS)和液相紫外檢測(cè)(liquid ultraviolet detection,LC-UV) 都可以用于STE的檢測(cè),但是LC-UV的檢測(cè)效果比較好。但是對(duì)隱蔽型真菌毒素的檢測(cè)沒有做具體論述。

        多種方法并用,可以更有效地檢測(cè)難以檢測(cè)的隱蔽型真菌毒素。LC-MS/MS由于其普遍性、選擇性、敏感性的優(yōu)點(diǎn),近幾年應(yīng)用比較廣泛。Vendl等[77]用LC-MS/MS從谷物食物中檢測(cè)到DON和ZON還有8 種它們的代謝產(chǎn)物如:Deoxynivalenol-3-glucoside (D3G)、3-Acetyl-deoxynivalenol(3ADON)、Zearalenone-4-glucoside(Z4G)、α-Zearalenol (α-ZOL)、β-Zearalenol(β-ZOL)、α-Zearalenol-4-glucoside (α-ZG)、β-Zearalenol-4-glucoside(β-ZG)、Zearalenone-4-sulfate(Z4S)。Nakagawa等[78]利用高分辨率LC-軌道阱質(zhì)譜檢測(cè)到單端孢霉烯族化合物A型的糖基化衍生物:Neosolaniol-glucoside(NESGlc)和Diacetoxyscirpenolglucoside(DASGlc)、單端孢霉烯族化合物B型化合物的糖基化衍生物D3G。Vidal等[79]論述了生物傳感器在檢測(cè)真菌毒素方面的應(yīng)用,但是多種毒素檢測(cè)、生物標(biāo)志物和蒙面真菌毒素的檢測(cè)方面還需進(jìn)一步研究。

        雖然在檢測(cè)共軛真菌毒素技術(shù)上得到提高,但是對(duì)于共軛真菌毒素的完全解毒還需要進(jìn)一步研究。通過糖基化作用來“偽裝”的真菌毒素,如DON的糖基化DON-3-Glc可以水解又回到DON,研究發(fā)現(xiàn)DON-3-Glc可以抵抗酸性環(huán)境,因此在胃液的酸性環(huán)境中水解DON-3-Glc是非常困難的。Berthiller等[80]發(fā)現(xiàn)人類胞質(zhì)中的β-葡糖苷酶對(duì)D3G水解效果較差,但是纖維素酶和纖維二糖酶對(duì)其的最大水解率分別達(dá)到13%和73%,這表明D3G被瘤胃動(dòng)物吸收后,在瘤胃纖維素分解菌的作用下使D3G回到DON。同時(shí)他們又發(fā)現(xiàn)胃腸道細(xì)菌如Bifidobacterium adolescentis、Enterococcus durans、Enterococcus mundtii、Lb. plantarum 8 h對(duì)D3G的水解率分別為:17%~25%、14%~27%、38%、62%。雖然植物將DON解毒為D3G,但是在腸道微生物作用下D3G又水解為DON。

        轉(zhuǎn)基因植物中過表達(dá)幾種植物或細(xì)菌基因可以加強(qiáng)植物修復(fù)系統(tǒng),在汞污染的修復(fù)過程中,Heaton等[81]將植物轉(zhuǎn)基因表達(dá)細(xì)菌的merA基因或merB基因,這兩種基因來自細(xì)菌的mer操縱子,merA基因編碼NADPH依 賴的汞離子還原酶,可以轉(zhuǎn)化離子汞(Hg(Ⅱ))轉(zhuǎn)化成(Hg(0)),merB基因編碼有機(jī)汞裂合酶,可以降解MeHg為甲烷和Hg(Ⅱ),有效的修復(fù)汞污染。以此借鑒,細(xì)菌中水解酶基因轉(zhuǎn)移到植物中,植物可以更好地降解土壤以及吸收后的真菌毒素,使真菌毒素鈍化,利用轉(zhuǎn)基因植物導(dǎo)入細(xì)菌或真菌編碼水解或還原真菌毒素基因的方法,希望可以有效緩解被黃曲霉毒素污染現(xiàn)狀。對(duì)于環(huán)境中防治真菌毒素,高溫度、高濕度會(huì)黃曲霉大量繁殖,RNA沉默技術(shù)減少黃曲霉生長(zhǎng)和其毒素的合成,從而減弱毒性[82]。

