辛世杰
(中國(guó)醫(yī)科大學(xué)第一附屬醫(yī)院 血管/甲狀腺外科,遼寧 沈陽 110001)
自異體血管植入受者開始,受者免疫系統(tǒng)便開始持續(xù)不斷地攻擊移植血管,在反復(fù)打擊與抗打擊中移植血管逐漸發(fā)生變化——血管內(nèi)膜向心性增厚、中膜平滑肌細(xì)胞凋亡、外膜纖維化,最終導(dǎo)致移植器官缺血、功能衰竭,此被稱為移植物血管病,由于其可出現(xiàn)纖維脂質(zhì)斑塊、內(nèi)膜出現(xiàn)細(xì)胞外基質(zhì)沉積、炎細(xì)胞浸潤(rùn)等類似于動(dòng)脈粥樣硬化的改變,故亦稱作移植物動(dòng)脈硬化。據(jù)國(guó)際心肺移植協(xié)會(huì)(International Society for Heart and Lung Transplantation,ISHLT) 報(bào)道,心臟移植術(shù)后1、5、10年AV發(fā)病率逐年增高,分別為8%、30%、50%,已成為慢性排斥反應(yīng)期患者死亡的主要病因[1]。AV形成過程經(jīng)歷4個(gè)階段,第1階段:移植后數(shù)天到數(shù)周血管壁滲入炎癥細(xì)胞,受體針對(duì)移植物發(fā)生免疫反應(yīng);第2階段:異體免疫反應(yīng)導(dǎo)致內(nèi)皮細(xì)胞損傷、剝脫,中膜平滑肌細(xì)胞凋亡,甚至可以觀察到整個(gè)中膜完全沒有平滑肌細(xì)胞,殘存彈力膜支架;第3階段:失去正常功能的損傷血管的重建;第4階段:新生內(nèi)膜中內(nèi)皮細(xì)胞、平滑肌細(xì)胞的失去控制的增殖,導(dǎo)致管腔狹窄、閉塞,最終導(dǎo)致移植物失去功能。在上述過程中免疫因素持續(xù)存在并始終參與,故其在AV中的作用由此可見一斑。
當(dāng)血液復(fù)流后受者T細(xì)胞活化為效應(yīng)T細(xì)胞,后者發(fā)揮細(xì)胞毒作用直接殺傷移植血管細(xì)胞。T細(xì)胞需經(jīng)過識(shí)別供者主要組織相容性復(fù)合體 (major histocompatibility complex, MHC)及共刺激分子作用才能被完全活化,活化信號(hào)均由抗原提呈細(xì)胞(antigen presenting cell, APC)傳遞,樹突狀細(xì)胞、巨噬細(xì)胞等專職APC在這一過程中起主要作用,血管內(nèi)皮細(xì)胞等非專職APC亦參與其中。T細(xì)胞識(shí)別有直接識(shí)別和間接識(shí)別兩種方式,區(qū)別在于前者是識(shí)別移植物中供者APC表面的同種異型抗原,而后者識(shí)別自身APC提呈的同種異型抗原。間接識(shí)別是導(dǎo)致AV的主要途徑,最直接的證據(jù)是將供者抗原提呈細(xì)胞去除后仍然存在AV;但在缺乏識(shí)別能力的動(dòng)物模型中也觀察到AV,提示這兩種識(shí)別方式同時(shí)存在[2-3]。
抗原識(shí)別使T細(xì)胞初步活化并賦予其適應(yīng)性免疫應(yīng)答的特性,在共刺激分子的作用下才可完全活化,只有完全活化的T細(xì)胞才能進(jìn)一步分泌細(xì)胞因子和表達(dá)細(xì)胞因子受體,反之T細(xì)胞克隆失能。CD40、CD80、CD86表達(dá)于抗原提呈細(xì)胞,其內(nèi)源性配體CD28、CD154表達(dá)于T細(xì)胞,將該共刺激通路阻斷雖然促進(jìn)了免疫耐受,但是并不能限制AV的發(fā)展[4];而阻斷可誘導(dǎo)共刺激分子(inducible costimulator, ICOS)與其配體結(jié)合,則減輕內(nèi)膜中平滑肌樣細(xì)胞的增殖程度[5]。并不是所有的共刺激分子都發(fā)揮促進(jìn)T細(xì)胞增殖的作用,如程序性死亡因子-1(programmed death, PD-1),其有PDL-1、PD-L-2兩個(gè)配體,阻斷PD-1/PDL-1加劇了排斥反應(yīng),但阻斷PD-1/PDL-2卻未觀察到上述表現(xiàn)[6];T細(xì)胞免疫球蛋白粘蛋白分子-1(T-cell immunoglobulin and mucin domain containing molecule, TIM-1)具有激活和抑制T細(xì)胞功能的雙重作用,將其阻斷后可抑制Th17而減輕AV[7-8]??梢姴煌泊碳し肿訉?duì)T細(xì)胞作用不同,即便是同一因子亦可導(dǎo)致不同效應(yīng),提示共刺激分子對(duì)T細(xì)胞功能調(diào)控存在更加精密的機(jī)制。T細(xì)胞完全活化便分化為效應(yīng)T細(xì)胞,后者分泌細(xì)胞毒性分子,經(jīng)穿孔素/顆粒酶途徑及Fas/FasL途徑激活Caspase級(jí)聯(lián)反應(yīng),促使靶細(xì)胞凋亡[9];分泌細(xì)胞因子調(diào)節(jié)免疫和促進(jìn)自身增殖。
