徐圓圓, 程探宇, 魏 星, 李曉敏, 陳倩蕓, 劉國華
(上海師范大學 生命與環(huán)境科學學院,上海 200234)
半個世紀之前Merrifield第一次報道了通過用聚苯乙烯為載體固相合成多肽鏈[1],自此之后以聚合物為載體被廣泛的應用于簡易合成、產(chǎn)物提純等領域.類似于Merrifield樹脂這種非均相的聚苯乙烯仍然應用于各種固相合成,還應用于各種反應試劑或催化劑的固載方面,而且越來越多的大分子材料應用于這些領域.Hudson將在1999年之前使用聚合物固載的主要研究者的工作做了非常全面的綜述[2,3],另外包括聚乙二醇、非交聯(lián)聚苯乙烯、聚乙烯、聚丙酸等一些可溶性的聚合物的應用也有較多的綜述文獻[4-7].近年來,隨著醫(yī)藥合成領域的快速發(fā)展,手性催化劑也隨之發(fā)展迅速,而聚合物應用與手性催化劑的固載也越來越多.本文作者主要綜述了有機聚合物固載型手性催化劑的研究進展.
早在20世紀化學家就發(fā)現(xiàn)了生物堿[8]和L-脯氨酸[9]的不對稱催化作用.隨后的幾十年間手性小分子催化劑引起了廣大的關注,并且發(fā)展迅速.近年來有機小分子手性催化劑越來越多的被負載在聚合物上,使之能夠降低催化劑成本、更加利于回收.以近年來應用較為廣泛的金雞納堿、咪唑啉酮和脯氨酸為例,介紹聚合物負載的有機小分子手性催化劑.
2008年Itsuno等報道了一種新穎的固載季銨鹽手性催化劑的方法,他們將聚合物鏈上引入磺酸根負離子,然后與季銨鹽催化劑以離子鍵相結合形成聚合物負載的金雞納堿類似物催化劑1[10](圖1).該催化劑可以催化N-(二苯基亞甲基)氨基乙酸叔丁酯和芐溴(或烯丙基溴)反應,收率高達95%(91% 對映體過量),但是該催化劑對碘甲烷反應活性不高,收率45%(70% 對映體過量ee).作者推測催化劑在催化過程中,離子蔟起了較為重要的作用.它促使了底物的烯醇化,并且活化了芐溴,反應后釋放出催化劑并得到手性產(chǎn)物.
圖1 負載型金雞納堿催化劑
隨后Itsuno等又報道了金雞納堿季銨鹽與二磺酸根負離子形成的高聚物催化劑2[11-12](圖2),在室溫條件下、堿性環(huán)境中,加入催化劑2(10 mol%)可以使N-(二苯基亞甲基)氨基乙酸叔丁酯不對稱烷基化,而且收率和ee值都比較理想.作者認為該催化劑可以拓展為一種平臺,適用于各種以離子鍵相結合的催化劑.
Haraguchi在2012年報道了與Itsuno相似的高聚物催化劑3[13](圖2),作者以金雞納堿季銨鹽為催化單體,用二鹵素有機物通過共價鍵將金雞納堿相連形成高聚物催化劑.金雞納堿的二聚體催化N-(二苯基亞甲基)氨基乙酸叔丁酯不對稱烷基化時可以得到較好的收率(>90%)和ee值(>80%).但是當二聚體再次以二鹵素化合物相連形成高聚物催化劑后,其催化效率有所下降,其中收率和ee值都下降了約10%(圖2).
圖2 自聚型金雞納堿催化劑
早在2002年,Cozzi[8]等就將咪唑啉酮的酪氨酸衍生物固載在可溶性的聚乙二醇上,用于催化Diels-Alder反應.該催化劑對映選擇性較好(92% ee),另外它還可以重復使用4次,但是催化效率和對映選擇性都有所降低.在2004年Benaglia和Cozzi同樣將咪唑啉酮的衍生物固載在聚乙二醇上得到催化劑4[14](圖3),它可用于催化N-芐基苯硝酮和丙烯醛在酸性條件下的Diels-Alder反應.負載催化劑4與負載前催化劑對映選擇性沒有區(qū)別,但是催化效率有所降低,另外該催化劑可以方便的回收利用3次.