        5 結(jié) 語

        真菌毒素廣泛存在于糧食、飼料、食品中,會(huì)對(duì)人類和動(dòng)物健康造成威脅。許多研究發(fā)現(xiàn),外界環(huán)境可以影響真菌毒素的合成,甚至可以調(diào)節(jié)毒力因子基因的表達(dá),一些產(chǎn)毒素真菌還會(huì)受其宿主植物信號(hào)分子的影響,從而調(diào)控真菌毒素基因表達(dá)。糧食作物在加工或儲(chǔ)存過程中可能會(huì)有效地減弱真菌毒素的毒性,但作用并不完全。乳酸菌作為益生菌可以調(diào)節(jié)人類胃腸道菌群,提高食品或飼料的口感、營(yíng)養(yǎng)。其細(xì)胞壁特殊肽段對(duì)真菌毒素具有吸附作用,還有研究表明乳酸菌可以對(duì)真菌毒素起到降解作用。許多環(huán)境微生物對(duì)真菌毒素具有降解作用,降解的機(jī)理有水解作用、還原作用、乙?;饔玫龋墙到庾饔貌⒉粡氐?,形成真菌毒素的中間衍生物,沒有完全降解成H2O和CO2等,依然對(duì)環(huán)境有害。因此對(duì)于隱蔽型真菌毒素的降解還需進(jìn)一步研究,歸結(jié)為以下幾點(diǎn)。1)來自宿主植物的信號(hào)分子可以減少真菌毒素積累,植物揮發(fā)油發(fā)現(xiàn)可以促進(jìn)降解真菌毒素,這就為減少真菌毒素污染提供了新的思路;2)研究發(fā)現(xiàn)來自環(huán)境和腸道微生物具有降解真菌毒素的功能,新型、安全的真菌毒素降解菌還需要進(jìn)一步篩選;3)在以往的檢測(cè)中,往往忽略了隱蔽型真菌毒素的存在及其危害性,因此需進(jìn)一步提高檢測(cè)技術(shù),檢測(cè)糧食或飼料中隱蔽型真菌毒素;4)大部分植物還是微生物對(duì)真菌毒素只是起到吸附、不完全降解或減弱毒性的作用,并沒有將真菌毒素完全降解成H2O或CO2,隱蔽型真菌毒素的完全降解還需深入研究。

        [1] RAMOS A J, FINK-GREMMELS J, HERNANDEZ E. Prevention of toxic effects of mycotoxins by means of nonnutritive adsorbent compounds[J]. Journal of Food Protection, 1996, 59(6): 631-641.

        [2] RICHARD E, HEUTTE N, BOUCHART V, et al. Evaluation of fungal contamination and mycotoxin production in maize silage[J]. Animal Feed Science and Technology, 2009, 148(2): 309-320.

        [3] MATHEW S, THOMAS G, AHMAD T. An evaluation of the fungi isolated from sub-epidermal region of post-harvested stored wheat grains[J]. Nepal Journal of Biotechnology, 2011, 1(1): 9-13.

        [4] SULYOK M, BERTHILLER F, KRSKA R, et al. Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize[J]. Rapid Communications in Mass Spectrometry, 2006, 20(18): 2649-2659.

        [5] LANCOVA K, HAJSLOVA J, POUSTKA J, et al. Transfer of Fusarium mycotoxins and ‘masked’ deoxynivalenol (deoxynivalenol-3-glucoside) from field barley through malt to beer[J]. Food Additives and Contaminants, 2008, 25(6): 732-744.