在AV患者中發(fā)現(xiàn)抗MHC抗體、供者特異性抗體,其可經(jīng)過多種直接或間接途徑影響血管內(nèi)皮細(xì)胞的功能[10-11]。IgG抗體與MHC-Ⅰ抗原結(jié)合后可使內(nèi)皮細(xì)胞迅速釋放粘附分子如假血友病因子、P-選擇素,趨化因子如MCP-1、IL-8 、RANTES及生長(zhǎng)因子如血小板源性生長(zhǎng)因子(platelet derived growth factor, PDGF)、堿性成纖維細(xì)胞生長(zhǎng)因子(basic fibroblast growth factor, bFGF),這些細(xì)胞因子經(jīng)過各種途徑參與AV[12]。MHC分子還可改變細(xì)胞骨架結(jié)構(gòu),以利于炎細(xì)胞黏附和增殖。內(nèi)皮細(xì)胞表面的抗MHC-Ⅰ抗體可增強(qiáng)Rho-GTP活性,使Rho激酶磷酸化,導(dǎo)致張力纖維重組從而改變細(xì)胞骨架結(jié)構(gòu);同時(shí)RhoA通過磷脂酰激醇-3-激酶途徑促進(jìn)內(nèi)皮細(xì)胞增殖[13]。沉默黏著斑激酶(focal adhesion kinase, FAK) 后絲氨酸、樁蛋白和異位樁蛋白的磷酸化與MHC-Ⅰ分子的結(jié)合顯著減少,提示肌動(dòng)蛋白依賴的分子聚集致細(xì)胞骨架改變是MHC-Ⅰ分子發(fā)揮生物學(xué)作用的路徑[14]。在AV患者中發(fā)現(xiàn)毛細(xì)血管內(nèi)皮細(xì)胞表達(dá)S6核糖體蛋白(S6 ribosomal protein, S6RP)[15],S6RP位于雷帕霉素復(fù)合體1(mammalian target of rapamycin complex 1, mTORC1)下游,mTORC1由Raptor和GβL共同組成,其可使真核起始4E結(jié)合蛋白和激活p70S6激酶、S6RP磷酸化而促進(jìn)細(xì)胞增殖,沉默Raptor、Rictor后可阻斷MHC-Ⅰ對(duì)血管內(nèi)皮細(xì)胞的增殖作用[16];mTORC2可通過ERK通路促進(jìn)細(xì)胞增殖,敲除Raptor后發(fā)現(xiàn)MHC-Ⅰ促增殖作用取消,但敲除Rictor卻未能阻斷上述作用[17];可見mTOR通路是MHC-Ⅰ參與AV的重要途徑,但調(diào)節(jié)機(jī)制有所差異。
補(bǔ)體系統(tǒng)激活能使抗體改變內(nèi)皮細(xì)胞、白細(xì)胞功能,抗體與C1結(jié)合后可被酶切為C2及C4,隨后二者形成復(fù)合體并再次被酶切為C3,C3和C4又可產(chǎn)生生物活性片段C3a、C3b及C4a、C4b,C3b與B因子結(jié)合使其大量沉著并促進(jìn)白細(xì)胞浸潤(rùn)、黏附;C3b還能激活C5產(chǎn)生活性片段C5a和C5b,前者對(duì)白細(xì)胞有強(qiáng)烈的趨化作用,而后者與C6、C9形成膜攻擊復(fù)合體溶解靶細(xì)胞[12]??贵w和補(bǔ)體還可通過非經(jīng)典的NF- κB信號(hào)通路激活受者T細(xì)胞,從而誘發(fā)細(xì)胞介導(dǎo)的免疫損傷,激活補(bǔ)體系統(tǒng)意義在于放大了免疫效應(yīng)[18]。
細(xì)胞因子主要來源于免疫細(xì)胞、內(nèi)皮細(xì)胞、平滑肌細(xì)胞和上皮細(xì)胞[19]。在AV中T細(xì)胞產(chǎn)生的IFN-γ最為重要,其激活巨噬細(xì)胞,促使內(nèi)皮細(xì)胞分泌粘附因子、趨化因子募集炎細(xì)胞,并通過增強(qiáng)抗原提呈細(xì)胞表達(dá)MHC-Ⅰ類和MHC-Ⅱ分子放大免疫效應(yīng)。敲除IFN-γ后未觀察到AV,使用抗IFN-γ抗體處理AV明顯減輕[20]。IFN-γ主要由Th1細(xì)胞產(chǎn)生,自然殺傷細(xì)胞細(xì)胞毒性T細(xì)胞、樹突狀細(xì)胞等分泌量相對(duì)少。IFN-γ是巨噬細(xì)胞的激活劑,后者活化后合成IL-12、IL-18,繼而進(jìn)一步激活T細(xì)胞,形成正反饋循環(huán)[21]。在IL-12、IL-18刺激下血管平滑肌細(xì)胞亦可分泌IFN-γ,而后者可直接促進(jìn)血管平滑肌細(xì)胞增殖[22],這一作用還與IFN-γ所致的內(nèi)皮細(xì)胞對(duì)一氧化氮合成酶活性調(diào)節(jié)失能有關(guān)[23]。值得注意的是IFN-γ對(duì)移植血管中膜的平滑肌細(xì)胞和內(nèi)膜中的平滑肌樣細(xì)胞作用不同[24]。腫瘤壞死因子-α(tumour necrosis factor-α, TNF-α)是一種多效促炎因子,其通過促進(jìn)IL-12的產(chǎn)生進(jìn)而促使IFN-γ生成,敲除供者TNF受體明顯減輕AV[25]。