Haraguchi等將咪唑啉酮衍生得到其季銨鹽,然后通過離子鍵負載在有磺酸根負離子功能化的交聯(lián)聚苯乙烯上得到催化劑5[9](圖3).該催化劑可以催化環(huán)戊二烯和肉桂醛的環(huán)加成反應,得到較好的對映選擇性(91% ee),而且它的重復使用無需經(jīng)過重生步驟.Pericàs等通過Click反應將咪唑啉酮的衍生物固載與聚苯乙烯上得到催化劑6[15](圖3),其可在0.5 mol/L的三氟乙酸的THF體系中催化氮取代的吡咯進行烷基化.該催化劑重復使用6次而其對映選擇性基本沒有變化,但是催化效率有所降低(圖3).
圖3 負載型咪唑啉酮催化劑
L-脯氨酸及其衍生物是一類最簡單有效的有機小分子催化劑,它可以催化aldol反應[16]、Robinson縮環(huán)反應[17]、Mannich反應[18]、Michael反應[19]、Diels-Alder反應[20]和一些其他反應[21-26].(2S,4R)-4-羥基脯氨酸被固載在PEG500上形成可溶性的催化劑7(圖4),它可以用于催化aldol縮合和Mannich反應[27,28],而且脯氨酸固載前后的催化效率和對映選擇性沒有明顯變化.用于硝基苯甲醛和丙酮的縮合反應,催化劑7重復使用3次而ee值沒有變化,但是收率有比較明顯的降低(68%~51%).另外該催化劑還可以用于催化2-硝基丙烷和環(huán)己烯酮的加成反應[29],而用于β-硝基苯乙烯與酮的加成時對映選擇性(40% ee)比均相脯氨酸(60% ee)低.
圖4 負載型脯氨酸催化劑
Zhao等報道了與7相似的催化劑8~10[29],研究發(fā)現(xiàn)對于環(huán)己酮與β-硝基苯乙烯的反應,催化劑10無論是效率還是對映選擇性都比8和9要好.催化劑可以通過加入非極性溶劑析出,過濾回收后可再次使用四次,但是收率(92-24%)和對映選擇性(60-<10%)都有非常明顯的降低.
除了將脯氨酸固載在可溶性的聚乙二醇上,不溶性的聚苯乙烯類樹脂也作為一類載體被廣泛的使用.各種脯氨酸的衍生物通過Click反應固載在樹脂上,用于aldol反應[30-31]、α-胺氧化反應[32]、Michael加成反應[33]、α-硒化反應[34]等.
手性金屬絡合物催化劑在不對稱催化中始終扮演著及其重要的角色,2001年度的諾貝爾化學獎就授予了從事手性催化的Knowles、Noyori和Sharpless 3位化學家.但是隨著工業(yè)的發(fā)展,由于手性金屬絡合物催化劑尤其是重金屬催化劑容易造成的環(huán)境污染,而且他們的成本一般相對較高,這些原因大大的限制了其發(fā)展.而近年來手性催化劑的固載技術緩解了這些問題,而且越來越多的手性催化劑被固載與有機聚合物和介孔硅膠材料上.本文作者以固載與有機聚合物上的鈷、釕和銠等重金屬催化劑為例介紹近年來有機聚合物負載金屬手性催化劑的發(fā)展情況.
圖5 負載型手性鈷催化劑
Jacobsen等在1999年將手性的Co(Salen)固載與聚苯乙烯上得到催化劑11[35](圖5),該催化劑可以在二氯甲烷中水解端基的環(huán)氧乙烷得到手性(>92% ee)的二醇化合物,另外它可以重復使用5次.幾年后Jones和Weck以大環(huán)相連的低聚物12[36](圖5),催化單元同樣為手性鈷催化劑,該催化劑是通過烯烴的擴環(huán)得到.在有氧的酸性條件下,12可以水解單一構型的端基環(huán)氧乙烷,得到手性的環(huán)氧乙烷和手性的二醇化合物,而且該催化劑的催化活性(收率>42%)和對應選擇性(>98% 對映體過量值)都非常好.值得一提的是這種以大環(huán)相連的低聚物比以烯烴鏈直接聚合得到的催化劑催化活性高很多.
