郭宇龍,李云梅,呂 恒,王珊珊,王永波
(南京師范大學虛擬地理環(huán)境教育部重點實驗室,南京210023)
常規(guī)的水質監(jiān)測調查速度慢、監(jiān)測周期長,難以滿足對大面積水體水質監(jiān)測的要求,遙感技術可以克服常規(guī)水質監(jiān)測方法的不足.遙感反射率是湖泊水色的綜合反映,是水體光學活性物質吸收和散射相互作用的結果,遙感監(jiān)測水質最重要的就是建立水質參數(shù)和遙感反射率光譜之間的響應關系[1].近年來,隨著高光譜技術的迅速發(fā)展,傳感器光譜分辨率不斷提高,使得遙感反射率能夠體現(xiàn)水色要素的細節(jié)變動,從而提高水質參數(shù)反演的精度[2].水體中懸浮顆粒物是重要的水色要素之一,總懸浮物濃度(CTSM)通過影響水體的透明度、渾濁度和水色等光學性質,進而影響到水體的生態(tài)條件和初級生產(chǎn)力[3].目前國內外許多學者通過很多方法實現(xiàn)了懸浮物濃度的估算[4-7],其中(半)經(jīng)驗方法具有簡單快速的優(yōu)勢,而且需要獲取的參數(shù)少,是最常用的估算模型構建方法.傳統(tǒng)的經(jīng)驗方法包括單波段法、波段比值法、光譜一階微分法等[8-10].然而這些算法只能利用高光譜信息的某個或幾個特征波段,建模過程中波段的選擇和波段組合的方式,都包含很多不確定因素(例如不同時期獲取的數(shù)據(jù)、最佳估算波段會有所差別),如果都使用相同的敏感波段,會導致最終得到的統(tǒng)計回歸模型未必是最佳估算模型.
更多的波段會包含更多的有用信息,然而同時采用大量波段進行統(tǒng)計回歸又存在以下問題:高光譜數(shù)據(jù)相鄰波段相關性很高,容易出現(xiàn)數(shù)據(jù)冗余,此外,如果將大量自變量都參與多元線性回歸分析,在增加計算量的同時,也會使模型過于復雜,不便使用.偏最小二乘法[11]可以較好地解決這個問題,但對高光譜數(shù)據(jù)來說,偏最小二乘回歸很難得到一個簡潔的回歸方程,不利于模型的分享,也不便應用于遙感衛(wèi)星影像.因此本研究利用主成分分析法,對高光譜數(shù)據(jù)進行降維處理,以期利用較少的主分量綜合反映水體光譜信息.進而利用得到的幾個互不相關的主成分對指數(shù)變換之后的懸浮物濃度進行多元回歸擬合,建立懸浮物濃度估算模型.最后通過實驗,確定模型的最適宜分量數(shù)以及利用該方法時高光譜數(shù)據(jù)的適宜波段數(shù);并對該模型算法的遙感影像適用性進行分析,以期提高內陸Ⅱ類水體水色參數(shù)反演的精度,并挖掘該模型在不同遙感衛(wèi)星影像上應用的潛力.
本研究以太湖為研究區(qū).太湖位于長江三角洲南緣,是我國第3大淡水湖泊,流域總面積36500 km2,湖體面積 2338 km2,平均水深 1.89 m[12].
分別于2009年4月16-27日、2011年5月20日對太湖進行野外采樣,其中2009年4月共采集54個樣本,2011年5月共采集30個樣本(圖1).在每個采樣點獲取水面遙感反射率,水體反射光譜的測量采用美國ASD公司生產(chǎn)的ASD FieldSpec Pro便攜式光譜輻射計,其波段范圍為350~1050 nm.為減少水體鏡面反射和船體自身陰影的影響,測量時采用唐軍武等[13]提出的內陸Ⅱ類水體水面以上光譜測量的方法.提取遙感反射率時需要測量的數(shù)據(jù)包括標準灰板、天空光、水體等的光譜輻亮度信息,每個對象都要采集10條以上的光譜數(shù)據(jù),剔除異常光譜數(shù)據(jù),剩余數(shù)據(jù)做均值處理.遙感反射率提取的具體方法見文獻[14].在光譜測量的同時采集表層水樣,低溫冷藏帶回實驗室測量懸浮物的濃度.懸浮物濃度采用常規(guī)的干燥、烘燒、稱重法(GB/T 11901-1989)測定.
