■ 執(zhí)教 易小華
指導(dǎo) 楊明清
點(diǎn)評 馮回祥
《平行四邊形的面積》教學(xué)設(shè)計(jì)和評析
■ 執(zhí)教 易小華
指導(dǎo) 楊明清
點(diǎn)評 馮回祥
教學(xué)內(nèi)容:人教版五年級上冊《平行四邊形的面積》。
教學(xué)目標(biāo):理解并掌握平行四邊形的面積計(jì)算方法,會運(yùn)用公式計(jì)算平行四邊形的面積;經(jīng)歷平行四邊形面積公式的探究過程,培養(yǎng)學(xué)生初步的推理能力和合作意識;滲透“轉(zhuǎn)化”、“對應(yīng)”、“等積變形”的數(shù)學(xué)思想方法。
教學(xué)重點(diǎn):理解并掌握平行四邊形面積計(jì)算方法。
教學(xué)難點(diǎn):平行四邊形面積計(jì)算公式的推導(dǎo)。
教學(xué)方法:自主探究、合作交流。
教學(xué)準(zhǔn)備:課件、平行四邊形、尺子、剪刀等。
教學(xué)過程
一、情境中悟深意——孕伏轉(zhuǎn)化
1.利用情境圖,提出問題
(1)看一看:出示教材第79頁情境圖,你們發(fā)現(xiàn)了哪些圖形?會計(jì)算它們的面積嗎?
(2)比一比:出示教材第80頁主題圖,請問這兩個花壇哪一個大呢?
(3)想一想:要想知道哪個花壇大,哪個花壇小,就是要知道它們的什么?
(4)新知引入:長方形的面積我們會計(jì)算,怎樣求平行四邊形的面積?在求平行四邊形的面積時又要注意哪些問題呢?這就是我們這節(jié)課要來探究的問題——平行四邊形的面積(板書課題)。
2.利用方格圖,感知轉(zhuǎn)化
(1)數(shù)一數(shù):請觀察,下面每個圖形的面積各是多少?(一個方格代表1平_方厘米,不滿一格的都按半格計(jì)算。)_
(2)說一說:你是怎樣數(shù)的?
(3)小結(jié):不完整的方格圖可以通過剪拼轉(zhuǎn)化成完整的方格圖來計(jì)數(shù);不會計(jì)算面積的圖形可以轉(zhuǎn)化成會計(jì)算面積的圖形來計(jì)算。
【點(diǎn)評:一石三鳥,該設(shè)計(jì)從主題圖出發(fā),既能讓學(xué)生明確學(xué)習(xí)內(nèi)容的意義和價值,感受到數(shù)學(xué)與生活的密切聯(lián)系,又能激發(fā)學(xué)生學(xué)習(xí)的興趣,同時為新知的探究做好了心理和策略上的準(zhǔn)備?!?/p>
二、探究中悟轉(zhuǎn)化——理解新知
1.提出猜想
我們已經(jīng)知道長方形的面積 =長×寬,猜想一下,平行四邊形的面積應(yīng)該如何計(jì)算呢?
2.操作實(shí)踐
(1)想一想:你能將平行四邊形轉(zhuǎn)化成已經(jīng)會計(jì)算面積的圖形嗎?
(2)做一做:請動手將平行四邊形轉(zhuǎn)化成會計(jì)算面積的圖形。
(3)看一看:轉(zhuǎn)化后的圖形與原來的平行四邊形有什么樣的關(guān)系?
(4)推一推:你能由此推導(dǎo)出平行四邊形面積計(jì)算公式嗎?