金屬釕是一種非常重要的過渡金屬元素,它可以催化較多種類的反應.而很多該類催化劑都被負載在無機介孔硅膠材料[37-41]和聚合物材料[42-48]上.在此簡單介紹幾個比較有代表性的手性釕催化劑.催化劑13[45](圖6)是以聚苯乙烯樹脂為載體、吡啶雙噁唑啉為手性配體與金屬釕配位形成的手性負載型催化劑.該催化劑可以有效的催化苯乙烯和重氮乙酸乙酯的環(huán)丙化,得到主要為反式的環(huán)丙烷產(chǎn)物,ee值高達85%,但是13的催化劑效率較低(收率<40%).Haraguchi課題組在2009年報道了以TsDPEN為手性配體的催化劑14[43](圖6),他們選擇兩類聚苯乙烯載體,分別為疏水性的交聯(lián)聚苯乙烯和兩親性的交聯(lián)聚苯乙烯.疏水性的催化劑在有機溶劑(如二氯甲烷、乙腈)可以有效的催化亞胺的氫轉(zhuǎn)移得到手性的仲胺,在水環(huán)境中催化效率較差.而兩親性的催化劑在水環(huán)境中的催化效率較高,但是在有機環(huán)境中基本沒有催化活性.催化劑15[42](圖6)同樣為聚苯乙烯為載體的手性催化劑,它和13類似催化苯乙烯和重氮乙酸乙酯的環(huán)丙化反應,而且該催化劑反應活性和對映選擇性都非常好(收率>90%,>90% ee).
圖6 負載型金屬釕催化劑
圖7 自組裝型金屬銠催化劑
除了以上介紹的常被用于有機聚合物金屬非均相催化劑外,還要一些金屬也被化學家們用于有機聚合物的非均相催化.例如銅離子,手性的噁唑啉配體可以聚合成高聚物形成非均相催化劑[55],或者通過多個噁唑啉配體與銅離子配位相連形成類似于MOF的材料[56].這兩種催化劑都可以催化苯乙烯和重氮乙酸乙酯的環(huán)丙化,但是回收再利用比較差.還有Pd[57-58]和Mo[59-61]都曾被用于有機聚合物非均相催化劑,但是結果比均相的催化劑活性或?qū)τ尺x擇性差.
手性催化劑目前正在高速發(fā)展的階段,但是由于成本、環(huán)境等問題大大的限制了其實際應用.而非均相催化劑在一定程度上可以克制以上缺點,使手性催化劑慢慢走向工業(yè)化.而有機聚合物制備簡單、廉價易得,另外有機聚合物種類繁多,具有各種各樣的形狀,所以有機聚合物非均相手性催化劑具有較好的前景.但是目前其還在起步階段,存在一些缺點,例如回收再利用次數(shù)不如無機介孔負載的手性催化劑多,還有就是聚合物使用單一(多為聚苯乙烯).相信在化學家們的不懈努力下,其一定會走向?qū)嶋H應用、走向工業(yè)化.
參考文獻:
[1] MERRIFIELD R B.Solid phase peptide synthesis I.The synthesis of a tetrapeptide[J].J Am Chem Soc,1963,85(14):2149-2154.
[2] HUDSON D.Matrix assisted synthetic transformations:a mosaic of diverse contributions II the pattern is completed[J].J Comb Chem,1999,1(6):403-457.
[3] HUDSON D.Matrix assisted synthetic transformations:a mosaic of diverse contributions.I.the pattern emerges[J].J Comb Chem,1999,1(5):333-360.
[4] TOY P H,JANDA K D.Soluble polymer-supported organic synthesis[J].Acc Chem Res,2000,33(8):546-554.
[5] BERGBREITER D E,SUNG S D.Liquid/Liquid Biphasic recovery/reuse of soluble polymer-supported catalysts[J].Adv Synth Catal,2006,348(12-13):1352-1366.
[6] DICKERSON T J,REED N N,JANDA K.D.Soluble polymers as scaffolds for recoverable catalysts and reagents[J].Chem Rev,2002,102(10):3325-3344.
[7] BERGBREITER D E.Using soluble polymers to recover catalysts and ligands[J].Chem Rev,2002,102(10):3345-3384.
[8] PRACEJUS H.Organische Katalysatoren,LXI.Asymmetrische synthesen mit ketenen,I alkaloid-katalysierte asymmetrische synthesen von α-Phenyl-propions?ureestern[J].Justus Liebigs Ann Chem,1960,634(1):9-22.