趨化因子是一類使細(xì)胞發(fā)生趨化運(yùn)動(dòng)的小分子蛋白(8-10kD),可分為CXC、CC、XC及CX3C四個(gè)家族,其中以前二者最常見。趨化因子必須通過與其對(duì)應(yīng)的受體結(jié)合才能發(fā)揮生物學(xué)功能,MCP-1是典型的CC類趨化因子,血管內(nèi)皮細(xì)胞、平滑肌細(xì)胞、巨噬細(xì)胞均可合成,通過與CCR2受體配體結(jié)合,可以招募單核細(xì)胞、T細(xì)胞和自然殺傷細(xì)胞;而同屬CC類的細(xì)胞因子RANTES則在血小板和移植血管新生內(nèi)膜中的平滑肌樣細(xì)胞中表達(dá)。敲除MCP-1或CCR-2后均能減少單個(gè)核細(xì)胞的聚集以及遲發(fā)型超敏反應(yīng)對(duì)移植血管的損傷[26-27]。IFN-γ可誘導(dǎo)產(chǎn)生一些趨化因子,如IP10(IFN-inducible protein 10), Mig(monokine induced by IFN-γ)、I-TAC(IFN-inducible T-cell α-chemoattractant),與AV相關(guān)性更明顯[28-29]。內(nèi)皮祖細(xì)胞在趨化因子的作用下定向歸巢至移植物損傷血管內(nèi)膜,要完成黏附并定位于損傷的部位還需要血管內(nèi)膜表達(dá)各種黏附分子的幫助。研究顯示,移植物血管內(nèi)皮細(xì)胞表面可以表達(dá)多種黏附分子,包括細(xì)胞間黏附分子(inter cellular adhesion molecule-1, ICAM-l)、血管細(xì)胞黏附分子(vaseular cell adhesion molceule-1,VCAM-1)、P-選擇素以及E-選擇素等,對(duì)促進(jìn)內(nèi)皮細(xì)胞黏附發(fā)揮重要作用[30-32]。
盡管缺血-再灌注損傷、感染等非免疫因素在一定程度參與了AV的發(fā)生、發(fā)展,但免疫因素仍是AV的核心機(jī)制。由于免疫細(xì)胞分泌的多種細(xì)胞因子和趨化因子,使得免疫因素和非免疫因素相互作用,錯(cuò)綜復(fù)雜的病因?qū)е翧V難防、難治;另外,動(dòng)脈粥樣硬化與AV在臨床表現(xiàn)、病理機(jī)制方面有相似之處,應(yīng)注意甄別??傊?,AV的治療方案應(yīng)以免疫調(diào)節(jié)為基礎(chǔ),并重細(xì)胞因子調(diào)控的原則制定,而進(jìn)一步發(fā)掘AV的發(fā)病機(jī)制是解決這一臨床議題的根本。
[參考文獻(xiàn)]
[1] Lund L H, Edwards L B, Kucheryavaya A Y, et al. The Registry of the International Society for Heart and Lung Transplantation: thirtieth official adult heart transplant report—2013; focus theme: age[J]. J Heart Lung Transplant, 2013, 32(10):951-964.
[2] Mitchell R N. Learning from rejection What transplantation teaches us about (other) vascular pathologies[J]. J Autoimmun, 2013, 45:80-89.
[3] Ardehali A, Fischbein M P, Yun J, et al. Indirect alloreactivity and chronic rejection[J]. Transplantation, 2002, 73(11):1805-1807.