        [6] MALACHOVA A, DZUMAN Z, VEPRIKOVA Z, et al. Deoxynivalenol, deoxynivalenol-3-glucoside, and enniatins: the major mycotoxins found in cereal-based products on the Czech market[J]. Journal of Agricultural and Food Chemistry, 2011, 59(24): 12990-12997.

        [7] SHEPHARD G S, van der WESTHUIZEN L, GATYENI P M, et al. Fumonisin mycotoxins in traditional Xhosa maize beer in South Africa[J]. Journal of Agricultural and Food Chemistry, 2005, 53(24): 9634-9637.

        [8] SIEGEL D, MERKEL S, KOCH M, et al. Quantification of the Alternaria mycotoxin tenuazonic acid in beer[J]. Food Chemistry, 2010, 120(3): 902-906.

        [9] YEKELER H, BITMIS K, OZCELIK N, et al. Analysis of toxic effects of Alternaria toxins on esophagus of mice by light and electron microscopy[J]. Toxicologic Pathology, 2001, 29(4): 492-497.

        [ 10] LEPOM P. Occurrence of Fusarium species and their mycotoxins in maize: 1. Method of determining zearalenone in maize and maize silage by means of high performance liquid chromatography (HPLC) using nuorescence detection[J]. Archives of Animal Nutrition, 1988, 38: 799-806.

        [11] CARAPITO R, VORWERK S, JELTSCH J M, et al. Genome-wide transcriptional responses of Fusarium graminearum to plant cell wall substrates[J]. FEMS Microbiology Letters, 2013. 340: 129-134.

        [12] HARIPRASAD P, DURIVADIVEL P, VENKATESWARAN G. Natural occurrence of a atoxin in green leafy vegetables[J]. Food Chemistry, 2013, 138: 1908-1913.

        [13] SNIGDHA M, HARIPRASAD P, VENKATESWARAN G. Mechanism of aflatoxin uptake in roots of intact groundnut (Arachis hypogaea L.) seedlings[J]. Environmental Science and Pollution Research, 2013, 20(12): 1-9.

        [14] BERTHILLER F, LEMMENS M, WERNER U, et al. Short review: metabolism of the Fusarium mycotoxins deoxynivalenol and zearalenone in plants[J]. Mycotoxin Research, 2007, 23(2): 68-72.

        [15] BIUMA R, AMAIDEN M R, ETCHEVERRY M. Screening of Argentine plant extracts: impact on growth parameters and aflatoxin B1accumulation by Aspergillus section Flavi[J] . International Journal of Food Microbiology, 2008, 122: 114-125.

        [16] AKBAR G, MOHSEN F, MAHMUD S, et al. A atoxin B1-reduction of Aspergillus fl avus by three medicinal plants (Lamiaceae)[J]. Food Control, 2013, 31: 218-223.

        [17] DEABES M M, ELSOUD N H A, ELKASSEM L T A. in vitro Inhibition of growth and aflatoxin B1production of Aspergillus fl avus strain (ATCC 16872) by various medicinal plant essential oils[J]. Macedonian Journal of Medical Sciences, 2011, 4(4): 345-350.

        [18] OMIDBEYGI M, BARZEGAR M, HAMIDI Z, et al. Antifungal activity of thyme, summer savory and clove essential oils against Aspergillus fl avus in liquid medium and tomato paste[J]. Food Control, 2007, 18(12): 1518-1523.

        [19] BERTHILLER F, WERNER U, SULYOK M, et al. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) determination of phaseⅡ metabolites of the mycotoxin zearalenone in the model plant Arabidopsis thaliana[J]. Food Additives and Contaminants, 2006, 23(11): 1194-1200.

        [20] BERTHILLER F, SULYOK M, KRSKA R, et al. Chromatographic methods for the simultaneous determination of mycotoxins and their conjugates in cereals[J]. International Journal of Food Microbiology, 2007, 119(1): 33-37.