[9] EDER U,SAUER G,WIECHERT R.New type of asymmetric cyclization to optically active steroid CD partial structures[J].Angew Chem Int Ed,1971,10(7):496-497.
[10] ARAKAWA Y,HARAGUCHI N,ITSUNO S.An immobilization method of chiral quaternary ammonium salts onto polymer supports[J].Angew Chem Int Ed,2008,47(43):8232-8235.
[11] ITSUNO S,PAUL D K,SALAM M A,et al.Main-chain ionic chiral polymers:synthesis of optically active quaternary ammonium sulfonate polymers and their application in asymmetric catalysis[J].J Am Chem Soc,2010,132(9):2864-2865.
[12] PARVEZ M M,HARAGUCHI N,ITSUNO S.Molecular design of chiral quaternary ammonium polymers for asymmetric catalysis applications[J].Org Biomol Chem,2012,10(14):2870-2877.
[13] HARAGUCHI N,AHAMED P,PARVEZ M M,et al.Synthesis of main-chain chiral quaternary ammonium polymers for asymmetric catalysis using quaternization polymerization[J].Molecules,2012,17(6):7569-7583.
[14] PUGLISI A,BENAGLIA M,CINQUINI M,et al.Enantioselective 1,3-dipolar cycloadditions of unsaturated aldehydes promoted by a poly(ethylene glycol)-supported organic catalyst[J].Eur J Org Chem,2004(3):567-573.
[15] RIENTE P,YADAV J,PERICAS M A.A click strategy for the immobilization of macmillan organocatalysts onto polymers and magnetic nanoparticles[J].Org Lett,2012,14(14):3668-3671.
[16] ALLEMANN C,GORDILLO R,CLEMENTE F R,et al.Theory of asymmetric organocatalysis of aldol and related reactions:rationalizations and predictions[J].Acc Chem Res,2004,37(8):558-569.
[17] BUI T,BARBAS C F.A proline-catalyzed asymmetric Robinson annulation reaction[J].Tetrahedron Lett,2000,41(36):6951-6954.
[18] HAYASHI Y,TSUBOI W,ASHIMINE I,et al.The direct and enantioselective,one-pot,three-component,cross-mannich reaction of aldehydes[J].Angew Chem Int Ed,2003,42(31):3677-3680.
[19] LIST B,POJARLIEV P,MARTIN H J.Efficient proline-catalyzed michael additions of unmodified ketones to nitro olefins[J].Org Lett,2001,3(16):2423-2425.
[20] RAMACHARY D B,CHOWDARI N S,BARBAS C F.Amine-catalyzed direct self Diels-Alder reactions of α,β-unsaturated ketones in water:synthesis of pro-chiral cyclohexanones[J].Tetrahedron Lett,2002,43(38):6743-6746.
[21] LIST B.Direct catalytic asymmetric α-amination of aldehydes[J].J Am Chem Soc,2002,124(20):5656-5657.
[22] IMBRIGLIO J E,VASBINDER M M,MILLER S J.Dual catalyst control in the amino acid-peptide-catalyzed enantioselective baylis-hillman reaction[J].Org Lett,2003,5(20):3741-3743.
[23] UTSUMI N,ZHANG H,TANAKA F,et al.A way to highly enantiomerically enriched aza-morita-baylis-hillman-type products[J].Angew Chem Int Ed,2007,46(11):1878-1880.
[24] WANG J,LI H,MEI Y,LOU B,et al.Direct,facile aldehyde and ketone α-selenenylation reactions promoted by l-prolinamide and pyrrolidine sulfonamide organocatalysts[J].J Org Chem,2005,70(14):5678-5687.
[25] B?GEVIG A,SUNDéN H,CRDOVA A.Direct catalytic enantioselective α-aminoxylation of ketones:a stereoselective synthesis of α-hydroxy and α,α′-dihydroxy ketones[J].Angew Chem Int Ed,2004,43(9):1109-1112.
[26] BROCHU M P,BROWN S P,MACMILLAN D W C.Direct and enantioselective organocatalytic α-chlorination of aldehydes[J].J Am Chem Soc,2004,126(13):4108-4109.
