亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Bitranslations of com p letely sim p le sem igroups and some applications

        2013-06-01 12:30:13YANGYuhuiZHANGJiangang
        關(guān)鍵詞:數(shù)理上海師范大學(xué)同構(gòu)

        YANG Yuhui,ZHANG Jiangang

        (College of Mathematics and Sciences,Shanghai Normal University,Shanghai 200234,China)

        Bitranslations of com p letely sim p le sem igroups and some applications

        YANG Yuhui,ZHANG Jiangang

        (College of Mathematics and Sciences,Shanghai Normal University,Shanghai 200234,China)

        We discuss the bitranslations of completely simple semigroups by the representations given by Petrich M.As an application,we get the structure of an inflation of a completely simple semigroup.Furthermore,we consider the isomorphism between two inflations of completely simple semigroups.

        completely simple semigroup;bitranslation;inflation

        1 Introduction and notations

        Lallement G.reduced the structure of completely regular semigroups to that of completely simple semigroups and certain functions among them and their translational hulls in[1].Petrich M gave the representation of the wreath product of left,right translations and bitranslations of a completely simple semigroup in[2]and[3].Zhang JG,etc.considered the properties of bitranslations of completely simple semigroups in[4]by the representation of the wreath product.In this paper,we discuss the bitranslations of completely simple semigroups by another representation of them given by Petrich M.Furthermore,we get the structures of inflations of completely simple semigroups and isomorphisms between two inflations of completely simple semigroups.

        An element a of a semigroup S is said to be regular if there exists an x in S such that a=axa.The semigroup S is said to be regular if all its elements are regular.A regular semigroup S is said to be completely regular if every element of S lies in a subgroup of S.A completely simple semigroup is completely regular and simple.By Rees′s theorem,every completely simple semigroup is isomorphic to a Reesmatrix semigroup.

        Let S be a semigroup and x,y be arbitrary elements of S.A mapλon S,written on the left,is a left translation ifλ(xy)=(λx)y;amapρon S,written on the right,is a right translation if(xy)ρ=x(yρ);the pair (λ,ρ)is a bitranslation if in addition x(λy)=(xρ)y,λandρa(bǔ)re also said to be linked.The setΛ(S)of all left translations of S is a semigroup under the composition(λλ′)x=λ(λ′x);the set P(S)of all right translations of S is a semigroup under the composition x(ρρ′)=(xρ)ρ′;the subsemigroupΩ(S)ofΛ(S)× P(S)consisting of all bitranslations is the translational hull of S.Specially,λaandρa(bǔ)are linked obviously,whereλax=ax and xρa(bǔ)=xa,for some a∈S.

        Throughout this paper,the symbol S denotes a Reesmatrix semigroup M(I,G,Λ;P),where G is a group with identity e and P=(pλi)is the sandwichmatrix.The elements of S are denoted by(i,g,λ),where i∈I,g∈G andλ∈Λ.Let J?I and M?Λ.The symbol SJ×Mdenotes the subset{(i,g,λ)∈S:i∈J,g∈G,λ∈ M}of S.The setof idempotents of a semigroup S is denoted by E(S).An idempotent(i,λ)of S is denoted by eiλ.Let J?I and M?Λ.Then the symbol EJ×Mdenotes the subset{eiλ∈E(S):i∈J,λ∈M}of E (S).

        Notation 1.1[5]In this section,we set S=M(I,G,Λ;P)with P normalized at1∈I∩Λ.Let

        with multiplication(F,g,Φ)(F′,g′,Φ′)=(FF′,gp1Φ,F(xiàn)′1g′,ΦΦ′),where J′(I)is the set of allmaps in I and J(Λ)is the set of allmaps inΛ.

        Lemma 1.1[5]Let S=M(I,G,Λ;P)with P normalized,and let e be the identity of G.Define amappingσby

        where F,g andΦare defined by the requirements

        Further,we define amappingτby

        whereλandρa(bǔ)re defined by the formulae

        Thenσandτaremutually inverse isomorphisms betweenΩ(S)and T(S).Moreover

        In this paper,we use the triple(F,g,Φ)to describe the Green′s relations and inner bitranslations of completely simple semigroups.Let a∈S and P be a Green′s relation,the symbol Padenotes the P-class of S containing a.

        The reader is refered to[5-7]for definitions and symbols notmentioned here.

        2 Bitranslations of completely simple semigroups

        Let i,j∈I,λ,μ∈Λ,and set

        Then it is easy to verify the following results.

        Lemma 2.1Let S be a completely simple semigroup.The following conditions are equivalent:

        (1)qλμij=e,

        (2)rλμij=e,

        (3)E{i,j}×{λ,μ}is a subband of S.