        [21] TRAN S T, SMITH T K. A survey of free and conjugated deoxynivalenol in the 2009, 2010 and 2011 cereal crops in Australia[J]. Animal Production Science, 2013, 53(5): 40 7-412.

        [22] VARGA E, MALACHOVA A, SCHWARTZ H, et al. Survey of deoxynivalenol and its conjugates deoxynivalenol-3-glucoside and 3-acetyl-deoxynivalenol in 374 beer samples[J]. Food Additives & Contaminants: Part A, 2013, 30(1): 137-146.

        [23] GAREIS M, BAUER J, THIEM J, et al. Cleavage of zearalenoneglycoside, a “masked” mycotoxin, during digestion in swine[J]. Journal of Veterinary Medicine, Series B, 1990, 37: 236-240.

        [24] VENDL O, CREWS C, MACDONALD S, et al. Occurrence of free and conjugated Fusarium mycotoxins in cereal-based food[J]. Food Additives and Contaminants, 2010, 27(8): 1148-1152.

        [25] STILES M E. Biopreservation by lactic acid bacteria[J]. Antonie van Leeuwenhoek, 1996, 70: 331-345.

        [26] SCHNURER J, MAGNUSSON J. Antifungal lactic acid bacteria as biopreservatives[J]. Trends in Food Science & Technology, 2005, 16: 70-78.

        [27] HASSAN Y I, BULLERMAN L B. Antifungal activity of Lactobacillus paracasei ssp. tolerans isolated from a sourdough bread culture[J]. International Journal of Food Microbiology, 2008, 121(1): 112-115.

        [28] MAGNUSSON J, STROM K, ROOS S, et al. Broad and complex antifungal activi ty among environmental isolates of lactic acid bacteria[J]. FEMS Microbiology Letters, 2003, 219(1): 129-135.

        [29] LAVERMICOCCA P, VALERIO F, EVIDENTE A, et al. Purification and characterization of novel antifungal compounds from the sourdough Lactobacillus plantarum strain 21B[J]. Applied and Environmental Microbiology, 2000, 66(9): 4084-4090.

        [30] STROM K, SJOGREN J, BROBERG A, et al. Lactobacillus plantarum MiLAB 393 produces the antifungal cyclic dipeptides cyclo(L-Phe-LPro) and Cyclo( L-P he-trans-4-OH-L-Pro) and 3-phenyllactic acid[J]. Applied and Environmental Microbiology, 2002, 68(9): 4322-4327.

        [31] ATANASSOVA M, CHOISET Y, DALGALARRONDO M, et al. Isolation and partial biochemical characterizati on of a proteinaceous anti-bacteria and anti-yeast compound produced by Lactobacillus paracasei su bsp. paracasei strain M3[J]. International Journal of Food Microbiology, 2003, 87: 63-73.

        [32] FONTAINE L, HOLS P. The inhibitory spectrum of ther mophilin 9 from Streptococcus thermophilus LMD-9 depends on the production of multiple peptides and the activity of BlpGSt, a thiol-disulfide oxidase[J]. Applied and Environmental Microbiology, 2008, 74(4): 1102-1110.

        [33] MATHOT A G, BELIARD E, THUAULT D. Streptococcus thermophilus 580 produces a bacteriocin potentially suitable for inhibition of Clostridium tyrobutyricum in hard cheese[J]. Journal o f Dairy Science, 2003, 86(10): 3068-3074.

        [34] MKRTCHYAN H, GIBBONS S, HEIDELBERGER S, et al. Purification, characterisation and identification of acidocin LCHV, an antimicrobial peptide produced by Lactobacillus acidophilus n.v. Er 317/402 strain Narine[J]. International Journal of Antimicrobial Agents, 2010, 35(3): 255-260.

        [35] MAGNUSSON J, SCHNURER J. Lactobacillus cory niformis subsp. coryniformis strain Si 3 produces a broad-spectrum proteinaceous antifungal compound[J]. Applied and Environmental Microbiology, 2001, 67(1): 1-5.