[27] BENAGLIA M,CINQUINI M,COZZI F,et al.Poly(ethylene glycol)-supported proline:a versatile catalyst for the enantioselective aldol and iminoaldol reactions[J].Adv Synth Catal,2002,344(5):533-542.
[28] BENAGLIA M,CELENTANO G,COZZI F.Enantioselective aldol condensations catalyzed by poly(ethylene glycol)-supported proline[J].Adv Synth Catal,2001,343(2):171-173.
[29] BENAGLIA M,CINQUINI M,COZZI F,et al.Poly(ethylene-glycol)-supported proline:a recyclable aminocatalyst for the enantioselective synthesis of γ-nitroketones by conjugate addition[J].J Mol Catal A:Chem,2003,204-205,157-163.
[30] FONT D,JIMENO C,PERICS M A.Polystyrene-supported hydroxyproline:an insoluble,recyclable organocatalyst for the asymmetric aldol reaction in water[J].Org Lett,2006,8(20):4653-4655.
[31] FONT D,SAYALERO S,BASTERO A,et al.Toward an artificial aldolase[J].Org Lett,2007,10(2):337-340.
[32] FONT D,BASTERO A,SAYALERO S,et al.Highly enantioselective α-aminoxylation of aldehydes and ketones with a polymer-supported organocatalyst[J].Org Lett,2007,9(10):1943-1946.
[33] ALZA E,CAMBEIRO X C,JIMENO C,et al.Highly enantioselective michael additions in water catalyzed by a PS-saupported pyrrolidine[J].Org Lett,2007,9(19):3717-3720.
[34] GIACALONE F,GRUTTADAURIA M,MARCULESCU A M,et al.Polystyrene-supported proline and prolinamide.Versatile heterogeneous organocatalysts both for asymmetric aldol reaction in water and α-selenenylation of aldehydes[J].Tetrahedron Lett,2007,48(2):255-259.
[35] ANNIS D A,JACOBSEN E N.Polymer-supported chiral co(salen)complexes:synthetic applications and mechanistic investigations in the hydrolytic kinetic resolution of terminal epoxides[J].J Am Chem Soc,1999,121(17):4147-4154.
[36] ZHENG X,JONES C W,WECK M.Ring-expanding olefin metathesis:a route to highly active unsymmetrical macrocyclic oligomeric co-salen catalysts for the hydrolytic kinetic resolution of epoxides[J].J Am Chem Soc,2007,129(5):1105-1112.
[37] LIU G,SUN Y,WANG J,et al.Microwave-assisted tandem allylation-isomerization reaction catalyzed by a mesostructured bifunctional catalyst in aqueous media[J].Green Chem,2009,11(9):1477-1481.
[38] LIU G,WANG J,HUANG T,et al.Mesoporous silica-supported iridium catalysts for asymmetric hydrogenation reactions[J].J Mater Chem,2010,20(10):1970-1975.
[39] LIU G,GU H,SUN Y,et al.Magnetically recoverable nanoparticles:highly efficient catalysts for asymmetric transfer hydrogenation of aromatic ketones in aqueous medium[J].Adv Synth Catal,2011,353(8):1317-1324.
[40] SUN Y,LIU G,GU H,et al.Magnetically recoverable SiO2-coated Fe3O4nanoparticles:a new platform for asymmetric transfer hydrogenation of aromatic ketones in aqueous medium[J].Chem Commun,2011,47(9):2583-2585.
[41] ZHANG H,JIN R,YAO H,et al.Core-shell structured mesoporous silica:a new immobilized strategy for rhodium catalyzed asymmetric transfer hydrogenation[J].Chem Commun,2012,48(63):7874-7876.
[42] ABU-ELFOTOH A-M,PHOMKEONA K,SHIBATOMI K,et al.Asymmetric inter- and intramolecular cyclopropanation reactions catalyzed by a reusable macroporous-polymer-supported chiral ruthenium(II)/phenyloxazoline complex[J].Angew Chem Int Ed,2010,49(45):8439-8443.
[43] HARAGUCHI N,TSURU K,ARAKAWA Y,et al.Asymmetric transfer hydrogenation of imines catalyzed by a polymer-immobilized chiral catalyst[J].Org Biomol Chem,2009,7(1):69-75.
[44] FERRAND Y,LE MAUX P,SIMONNEAUX G.Macroporous chiral ruthenium porphyrin polymers:a new solid-phase material used as a device for catalytic asymmetric carbene transfer[J].Tetrahedron-Asymmetry,2005,16(23):3829-3836.