圖1 太湖采樣點分布Fig.1 Distribution of sampling sites in Lake Taihu
為了消除不同觀測時間的光譜差異,對每條遙感反射率光譜曲線進行歸一化處理(公式(1)),突出光譜特征[15].
式中,Rrs(λ)和Rrsn(λ)分別為歸一化前、后波長λ處的遙感反射率,n為可見光波段參與計算的波段數(shù),本研究為381.本研究將通過歸一化前后的遙感反射率與待估算參數(shù)之間的相關性,分析歸一化前后遙感反射率對總懸浮物濃度的敏感性.
主成分分析就是用少數(shù)幾個主成分來描述多個指標或因素之間的聯(lián)系,以較少幾個主成分反映原數(shù)據(jù)的大部分信息的統(tǒng)計方法.從數(shù)學角度來看,是一種降維處理技術[16].經(jīng)分析得到的主成分用PCi表示,如PC1代表第一主成分,PC2代表第二主成分,以此類推.
分解得到的特定主成分代表一組光譜的某個特征,這種特征體現(xiàn)在該主成分的載荷系數(shù)上.研究將通過分析不同主成分的載荷系數(shù),解釋不同主成分在模型構建中的作用.
高光譜數(shù)據(jù)的各個主成分之間是沒有相關性的,因此以這些主成分為自變量,待反演參數(shù)作為因變量,建立多元線性回歸模型,用來估算懸浮物濃度.模型如下:
式中,y為待反演的參數(shù),這里是ln(CTSM)[17],n為主成分個數(shù),ai為第i個主成分的系數(shù),b為截距項.理論上,有多少個高光譜波段,就有多少個成分分量.因此確定模型中n的大小也是一個關鍵問題.本研究以迭代運算的方式,確定參與建模的主成分個數(shù).
1.6.1 模型精度評價指標 研究中用于評價模型的指標均方根誤差(RMSE)和平均相對誤差(MAPE)分別利用式(3)、(4)計算得到:
式中,yi、y'i分別為實測懸浮物濃度和估算懸浮物濃度,n為樣本數(shù).本研究將2009年4月實驗獲取的數(shù)據(jù)分為兩部分,隨機抽取其中的36組遙感反射率及與其對應的總懸浮物濃度作為建模數(shù)據(jù),用公式(2)來構建總懸浮物估算模型,剩余的18組數(shù)據(jù)作為驗證數(shù)據(jù),用來驗證模型的精度.2011年5月實驗獲取的數(shù)據(jù)全部作為獨立數(shù)據(jù),對模型進行獨立驗證.同時,為了對比分析,用相同的數(shù)據(jù)建立4個常用的總懸浮物濃度反演經(jīng)驗模型,并與本文模型進行比較.
1.6.2 模型的影像適用性評價方法 實測高光譜數(shù)據(jù)具有1 nm的光譜分辨率,這是目前的高光譜影像數(shù)據(jù)都不具備的,因此為了評價本文模型的影像適用性,對模型做了兩類實驗:實驗1:從400~850 nm共451個波段中隨機刪除一個波段的數(shù)據(jù)(隨機數(shù)由IDL中的randumu函數(shù)生成),用剩余的波段進行主成分分析、多元線性回歸擬合建立模型,并進行精度評價,如此往復,直到剩余6個波段為止,作為一次實驗.重復100次實驗,記錄每條R2曲線和MAPE曲線,最后取均值.以此討論一般情況下支持主成分模型需要多少波段.實驗2:通過不同傳感器的波段響應函數(shù)和實測高光譜數(shù)據(jù),模擬一些常見傳感器的光譜數(shù)據(jù)集,針對不同傳感器模擬光譜進行模型構建,并進行精度評價,以此分析這些傳感器對該算法的適用性.