        [36] 韓鵬飛, 賀稚非, 李洪軍, 等.微生物細(xì)胞壁結(jié)構(gòu)及結(jié)合真菌毒素的研究進(jìn)展[J]. 食品科學(xué), 2012, 33(11): 294-298.

        [37] WU Q, JEZKOVA A, YUAN Z, et al. Biological degradation of aflatoxins[J]. Drug Metabolism Reviews, 2009, 41(1): 1-7.

        [38] FAZELI M R, HAJIMOHAMMADALI M, AZAMOSSADAT M, et al. Aflatoxin B1binding capacity of autochthonous strains of lactic acid bacteria[J]. Journal of Food Protection, 2009, 72(1): 189-192.

        [39] NIDERKOM V, MORGAVI D P, PUJOS E, et al. Screening of fermentative bacteria for their ability to bind and biotransform deo xynivalenol, zearalenone and fumonisins in an in vitro simulated corn silage model[J]. Food Additives and Contaminants, 2007, 24(4): 406-415.

        [40] FRANCO T S, GARCIA S, HIROOKA E Y, et al. Lactic acid bacteria in the inhibition of Fusarium graminearum and deoxynivalenol detoxification[J]. Journal of Applied Microbiology, 2011, 111(3): 739-748.

        [41] NIDERKON V, MORGAVI D P, ABOAB B, et al. Cell wall component and mycotoxin moieties involved in the binding of fumonisin B1 and B2 by lactic acid bacteria[J]. Journal of Applied Microbiology, 2009, 106(3): 977-985.

        [42] OLIVEIRA P M, ZANNINI E, ARENDT E K. Cereal fungal infection, mycotoxins, and lactic acid bacteria mediated bioprotection: from crop farming to cereal products[J]. Food Microbiology, 2013, 37: 78-95.

        [43] BOOYSEN C, DICKS L M T, MEIJERING I, et al. Isolation, identification and changes in the composition of lactic acid bacteria dur ing the malting of two different barley cultivars[J]. International Journal of Food Microbiology, 2002, 76(1): 63-73.

        [44] JUSTE A, MALFLIET S, LENAERTS M, et al. Microflora during malting of barley: overview and impact on malt quality[J]. Brewing Science, 2011, 64: 22-31.

        [45] LAITILA A, KOTAVIITA E, PELTOLA P, et al. Indigenous microbial commun ity of barley greatly influences grain germination and malt quality[J]. Journal of the Institute of Brewing, 2007, 113( 1): 9-20.

        [46] PIOTROWSKA M, ?AKOWSKA Z. The biodegradation of ochratoxin A in food products by lactic acid bacteria and baker’s yeast[J]. Progress in Biotechnology, 2000, 17: 307-310.

        [47] MOKOENA M P, CHELULE P K, GQALENI N, Reduction of fumonisin B1 and zearalenone by lactic acid bacteria in fermented maize meal[J]. Journal of Food Protection, 2005, 68: 2095-2099.

        [48] ROIG M, MECA G, FERRER E, et al. Reduction of the enniatins A, A1, B, B1 by an in vitro degradation employing different strains of probiotic bacteria: identification of degradat ion products by LC-MSLIT[J]. Toxicon, 2013, 70: 44-53.

        [49] HE P, YOUNG L G, FORSBERG C. Microbial transformation of deoxynivalenol (vomitoxin)[J]. Applied Environment Microbiology, 1992, 58: 3857-3863.

        [50] SHIMA J, TAKASE S, TAKAHASHI Y, et al. Novel detoxification of the trichothecene mycotoxin deoxynivalenol by a soil bacterium isolated by enrichment culture[J]. Applied Environment Microbiology, 1997, 63(10): 3825-3830.