[45] CORNEJO A,FRAILE J M,GARCA J I,et al.The first immobilization of pyridine-bis(oxazoline)chiral ligands[J].Org Lett,2002,4(22):3927-3930.
[46] LEE S-H,KIM H-J,CHOI D,et al.Highly purified cyclic olefin polymer by ROMP;Insituhydrogenation with ruthenium supported catalyst[J].Macromol Res,2012,20(8):777-779.
[47] DENG J,LU C,YANG G,et al.Preparation of microgel-supported chiral catalysts and their application in the asymmetric hydrogenation of aromatic ketones[J].React Funct Polym,2012,72(6):378-382.
[48] TERASHIMA T,OUCHI M,ANDO T,et al.Transfer hydrogenation of ketones catalyzed by PEG-armed ruthenium-microgel star polymers:microgel-core reaction space for active,versatile and recyclable catalysis[J].Polym J,2011,43(9):770-777.
[49] OOHARA T,NAMBU H,ANADA M,et al.A polymer-supported chiral fluorinated dirhodium(II)complex for asymmetric amination of silyl enol ethers[J].Adv Synth Catal,2012,354(11-12):2331-2338.
[50] TAKEDA K,OOHARA T,ANADA M,et al.A Polymer-supported chiral dirhodium(II)complex:highly durable and recyclable catalyst for asymmetric intramolecular C-H insertion reactions[J].Angew Chem Int Ed,2010,49(39):6979-6983.
[51] CANDEIAS N R,AFONSO C A M,GOIS P M P.Making expensive dirhodium(ii)catalysts cheaper:Rh(ii)recycling methods[J].Org Biomol Chem,2012,10(17):3357-3378.
[52] YU L,WANG Z,WU J,et al.Directed orthogonal self-assembly of homochiral coordination polymers for heterogeneous enantioselective hydrogenation[J].Angew Chem Int Ed,2010,49(21):3627-3630.
[53] CORKUM E G,HASS M J,SULLIVAN A D,et al.A highly reusable rhodium catalyst-organic framework for the intramolecular cycloisomerization of 1,6-enynes[J].Org Lett,2011,13(13):3522-3525.
[54] ARAKAWA Y,CHIBA A,HARAGUCHI N,et al.Asymmetric transfer hydrogenation of aromatic ketones in water using a polymer-supported chiral catalyst containing a hydrophilic pendant group[J].Adv Synth Catal,2008,350(14-15):2295-2304.
[55] BURGUETE M I,FRAILE J M,GARCA-VERDUGO E,et al.Polymer-supported bis(oxazolines)and related systems:toward new heterogeneous enantioselective catalysts[J].Ind Eng Chem Res,2005,44(23):8580-8587.
[56] GARCIA J I,LOPEZ-SANCHEZ B,MAYORAL J A.Linking homogeneous and heterogeneous enantioselective catalysis through a self-assembled coordination polymer[J].Org Lett,2008,10(21):4995-4998.
[57] SONG C E,YANG J W,ROH E J,et al.Heterogeneous pd-catalyzed asymmetric allylic substitution using resin-supported trost-type bisphosphane ligands[J].Angew Chem Int Ed,2002,41(20):3852-3854.
[58] NAKANO H,TAKAHASHI K,FUJITA R.Polymer-supported chiral phosphinooxazolidine ligands for palladium-catalyzed asymmetric allylic alkylations and Diels-Alder reactions[J].Tetrahedron-Asymmetry,2005,16(12):2133-2140.
[59] KROLL R M,SCHULER N,LUBBAD S,et al.A ROMP-derived,polymer-supported chiral Schrock catalyst for enantioselective ring-closing olefin metathesis[J].Chem Commun,2003,12(1):2742-2743.
[60] WANG D,KROELL R,MAYR M,et al.Polymer-supported chiral Schrock catalysts immobilized via the arylimido ligand[J].Adv Synth Catal,2006,348(12-13):1567-1579.
[61] HULTZSCH K C,JERNELIUS J A,HOVEYDA A H,et al.The first polymer-supported and recyclable chiral catalyst for enantioselective olefin metathesis[J].Angew Chem Int Ed,2002,41(4):589-590.