由于實測的水體反射光譜在850 nm后迅速下降,數(shù)據(jù)的信噪比降低,噪聲過大,因此本研究只針對400~850 nm范圍內的光譜數(shù)據(jù)進行分析.太湖54個采樣點在400~850 nm間的反射率光譜曲線具有典型的內陸Ⅱ類水體的光譜特征[18](圖2A).
歸一化之后的遙感反射率在保持了原始遙感反射率特征的基礎上,各個反射率曲線之間的系統(tǒng)差異變小.同時,歸一化前后的相關系數(shù)曲線發(fā)生較大變化:歸一化之前,相關系數(shù)曲線在400~850 nm之間集中在0.6附近,在400~533 nm之間呈平穩(wěn)下降趨勢,最小值為0.528,出現(xiàn)在533 nm處;533~710 nm之間平穩(wěn)上升;710 nm之后趨于平穩(wěn),并保持在較高的水平,最大值為0.866,出現(xiàn)在730 nm.所有波段相關系數(shù)的方差較小,僅為0.018,說明相關系數(shù)曲線在全部波段范圍內浮動不大.歸一化之后,相關系數(shù)曲線保持了相似的變化趨勢,在400~527 nm之間呈下降趨勢,最小值為-0.898,出現(xiàn)在527 nm處;527~650 nm之間波動上升;650 nm之后,除了在694 nm有一個小的低值區(qū)之外,都保持在較高的水平,最大值為0.911,出現(xiàn)在740 nm處(圖2B).所有波段相關系數(shù)的方差為0.399,表明歸一化之后,不同波段與ln(CTSM)的相關系數(shù)在全部波段范圍內波動較大.
圖2 太湖遙感反射率(A)、歸一化遙感反射率(B)及與ln(CTSM)的相關系數(shù)對比Fig.2 Comparison of remote sensing reflectance(A),normalized remote sensing reflectance(B)and their correlations with ln(CTSM)in Lake Taihu
通過對比歸一化前后的相關系數(shù)曲線發(fā)現(xiàn),歸一化前后敏感波段的位置變化較小,但數(shù)值變化明顯.最大正相關系數(shù)提高了5.19%,最小負相關系數(shù)降低了89.8%,方差提高了2116.6%,可見歸一化之后的遙感反射率對總懸浮物濃度的變化更敏感,特別是在510~560 nm波段,歸一化之后的遙感反射率與ln(CTSM)的相關性得到大幅度提升,說明歸一化方法能夠有效突出光譜中的總懸浮物濃度信息.
圖3 Rrsn前三個主成分載荷、貢獻率和累計貢獻率Fig.3 Loadings,percent variance and cumulative proportion of PC1-PC3of Rrsn
首先從載荷系數(shù)曲線來看,主成分的載荷系數(shù)能夠表明所對應的變量在主成分中所占據(jù)的分量,載荷系數(shù)的絕對值越大,說明該變量對最終主成分的影響也越大.本研究中Rrsn的前三個主成分載荷曲線如圖3所示,其中PC1的貢獻率為48.254%,并且載荷系數(shù)曲線的特征與 Rrsn-ln(CTSM)相關系數(shù)曲線(圖2B)特征很相似,同時都在700 nm之后達到一個穩(wěn)定的高值區(qū);PC2的貢獻率為27.654%,載荷系數(shù)曲線與Rrsn曲線特征相似,同時在700 nm之后穩(wěn)定在-0.2左右;PC3的貢獻率為18.401%,極小值出現(xiàn)在550 nm附近,對應該范圍內的Rrsn反射峰,之后隨著波長增加波動上升,在675 nm處達到峰值,對應Rrsn中的反射谷,之后急劇下降,穩(wěn)定在-0.2附近.從載荷系數(shù)曲線來看,PC1包含更多近紅外波段的遙感反射率信息,而近紅外波段也是懸浮顆粒物的敏感波段,由此推斷前3個主成分中PC1涵蓋更多的懸浮物濃度信息,而PC2、PC3則更多地體現(xiàn)了其余波段遙感反射率的曲線特征.