        [51] KUSUMANINGTYAS E, WIDIASTUTI R, MARYAM R. Reduction of aflatoxin B1in chicken feed by using Saccharomyces cerevisiae, Rhizopus oligosporus and their combination[J]. Mycopathologia, 2006, 162(4): 307-311.

        [52] ENGELHARDT G. Degradation of ochratoxin A and B by the white rot fungus Pleurotus ostreatus[J]. Mycotoxin Research, 2002,18: 37-42.

        [53] ZUO Ruiyu, CHANG Juan, YIN Qingqiang, et al. Inhibiting Aspergillus flavus growth and degrading aflatoxin B1by combined beneficial microbes[J]. African Journal of Biotechnology, 2012, 11(65): 12903-12909.

        [54] KRISZT R, KRIFATON C, SZOBOSZLAY S, et al. A new zearalenone biodegradation strategy using non-pathogenic Rhodococcus pyridinivorans K408 Strain[J]. PLoS One, 2012, 7(9): e43608.

        [55] MECA G, RITIENI A, ZHOU T, et al. Degradation of the minorFusarium mycotoxin beauvericin by intracellular enzymes of Saccharomyces cerevisiae[J]. Food Control, 2013, 33(2): 352-358.

        [56] HARTINGER D, SCHWARTZ H, HAMETNER C, et al. Enzyme characteristics of aminotransferase FumI of Sphingopyxis sp. MTA144 for deamination of hydrolyzed fumonisin B1[J]. Applied Microbiology and Biotechnology, 2011, 91(3): 757-768.

        [57] BLACKWELL B A, GILLIAM J T, SAVARD M E, et al. Oxidative deamination of hydrolyzed fumonisin B1 (AP 1) by cultures of Exophiala spinifera[J]. Natural Toxins, 1999, 7: 31-38.

        [58] DUVICK J, MADDOX J, GILLIAM J, et al. Compositions and methods for fumonisin detoxification: U.S. Patent 6,534,291[P]. 2003-03-18.

        [59] HEINL S, HARTINGER D, THAMHESL M, et al. Degradation of fumonisin B1 by the consecutive action of two bacterial enzymes[J]. Journal of Biotechnology, 2010, 145(2): 120-129.

        [60] HEINL S, HARTINGER D, THAMHESL M, et al. An aminotransferase from bacterium ATCC 55552 deaminates hydrolyzed fumonisin B1[J]. Biodegradation, 2011, 22(1): 25-30.

        [61] WANG J, OGATA M, HIRAI H, et al. Detoxification of aflatoxin B1by manganese peroxidase from the whiterot fungus Phanerochaete sordida YK-624[J]. FEMS Microbiology Letters, 2011, 314(2): 164-169.

        [62] DOSTER R C, SINNHUBER R O. Comparative rates of hydrolysis of ochratoxins A and B in vitro[J]. Food and Cosmetics Toxicology, 1972, 10(3): 389-394.

        [63] RINGOT D, CHANGO A, SCHNEIDER Y J, et al. Toxicokinetics and toxicodynamics of ochratoxin A, an update[J]. Chemico-Biological Interactions, 2006, 159(1): 18-46.

        [64] SATO I, ITO M, ISHIZAKA M, et al. Thirteen novel deoxynivalenoldegrading bacteri a are classified within two genera with distinct degradation mechanisms[J]. FEMS Microbiology Letters, 2012, 327(2): 110-117.

        [65] ERIKSEN G S, PETTERSSON H, LUNDH T. Comparative cytotoxicity of deoxynivalenol, nivalenol, their acetylated derivatives and de-epoxy metabolites[J]. Food Chemistry Toxicology, 2004, 42: 619-624.

        [66] GUAN S, HE J, YOUNG J C, et al. Transformation of trichothecene mycotoxins by microorganisms from fish digesta[J]. Aquaculture, 2009, 290(3): 290-295.