[4] Shimizu K, Sch?nbeck U, Mach F, et al. Host CD40 ligand deficiency induces long-term allograft survival and donor-specific tolerance in mouse cardiac transplantation but does not prevent graft arteriosclerosis[J]. J Immunol, 2000, 165(6):3506-3518.
[5] Kosuge H, Suzuki J, Haraguchi G, et al. Critical role of inducible costimulator signaling in the development of arteriosclerosis[J]. Arterioscler Thromb Vasc Biol, 2006, 26(12):2660-2665.
[6] Yang J, Popoola J, Khandwala S, et al. Critical Role of Donor Tissue Expression of Programmed Death Ligand-1 in Regulating Cardiac Allograft Rejection and Vasculopathy[J]. Circulation, 2008, 117(5):660-669.
[7] Xiao S, Najafian N, Reddy J, et al. Differential engagement of Tim-1 during activation can positively or negatively costimulate T cell expansion and effector function[J]. J Exp Med, 2007, 204(7):1691-1702.
[8] Shi X, Zhang M, Liu F, et al. Tim-1-Fc suppresses chronic cardiac allograft rejection and vasculopathy by reducing IL-17 production[J]. Int J Clin Exp Pathol, 2014, 7(2):509-520.
[9] Choy J C. Granzymes and perforin in solid organ transplant rejectio[J]. Cell Death Differ, 2010, 17(4):567-576.
[10] Topilsky Y, Gandhi M J, Hasin T, et al. Donor-specific antibodies to class II antigens are associated with accelerated cardiac allograft vasculopathy: a three-dimensional volumetric intravascular ultrasound study[J]. Transplantation, 2013, 95(2):389-396.
[11] Nath D S, Angaswamy N, Basha H I, et al. Donor-specific antibodies to human leukocyte antigens are associated with and precede antibodies to major histocompatibility complex class I-related chain A in antibody-mediated rejection and cardiac allograft vasculopathy after human cardiac transplantation[J]. Hum Immunol, 2010, 71(12):1191-1196.
[12] Wehner J, Morrell C N, Reynolds T, et al. Antibody and complement in transplant vasculopathy[J]. Circ Res, 2007, 100(2):191-203.
[13] Coupel S, Leboeuf F, Boulday G, et al. RhoA activation mediates phosphatidylinositol 3-kinase-dependent proliferation of human vascular endothelial cells: an alloimmune mechanism of chronic allograft nephropathy[J]. J Am Soc Nephrol, 2004, 15(9):2429-2439.