此外,通過對比3個主成分與ln(CTSM)之間的相關系數(shù)發(fā)現(xiàn),PC1與ln(CTSM)之間的相關系數(shù)最大,達到 0.728,驗證了之前的結論;同時,PC2、PC3與 ln(CTSM)之間的相關系數(shù)分別為 0.401 和 0.403.可見,雖然每個主成分之間是不相關的,但都體現(xiàn)出與ln(CTSM)之間不同程度的線性相關,說明不同主成分可以從不同側面涵蓋懸浮物濃度信息,也說明懸浮物濃度的信息不僅僅包含在其敏感波段中,也有一部分包含在非敏感波段的反射率信息中.
至此,前3個主成分的累計貢獻率達到94.308%,理論上已經(jīng)達到主成分分析的要求,之后的主成分只包含少量信息(整體的5.692%).然而,水體屬于弱信號體,細微的差異就可能影響水體組分反演結果;而細節(jié)信號與噪聲有時很難區(qū)分.所以不能采取傳統(tǒng)的主成分分析方法中,簡單地取累計貢獻率大于85%的主成分個數(shù)進行應用的做法.本研究中采用迭代運算的方式確定最佳主成分個數(shù).
圖4 不同主成分個數(shù)下模型的R2、MAPE和RMSEFig.4 R2,MAPE and RMSE of the model using different amounts of PC
2.3.1 主分量個數(shù)的確定及建模 從54組數(shù)據(jù)中隨機抽取36組用作建模,18組用作驗證,通過不斷增加參與建模的主分量個數(shù),計算模型建立時的R2和驗證數(shù)據(jù)的MAPE及RMSE,確定對懸浮物濃度估算最有利的主成分個數(shù).R2會隨著主成分個數(shù)增加呈不斷上升的趨勢(圖4),說明更多的主成分能對懸浮物濃度進行更好的擬合;MAPE和RMSE的變化趨勢略有不同,二者都從2個主成分開始平穩(wěn)下降,到6~8個主成分之間達到谷值區(qū),之后略有升高,15個主成分之后幾乎不再變動,說明擬合效果最好的模型,未必是驗證估算效果最好的模型.
從迭代結果來看,從2個主成分開始,模型的R2出現(xiàn)急劇上升,與之對應的,MAPE和RMSE也都急劇下降,之后R2趨于穩(wěn)定,而模型RMSE和MAPE的第二個“突變點”出現(xiàn)在6個主成分處.因此取最佳主成分個數(shù)6個來進行多元線性回歸模型的構建和驗證.6個主成分提取與建模的參數(shù)如表1所示.
表1 前6個主成分的特征值、貢獻率和累計貢獻率Tab.1 Eigenvalue,percent variance and cumulative proportion of PC1-PC6
Rrsn中的主要信息都在前3個主成分中得以體現(xiàn),因為從第4個主成分開始,主成分的特征值、貢獻率都有急劇的變化:PC4的特征值和貢獻率較PC3減小了84.15%,致使累計貢獻率僅提高2.57%,之后特征值、貢獻率和累計貢獻率都沒有大幅度變化(表1).說明PC4~PC6更多地體現(xiàn)了Rrsn中的一些細節(jié)部分,這些信息對Rrsn整體的影響不大,但卻包含一些估算所需要的信息,因此模型擬合精度(R2)才會有所提高,MAPE和RMSE隨之整體降低.而PC6之后的主成分,則更多包含Rrsn中的噪聲信息,不能對模型的構建產(chǎn)生積極的作用,模型的MAPE和RMSE也因此隨之升高.
在確定了參與建模的主成分個數(shù)之后,得到對應的估算模型為:
式中,n=6,a1=0.00219,a2= -0.00365,a3= -0.00015,a4= -0.00398,a5=0.007367,a6=0.124349,b=3.983785.
建模數(shù)據(jù)集擬合的R2為0.8441,驗證數(shù)據(jù)集的MAPE為0.125,RMSE為12.746.MAPE最小值僅為0.008,最大值為0.749.估算誤差MAPE小于10%的采樣點共11個,占整體的61%;MAPE小于20%的采樣點共16個,占整體的89%.說明該算法可以精確地對懸浮物濃度進行估算.