        [67] GRATZ S W, DUNCAN G, RICHARDSON A J. The human fecal microbiota metabolizes deoxynivalenol and deoxynivalenol-3-glucoside and may be responsible for urinary deepoxydeoxynivalenol[J]. Applied and Environmental Microbiology, 2013, 79(6): 1821-1825.

        [68] YU Hai, ZHOU Ting, GONG Jianhua, et al. Isolation of deoxynivalenol-transforming bacteria from the chicken intestines using the approach of PCR-DGGE guided microbial selection[J]. BMC Microbiology, 2010, 10(1): doi: 10.1186/1471-2180-10-182.

        [69] KING R R, MCQUEEN R E, LEVESQUE D, et al. Transformation of deoxynivalenol (vomitoxin) by rumen microorganisms[J]. Journal of Agricultural and Food Chemistry, 1984, 32(5): 1181-1183.

        [70] WESTLAKE K, MACKIE R I, DUTTON M F. in vitro metabolism of mycotoxins by bacterial, protozoal and ovine ruminal fluid preparations[J]. Animal Feed Science Technology, 1989, 25: 169-178.

        [71] WORRELL N R, MALLETT A K, COOK W M, et al. The role of gut micro-organisms in the metabolism of deoxynivalenol administered to rats[J]. Xenobiotica, 1989, 19: 25-32.

        [72] ISLAM R, ZHOU T, YOUNG J C, et al. Aerobic and anaerobic deepoxydation of mycotoxin deoxynivalenol by bacteria originating from agricultural soil[J]. World Journal of Microbiology and Biotechnology, 2012, 28(1): 7-13.

        [73] PINTON P, TSYBULSKYY D, LUCIOLI J, et al. Toxicity of deoxynivalenol and its acetylated derivatives on the intestine: differential effects on morphology, barrier function, tight junction proteins, and mitogen-activated protein kinases[J]. Toxicological Sciences, 2012, 130(1): 180-190.

        [74] PINTON P, TSYBULSKYYD, LAFFITTE J, et al. The intestine, a target for deoxynivalenol and its derivatives[J]. Journées de la Recherche Porcine en France, 2012, 44: 85-90.

        [75] HARITASH A K, KAUSHIK C P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review[J]. Journal of Hazardous Materials, 2009, 169(1): 1-15.

        [76] TANAKA K, SAGO Y, ZHENG Y, et al. M ycotoxins in rice[J]. International Journal of Food Microbiology, 2007, 119(1): 59-66.

        [77] VENDL O, BERTHILLER F, CREWS C, et al. Simultaneous determination of deoxynivalenol, zearalenone, and their major masked metabolites in cereal-based food by LC-MS-MS[J]. Analytical and Bioanalytical Chemistry, 2009, 395(5): 1347-1354.

        [78] NAKAGAWA H, SAKAMOTO S, SAGO Y, et al. D etection of masked mycotoxins derived from type A trichothecenes in corn by high-resolution LC-Orbitrap mass spectrometer[J]. Food Additives & Contaminants: Part A, 2013, 30(8): 1407-1414.

        [79] VIDAL J C, BONEL L, EZQUERRA A, et al. Electrochemical affinity biosensors for detection of mycotoxins: a review[J]. Biosensors and Bioelectronics, 2013, 49: 146-158.

        [80] BERTHILLER F, KRSKA R, DOMIG K J, et al. Hydrolytic fate of deoxynivalenol-3-glucoside during digestion[J]. Toxicology Letters, 2011, 206(3): 264-267.

        [81] HEATON A C P, RUGH C L, WANG N, et al. Phytoremediation of mercury-and methylmercury-polluted soils using genetically engineered plants[J]. Journal of Soil Contamination, 1998, 7(4): 497-509.

        [82] ALAKONYA A E, MONDA E O. A n ew approach in aflatoxin management in Africa: targeting aflatoxin/sterigmatocystin biosynthesis in Aspergillus species by RNA silencing technique[J]. Agricultural and Biological Sciences, 2013, doi: 10.5772/51440.