3.填寫報(bào)告單
我將平行四邊形轉(zhuǎn)換成( );轉(zhuǎn)化后的圖形的面積與平行四邊形的面積( );轉(zhuǎn)化后的圖形的( )與平行四邊形的底( );轉(zhuǎn)化后的圖形的( )與平行四邊形的高( );我的結(jié)論是:平行四邊形的面積=( )。
【點(diǎn)評:任意一個平行四邊形,通過割補(bǔ)的方法都可以變成和原平行四邊形面積相等的長方形,這是事實(shí)。如果學(xué)生自己動手實(shí)踐了,他們會確信無疑。教師設(shè)計(jì)以上的實(shí)踐活動,不僅為歸納公式提供了充分的事實(shí),而且還培養(yǎng)了學(xué)生動手操作的能力。人人動手,既有利于調(diào)動學(xué)生學(xué)習(xí)積極性,又有利于面向全體?!?/p>
4.全班交流
5.結(jié)果展示
6.質(zhì)疑探究
為什么平行四邊形的面積是底×高,而不是將一組鄰邊相乘呢?
7.概括歸納
我們把一個平行四邊形轉(zhuǎn)化成為一個長方形,它的面積與原來的平行四邊形面積相等。這個長方形的長與平行四邊形的底相等,這個長方形的寬與平行四邊形的高相等,因?yàn)殚L方形的面積=長×寬,所以平行四邊形的面積=底×高。
8.學(xué)習(xí)例1
(1)學(xué)生獨(dú)立列式計(jì)算。
(2)通過板書,規(guī)范書寫格式
【點(diǎn)評:該環(huán)節(jié)設(shè)計(jì),教師關(guān)注了學(xué)生的學(xué)習(xí)興趣和已有經(jīng)驗(yàn),關(guān)注了學(xué)生主動參與的學(xué)習(xí)方式,開放的課堂,使得學(xué)生有更多發(fā)現(xiàn)和充分展示的機(jī)會。能得到多種方法進(jìn)行轉(zhuǎn)化,是學(xué)生求異思維的體現(xiàn),也是培養(yǎng)學(xué)生思維品質(zhì)的時機(jī)。在活動過程中,培養(yǎng)了學(xué)生抽象概括能力,滲透了“轉(zhuǎn)化”“對應(yīng)”的數(shù)學(xué)思想方法。這樣的教學(xué),讓學(xué)生的智慧在交流中共生,思維在交流中碰撞,情感在交流中融合,彰顯了數(shù)學(xué)的人文性、思想性和開放性,很好地體現(xiàn)了新課程的教學(xué)觀?!?/p>
三、練習(xí)中悟方法——提升思維
1.想一想:怎樣計(jì)算面積?(單位:米)
2.一個平行四邊形的停車位底長5米,高2.5米。它的面積是多少?
3.辨一辨:下面的說法對嗎?
(1)下面兩個圖形的面積都是3× 2=6(平方米) ( )
(2)下圖的面積是30×15=450(平方厘米) ( )
4.選一選:下圖中長方形的面積( )平行四邊形的面積。
A大于 B小于
C等于 D無法確定
5.?dāng)?shù)學(xué)史料介紹:人們是什么時候開始研究面積問題的呢?為什么要研究面積問題呢?(閱讀教材第85頁,你知道嗎?)
【點(diǎn)評:練習(xí)設(shè)計(jì),內(nèi)容呈現(xiàn)形式多樣,練習(xí)重難點(diǎn)突出,具有很強(qiáng)的層次性和針對性;在練習(xí)過程中,注重解決問題策略多樣化的指導(dǎo),使學(xué)生在內(nèi)化新知的同時,提高解決問題的能力,提升數(shù)學(xué)思維品質(zhì)。數(shù)學(xué)史料的介紹不僅拓寬了學(xué)生的視野,而且讓學(xué)生體會到《九章算術(shù)》對人類文明發(fā)展的巨大貢獻(xiàn)和深遠(yuǎn)的歷史意義?!?/p>
四、總結(jié)中悟感受——完善認(rèn)知
1.平行四邊形的面積如何計(jì)算?它的面積計(jì)算公式是如何推導(dǎo)出來的?