2.3.2 模型的對比分析 國內外諸多學者利用高光譜數(shù)據(jù)研發(fā)了很多懸浮物濃度的遙感估算模型,一般采用綠光、紅光波段或近紅外波段來構建模型[19].在此基礎上,本研究構建了不同波段組合與指數(shù)變換之后的懸浮物濃度之間的線性回歸模型,數(shù)據(jù)處理都采用相同的方法,以避免由于處理方法不同引入新的誤差.最終確定最大相關系數(shù)0.823,對應高光譜數(shù)據(jù)686 nm波段(R686);最小相關系數(shù)-0.837,對應高光譜數(shù)據(jù)528 nm 波段(R528).于是分別以 R528、R686、R686/R528、R686~R528為自變量,ln(CTSM)為因變量,建立線性回歸模型,分別記作經(jīng)驗模型一、二、三、四,最后得到的模型參數(shù)如表2所示.
無論從建模數(shù)據(jù)集擬合的R2,還是驗證數(shù)據(jù)集的MAPE、RMSE,本文提出的模型都能得到較好的結果(表2).與傳統(tǒng)的4個經(jīng)驗模型相比,本模型的擬合精度分別提高了9.35%、17.07%、10.60%和11.32%,平均提高了12.01%;MAPE 分別降低了49.51%、64.44%、53.87%和53.41%,平均降低了56%;RMSE 分別降低了30.86%、57.66%、39.52%和46.69%,平均降低了45.48%,可以說本模型相比于傳統(tǒng)經(jīng)驗模型在整體精度方面有顯著提高.
表2 不同模型對比Tab.2 Comparison of different models
由主成分模型和4個經(jīng)驗模型的實測-估算散點圖(圖5)可以看出,驗證數(shù)據(jù)集中有兩個采樣點的懸浮物濃度高于150 mg/L,傳統(tǒng)經(jīng)驗模型在這兩個點的估算中都出現(xiàn)了不同程度的“偏移”現(xiàn)象,特別是34號樣點實測懸浮物濃度為237.7 mg/L,4種經(jīng)驗方法中只有1種能將估算誤差勉強控制在20%誤差線以內,而主成分模型能夠很好地估算其濃度,使散點接近1∶1線.說明傳統(tǒng)經(jīng)驗模型在進行最小二乘擬合的時候受到一些離群值的影響,導致模型系數(shù)偏離最佳情況.因此,在進行傳統(tǒng)經(jīng)驗模型構建的時候,往往要剔除一些所謂的“異常值”,然而可能這些離群點中也包含有用信息,只是用單一波段無法將這些信息正確地表達.而主成分模型可以較好地修正這些“偏移”,說明主成分分析提供了一種更加確切的光譜信息提取方法,能有效地利用離群點的有用信息,并反映在最終的估算精度中.
圖5 估算與實測總懸浮物濃度對比Fig.5 Comparison of estimated and measured TSM contents
此外,雖然所有5個模型在獨立數(shù)據(jù)中的MAPE相較于驗證數(shù)據(jù)都有所升高,但本文模型仍能將MAPE控制在30%以下,優(yōu)于4個傳統(tǒng)的經(jīng)驗模型,表明該模型更穩(wěn)定,也更具實用性.
圖6 兩次實驗的估算模型精度Fig.6 Accuracy of the models in the two tests
2.3.3 模型的影像適用性評價 根據(jù)1.6.2中描述的方法,通過兩組實驗對本文模型的影像適用性進行評價.結果表明,實驗1中,在波段數(shù)多于200時,R2和MAPE幾乎沒有變化,因此只討論波段數(shù)在200之內的情況(圖6).從R2曲線來看,波段的多少對估算模型的擬合精度影響不大,R2平穩(wěn)保持在0.85附近.從 MAPE曲線來看,在波段數(shù)大于100的情況下,MAPE變化同樣不大,但隨著波段數(shù)量繼續(xù)減少,MAPE開始出現(xiàn)波動上升的趨勢,45~100個波段之間上升幅度較小,而波段數(shù)小于45之后開始急劇升高,最后接近0.4.說明理論情況下,在400~850 nm之間,波段數(shù)量多于45個的傳感器數(shù)據(jù)都可以用來建立懸浮物濃度的主成分模型,并且得到較穩(wěn)定的結果,但對于波段數(shù)量小于45的傳感器,模型精度和穩(wěn)定性無法保證.與Craig等[15]用類似的方法在Ⅰ類水體中的研究結果相比,本研究表明需要更多的光譜來表達水體組分濃度信息,這是因為內陸水體光學性質比較復雜,需要更多的波段信息進行相互補充,才能對其進行精確地表達.