[14] Jin Y P, Korin Y, Zhang X, et al. RNA interference elucidates the role of focal adhesion kinase in HLA class I-mediated focal adhesion complex formation and proliferation in human endothelial cells[J]. J Immunol, 2007, 178(12):7911-7922.
[15] Lepin E J, Zhang Q, Zhang X, et al. Phosphorylated S6 ribosomal protein: a novel biomarker of antibody-mediated rejection in heart allografts[J]. Am J Transplant, 2006, 6(7):1560-1571.
[16] Li F, Atz M E,Reed E F. Human leukocyte antigen antibodies in chronic transplant vasculopathy-mechanisms and pathways[J]. Curr Opin Immunol,2009,21(5):557-562.
[17] Jindra P T, Jin Y P, Jacamo R, et al. MHC class I and integrin ligation induce ERK activation via an mTORC2-dependent pathway[J]. Biochem Biophys Res Commun, 2008, 369(2):781-787.
[18] Jane-Wit D,Manes T D,T Yi, et al. Alloantibody and complement promote T cell-mediated cardiac allograft vasculopathy through noncanonical nuclear factor-kappaB signaling in endothelial cells[J]. Circulation, 2013, 128(23):2504-2516.
[19] Rossi D,Zlotnik A. The biology of chemokines and their receptors[J]. Annu Rev Immunol, 2000, 18:217-242.
[20] Nagano H, Mitchell R N, Taylor M K, et al. Interferon-gamma deficiency prevents coronary arteriosclerosis but not myocardial rejection in transplanted mouse hearts.[J]. J Clin Invest, 1997, 100(3):550-557.
[21] Ranjbaran H, Sokol S I, Gallo A, et al. An inflammatory pathway of IFN-gamma production in coronary atherosclerosis.[J]. J Immunol, 2007, 178(1):592-604.
[22] Tellides G,Tereb D A,Kirkiles-Smith N C, et al. Interferon-gamma elicits arteriosclerosis in the absence of leukocytes[J]. Nature, 2000, 403(6766):207-211.
[23] Koh K P, Wang Y,T Yi, et al. T cell-mediated vascular dysfunction of human allografts results from IFN-gamma dysregulation of NO synthase[J]. J Clin Invest, 2004, 114(6):846-856.
[24] Shah R V,Mitchell R N. The role of stem cells in the response to myocardial and vascular wall injury[J]. Cardiovasc Pathol, 2005, 14(5):225-231.
[25] Suzuki J, Cole S E, Batirel S, et al. Tumor necrosis factor receptor -1 and -2 double deficiency reduces graft arterial disease in murine cardiac allografts[J]. Am J Transplant, 2003, 3(8):968-976.
[26] Gosling J, Slaymaker S, Gu L, et al. MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B[J]. J Clin Invest, 1999, 103(6):773-778.
[27] Boring L, Gosling J, Chensue S W, et al. Impaired monocyte migration and reduced type 1 (Th1) cytokine responses in C-C chemokine receptor 2 knockout mice[J]. J Clin Invest, 1997, 100(10):2552-2561.
[28] Robinson L A, Nataraj C, Thomas D W, et al. A role for fractalkine and its receptor (CX3CR1) in cardiac allograft rejection[J]. J Immunol, 2000, 165(11):6067-6072.
[29] Koga S, Auerbach M B, Engeman T M, et al. T cell infiltration into class II MHC-disparate allografts and acute rejection is dependent on the IFN-gamma-induced chemokine Mig[J]. J Immunol, 1999, 163(9):4878-4885.
[30] Hillebrands J L, Onuta GRozing J. Role of progenitor cells in transplant arteriosclerosis[J]. Trends Cardiovasc Med, 2005, 15(1):1-8.
[31] Hristov M, Zernecke A, Schober A, et al. Adult progenitor cells in vascular remodeling during atherosclerosis[J]. Biol Chem, 2008, 389(7):837-844.
[32] Dietrich H, Hu Y, Zou Y, et al. Mouse model of transplant arteriosclerosis: role of intercellular adhesion molecule-1[J]. Arterioscler Thromb Vasc Biol, 2000, 20(2):343-352.