劉明鼎,劉春霞
(青島理工大學 琴島學院,山東 青島 266106)
在自然科學和工程領域中,很多自然現(xiàn)象的發(fā)生都可以用初邊值對流擴散方程來刻劃?,F(xiàn)在有一些求解對流擴散方程的方法[1-7]。本文給出了數(shù)值級數(shù)法求解一維對流擴散方程。該方法的特點是在每個網(wǎng)格點(xm,tn)處將數(shù)值解用數(shù)值級數(shù)的形式給出,即
考慮如下初邊值一維對流擴散方程
表1 數(shù)值解的相對誤差
從表1可以看出,數(shù)值級數(shù)法比傳統(tǒng)的顯示差分格式更精確。從另一方面來說,使用數(shù)值級數(shù)法解決問題(34),我們只需要取級數(shù)(8)的前六項。因此數(shù)值級數(shù)法是一個有效的方法。
[1]S.Zhu,G.Yuan,W.Sun.Convergence and stability of explicit/implicit schemes for parabolic equations with discontinuous coefficients[J].Int.J.Numer.Anal.Model,2004(1):131-145.
[2]R.Tavakoli,P.Davami.New stable group explicit finite difference method for solution of diffusion equation[J].Appl.Math.Comput,2006(181):1379-1386.
[3]J.Gao,G.He.An unconditionally stable parallel difference scheme for parabolic equations[J].Appl.Math.Comput,2003(135):391-398.
[4]J.Kouatchou.Finite differences and collocation methods for the two dimensional heat equation[J].Numer.Methods Partial Differential Equations,2001(17):54-63.
[5]J.Kouatchou.Comparison of time and spatial collocation methods for the heat equation[J].Journal of Computational and Applied Mathematics,2003(150):129-141.
[6]J.Douglas Jr.,T.Dupont.Collocation methods for parabolic equations in a single space variable[M].Berlin:Springer,1974.
[7]R.Farnoosh,M.Ebrahimi.Monte Carlo method via a numerical algorithm to solve a parabolic problem[J].Appl.Math.Comput,2007(190):1593-1601.