實驗2中,共模擬了5種傳感器的遙感反射率,分別是 MODIS、MERIS、HJ1-HSI、Hyperion和 CHRIS.國內外諸多學者對這些傳感器在水色參數(shù)估算方面的應用做了大量研究,如Nechad等提出一種基于多傳感器數(shù)據(jù)的渾濁水體懸浮物濃度反演算法,并用于MODIS、MERIS等傳感器[20];楊煜等基于HJ1-HSI數(shù)據(jù)應用葉綠素反演的三波段并取得較高的反演精度[21];Liu等基于Hyperion數(shù)據(jù),確立了珠江入??趹腋∥餄舛鹊牟ǘ谓M合模型[22];李俊生等研究表明,CHRIS數(shù)據(jù)在內陸水質監(jiān)測中具有巨大潛力[23-24].5種傳感器在400~850 nm之間的波段個數(shù)分別為8、12、102、60、54,實驗結果表明,模擬數(shù)據(jù)的R2都遵循實驗1的結果,穩(wěn)定在0.85附近(圖6).而MAPE體現(xiàn)出一些不同的特點,其中MODIS、Hyperion和HJ1-HSI數(shù)據(jù)都在實驗1得到的曲線附近,三者遵循隨波段數(shù)量減小,精度降低的規(guī)律;而MERIS數(shù)據(jù)和CHRIS數(shù)據(jù)明顯分布在實驗1中MAPE均值曲線之下,說明這兩種傳感器在理想狀況下,能夠通過主成分模型更好地對水體懸浮物濃度進行估算,特別是MERIS數(shù)據(jù),雖然只有12個波段,卻得到僅次于CHRIS數(shù)據(jù)的估算精度,說明MERIS傳感器的波段設置包含了足夠的水色要素信息,是主成分模型優(yōu)秀的數(shù)據(jù)源.最后,除了MODIS數(shù)據(jù)以外,參與實驗的另外4組模擬數(shù)據(jù)都能得到較為理想的估算精度,說明主成分建模方法在高光譜反演水體懸浮物濃度方面具有一定的適用性.
本文針對傳統(tǒng)經(jīng)驗模型不能充分利用高光譜信息,從而很難達到最佳擬合效果這一缺陷,通過建立主成分,達到利用較少分量綜合反映水體信息的目的.研究表明,水體懸浮物濃度信息不僅包含在敏感波段遙感反射率(PC1)中,也包含在非敏感波段遙感反射率(PC2~PC6)中.
用前6個主成分構建多元線性回歸模型,結果表明,相對于4種傳統(tǒng)經(jīng)驗模型,主成分模型能夠充分利用高光譜數(shù)據(jù)波段信息,受離群值影響較小,在擬合精度和估算精度方面均有大幅度提高.獨立實驗數(shù)據(jù)表明模型具有一定實用性.
通過兩類實驗,討論了主成分模型的適用性,結果表明,在400~850 nm之間波段數(shù)量大于45的高光譜傳感器都能用主成分模型得到高精度并且較穩(wěn)定的估算模型.并且MERIS、HJ1-HSI、Hyperion和CHRIS這些常用的高光譜傳感器的波段設置,都適合于主成分建模,其中MERIS數(shù)據(jù)雖然只有12個波段參與建模,但是其水色波段的設置,使得較少的波段也能獲得較高的模型精度.
[1]周 藝,周偉奇,王世新等.遙感技術在內陸水體水質監(jiān)測中的應用.水科學進展,2004,15(3):312-317.