2.神奇化易是坦道,易化神奇不足提?!A羅庚
【點(diǎn)評:引導(dǎo)學(xué)生對所學(xué)的知識進(jìn)行回顧和整理,有利于學(xué)生對所學(xué)知識的整體把握。同時借助數(shù)學(xué)家的名言,再一次滲透轉(zhuǎn)化的數(shù)學(xué)思想方法,提升學(xué)生的數(shù)學(xué)素養(yǎng)?!?/p>
五、課堂作業(yè)
練習(xí)十五第2、3、4題。
課后反思
數(shù)學(xué)課程標(biāo)準(zhǔn)指出:教學(xué)應(yīng)當(dāng)以學(xué)生的認(rèn)知發(fā)展水平和已有的生活經(jīng)驗(yàn)為基礎(chǔ),面向全體學(xué)生,注重啟發(fā)和因材施教。教學(xué)要處理好講授與學(xué)生自主學(xué)習(xí)的關(guān)系,引導(dǎo)學(xué)生獨(dú)立思考、主動探究、合作交流,使學(xué)生理解和掌握基本的數(shù)學(xué)知識和技能,體會和運(yùn)用數(shù)學(xué)思想方法,獲得基本的數(shù)學(xué)活動經(jīng)驗(yàn)。基于這樣的教學(xué)理念,本節(jié)課的教學(xué)我充分發(fā)揮學(xué)生的自主性,讓學(xué)生在操作、觀察、思考、推理等活動中通過猜想與驗(yàn)證、比較與歸納,自主發(fā)現(xiàn)并深刻理解平行四邊形面積計(jì)算方法。
精心預(yù)設(shè),引領(lǐng)學(xué)生再次創(chuàng)造。精心預(yù)設(shè)是有效教學(xué)的前提,本節(jié)課我對學(xué)生理解新知的環(huán)節(jié)進(jìn)行了精心的設(shè)計(jì):首先引導(dǎo)學(xué)生回顧長方形面積計(jì)算公式的推導(dǎo)過程,為本節(jié)課探究做好思想方法上的準(zhǔn)備;然后精心設(shè)計(jì)了探究提示,并下發(fā)研究報(bào)告單,引導(dǎo)學(xué)生在操作中思考,在比較中推理。荷蘭數(shù)學(xué)教育家弗賴登塔爾提出數(shù)學(xué)教育方法的核心是學(xué)生的“再創(chuàng)造”。所謂“再創(chuàng)造”是指計(jì)算不必將各種定律、性質(zhì)、公式等都灌輸給學(xué)生,而是創(chuàng)造適合的情境,提供豐富的素材,讓學(xué)生觀察、操作、實(shí)驗(yàn)、抽象、概括出數(shù)學(xué)概念、法則或規(guī)律。本節(jié)課我讓學(xué)生自己動手在操作中通過數(shù)方格、割補(bǔ)法等各種方法將平行四邊形轉(zhuǎn)換成長方形,從而推導(dǎo)出平行四邊形面積計(jì)算公式。
著眼學(xué)生的發(fā)展,滲透思想方法。笛卡爾說過:數(shù)學(xué)是使人變聰明的一門學(xué)科。而數(shù)學(xué)思想方法反映著數(shù)學(xué)概念、原理及規(guī)律的聯(lián)系和本質(zhì),是數(shù)學(xué)的核心,是傳導(dǎo)數(shù)學(xué)精神、形成科學(xué)世界觀不可缺少的條件。小學(xué)數(shù)學(xué)教材中蘊(yùn)含了許多的數(shù)學(xué)思想方法,學(xué)生對數(shù)學(xué)的學(xué)習(xí)不單純是知識的獲得和反復(fù)的操練,貫穿始終的還是數(shù)學(xué)思想方法的有機(jī)滲透。如果說數(shù)學(xué)教材中的基礎(chǔ)知識和基本技能是一條明線的話,那么蘊(yùn)含在教材中的數(shù)學(xué)思想方法就是一條暗線。本節(jié)課的教學(xué)中我抓住教學(xué)內(nèi)容中的有利因素,有意識地加以引導(dǎo),注意了轉(zhuǎn)化、對應(yīng)和等積變形等數(shù)學(xué)思想方法的滲透,讓學(xué)生在潛移默化中掌握數(shù)學(xué)思想方法。
(作者單位:易小華 武漢市黃陂區(qū)前川一小 楊明清 武漢市黃陂區(qū)前川一小 馮回祥 華中科技大學(xué)附屬小學(xué))
責(zé)任編輯廖 林