        Advances in the Formation and Degradation of Masked Mycotoxins

        WANG Yan-su1, ZHOU Jia-yu1, XIE Xing-guang1, DING Cheng-long2, DAI Chuan-chao1,*
        (1. Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing 210023, China; 2. Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China)

        Mycotoxin-producing fungi are ubiquitous in moldy ce reals and animal feeds and pose a serious threat to human and animal health. Mycotoxins can be partly detoxified through incomplete degradation by plants or microbes into masked mycotoxins which, however, still exist in plants or the environment. This paper is focused on the following aspects of mycotoxins: distribution and hazards, incomplete degradation during the growth and postharvest storage of plants, and the formation of masked mycotoxins by microbial conversion or degradation as well as their further degradation. Hopefully this paper can provide guidelines for future studies on complete degradation of mycotoxins.

        mycotoxins degradation; phytotransformation; microbial degradation; masked mycotoxins

        Q939.97

        A

        1002-6630(2014)21-0326-08

        10.7506/spkx1002-6630-201421062

        2013-12-08

        江蘇省農(nóng)業(yè)自主創(chuàng)新項(xiàng)目(CX(12)1002)

        王彥蘇(1989—),女,碩士研究生,主要從事微生物學(xué)研究。E-mail:wangyansu1990@163.com

        *通信作者:戴傳超(1970—),男,教授,博士,主要從事微生物生態(tài)學(xué)研究。E-mail:daichuanchao@njnu.edu.cn

        猜你喜歡
        菌素乳酸菌水解
        禽用乳酸菌SR1的分離鑒定
        伊維菌素對(duì)宮頸癌Hela細(xì)胞增殖和凋亡的影響
        番石榴中結(jié)合多酚堿水解與酸水解法提取工藝優(yōu)化的比較
        硫酸黏菌素促生長(zhǎng)作用將被禁
        廣東飼料(2016年6期)2016-12-01 03:43:24
        鹽類的水解考點(diǎn)探究
        鹽類水解的原理及應(yīng)用
        乳酸菌成乳品市場(chǎng)新寵 年增速近40%
        多黏菌素E和多黏菌素B:一模一樣,還是截然不同?
        乳飲品中耐胃酸乳酸菌的分離鑒定與篩選
        維生素E拮抗綠膿菌素抑菌作用的實(shí)驗(yàn)研究
        国产一区二区三区视频网| 国产高潮流白浆免费观看不卡 | 欧美综合自拍亚洲综合百度| 国产蜜桃传媒在线观看| 日本一卡二卡3卡四卡免费观影2022| 艳妇臀荡乳欲伦交换在线播放| 国产真人无遮挡免费视频| 国产肥熟女视频一区二区三区| 白浆国产精品一区二区| 凹凸在线无码免费视频| 五月天综合网站| 在线看片免费人成视久网不卡| 一个少妇的淫片免费看| 免费观看激色视频网站| 91性视频| 日本高清一区二区在线播放| 久久精品国产亚洲av无码偷窥| 欧美性猛交内射兽交老熟妇| 国产91在线|亚洲| 人妻经典中文字幕av| 亚洲中文字幕无码av| 麻豆国产成人精品午夜视频| 我和丰满老女人性销魂| 精品人妻一区三区蜜桃| 久久人妻内射无码一区三区| 1精品啪国产在线观看免费牛牛| 女同重口味一区二区在线| 久久国产劲爆∧v内射-百度| 午夜福利视频合集1000| 蜜桃视频中文在线观看| 国产一区二区三区免费精品视频| 中文字幕人妻中文| 亚洲色大成网站www在线观看| 中文字幕丰满人妻被公强| 精品卡一卡二卡3卡高清乱码| 又黄又爽又色的视频| 精品国产日韩无 影视| 国产一区二区长腿丝袜高跟鞋| 性色av浪潮av色欲av| 国产精品久久国产三级国电话系列| 91久久精品一区二区三区大全|