[2]疏小舟,尹 球,匡定波等.內陸水體藻類葉綠素濃度與反射光譜特征的關系.遙感學報,2000,4(1):41-45.
[3]汪小欽,王欽敏,鄔群勇等.遙感在懸浮物濃度提取中的應用——以福建閩江口為例.遙感學報,2003,7(1):54-57.
[4]Gin KY,Koh ST.Spectral irradiance profiles of suspended marine clay for the estimation of suspended sediment concentration in trophical waters.International Journal of Remote Sensing,2003,24(16):3235-3245.
[5]H?rm? P,Veps?l?inen J,Hannonen T et al.Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland.Science of the Total Environment,2001,268(1):107-121.
[6]Ahn YH,Moon JE,Gallegos S.Development of suspended particulate matter algorithms for ocean color remote sensing.Korean Journal of Remote Sensing,2001,17(4):285-295.
[7]劉堂友,匡定波,尹 球.湖泊藻類葉綠素a和懸浮物濃度高光譜定量遙感模型研究.紅外與毫米波學報,2004,23(1):11-15.
[8]呂 恒,李新國,江 南.基于反射光譜和模擬MERIS數(shù)據(jù)的太湖懸浮物定量模型.湖泊科學,2005,17(2):104-109.
[9]李素菊,王學軍.巢湖水體懸浮物含量與光譜反射率的關系.城市環(huán)境與城市生態(tài),2003,16(6):66-68.
[10]Malthus TJ,Dekker AG.First derivative indices for the remote sensing of inland water quality using high spectral resolution reflectance.Environment International,1995,21(2):221-232.
[11]張恒喜,郭基聯(lián),朱家元等.小樣本多元數(shù)據(jù)分析方法及應用.西安:西北工業(yè)大學出版社,2002.
[12]秦伯強,胡維平,陳偉民.太湖水環(huán)境演化過程與機理.北京:科學出版社,2004:1-296.
[13]唐軍武,田國良,汪小勇等.水體光譜測量與分析Ⅰ:水面以上測量法.遙感學報,2004,8(1):37-45.
[14]唐軍武.海洋光學特性模擬與遙感模型[學位論文].北京:中國科學院遙感應用研究所,1999:107-110.
[15]Craig SE,Jones CT,Li WKW et al.Deriving optical metrics of coastal phytoplankton biomass from ocean colour.Remote Sensing of Environment,2012,119(16):72-83.
[16]韋玉春,王國祥,孫華蕓.使用線性回歸方法構建水體葉綠素a濃度高光譜估算模型的一個邏輯問題.數(shù)學的實踐與認識,2010,40(18):100-110.
[17]劉 聰,汪 明.R軟件在主成分分析中的應用研究.電腦知識與技術,2011,7(13):3092-3094.
[18]施 坤,李云梅,王 橋等.因子分析法在水質參數(shù)反演中的應用.湖泊科學,2010,22(3):391-399.
[19]劉忠華,李云梅,呂 恒等.基于偏最小二乘法的巢湖懸浮物濃度反演.湖泊科學,2011,23(3):357-365.
[20]Nechad B,Ruddick KG,Park Y.Calibration and validation of a generic multisensory algorithm for mapping of total suspended matter in turbid waters.Remote Sensing of Environment,2010,114(4):854-866.
[21]楊 煜,李云梅,王 橋等.基于環(huán)境一號衛(wèi)星高光譜遙感數(shù)據(jù)的巢湖水體葉綠素a濃度反演.湖泊科學,2010,22(4):495-503.
[22]Liu DZ,F(xiàn)u DY,Xu B et al.Estimation of total suspended matter in the Zhujiang(Pearl)River estuary from Hyperion imagery.Chinese Journal of Oceanology and Limnology,2012,30(1):16-21.
[23]李俊生,張 兵,申 茜等.航天成像光譜儀CHRIS在內陸水質監(jiān)測中的應用.遙感技術與應用,2007,22(5):593-597.
[24]張 兵,申 茜,李俊生等.太湖水體3種典型水質參數(shù)的高光譜遙感反演.湖泊科學,2009,21(2):182-192.