        Proposition 2.1Let(F,g,Φ)∈T(S).Then for any i,j∈I,λ,μ∈Λ,we have

        Similarly,(2)can be proved.

        The converse part is easy to see.

        LetιI,ιΛbe the identitymappings on I,Λ.Then we have the following corollary.

        Corollary 2.2The identity of T(S)is(ιI,e,ιΛ).

        3 Some applications

        A semigroup S is an inflation of a semigroup K if K is a subsemigroup of S and there is amappingφ*of S into K such that

        Let Q be a partial semigroup and K=M(I,G,Λ;P)be a Reesmatrix semigroup over a group G,such that Q∩K=?.Letξ:p|→i be amapping from Q into I on the left,η:pλbe amapping from Q intoΛon the right andφ:p|→g be amapping from Q into G on the right side.

        Let us define amultiplication on S=Q∪K with

        (4)pq=(ξ(p),(p)φp(p)η,ξ(q)(q)φ,(q)η), for all p,q∈Q;g,h∈G;i,j∈I andλ,μ∈Λ.Then S with themultiplication defined above will be denoted by M(I,G,Λ;P;Q;φ,ξ,η).

        Lemma 3.1M(I,G,Λ;P;Q;φ,ξ,η)is a semigroup.

        ProofIt is clear that themultiplication iswell defined.

        The other cases can be proved similarly.So M(I,G,Λ;P;Q;φ,ξ,η)is a semigroup.

        Theorem 3.1S is an inflation of a completely simple semigroup K if and only if S is isomorphic to some M(I,G,Λ;P;Q;φ,ξ,η),where K=M(I,G,Λ;P).

        ProofLet S be an inflation of a completely simple semigroup K.Then the Reesmatrix semigroup K is the kernel of S,and Q=S\K is a partial semigroup.For any p∈Q and(j,h,μ)∈K,ifφ*(p)=(i,g,λ),we have

        Hence we get S=M(I,G,Λ;P;Q;φ,ξ,η).

        Conversely,if S=M(I,G,Λ;P;Q;φ,ξ,η),by Lemma 3. 1,S is a semigroup and K=M(I,G,Λ;P)is the kernel of S.Define amappingφ*:SK satisfying that

        (1)for any(i,g,λ)∈K,φ*(i,g,λ)=(i,g,λ),

        (2)for any p∈Q,φ*p=(ξ(p),(p)φ,(p)η).

        Sinceξ,φ,ηaremappings,soφ*iswell defined.

        For any(i,g,λ),(j,h,μ)∈K,p,q∈Q,we have

        Hence,S is an inflation of the completely simple semigroup M(I,G,Λ;P).

        Theorem 3.2

        [1] LALLEMENT G.Demi-groups reguliers[J].Ann Mat Pura Appl, 1967,77:47-129.

        [2] PETRICH M.The translational hull of a completely 0-simple semigroup[J].Glasgow Math, 1968,9:1-11.

        [3] PETRICH M.The structure of completely regular semigroups[J].TAMS, 1974,189:221-236.

        [4] SONG G T,ZHANG JG,LIU G X.Bitranslations of Completely Simple Semigroups[J].Southest Asion Bulletion ofMathematics, 2006,30:107-122.

        [5] PETRICH M,REILLY N.Completely Regular semigroups[M].New york:John Weley&Sonc INC,1999.

        [6] HOWIE JM.Fundamentals of Semigroup Theory[M].Oxford:Oxford University Press Inc,1995.

        [7] STOJAN BOGANOVIC.Semigroupswith a System of Subsemigroups[M].Novi Sad:University of Novi sad Institude of Mathematic,1985.

        (責(zé)任編輯:馮珍珍)

        完全單半群的平移包及其應(yīng)用

        楊禹慧,張建剛

        (上海師范大學(xué)數(shù)理學(xué)院,上海200234)

        利用Petrich M.關(guān)于完全單半群的平移包的表示進(jìn)一步研究了完全單半群平移包的性質(zhì).作為應(yīng)用,給出了完全單半群膨脹的結(jié)構(gòu)和它們之間的同構(gòu).

        完全單半群;平移包;膨脹

        O 152.7

        A

        1000-5137(2013)02-0111-09

        Received date:2013-01-12

        Foundation item:National Natural Science Foundation of China( 11201305,11001046);Innovation Projectof Shanghai Education Committee(12YZ081)

        Biography:YANG Yuhui(1987-),female,graduate student,College of Mathematics and Sciences,Shanghai Normal University;ZHANG Jiangang(1977-),male,associate professor,College ofMathematics and Sciences,ShanghaiNormal University.

        猜你喜歡
        數(shù)理上海師范大學(xué)同構(gòu)
        踐行“德融數(shù)理” 打造“行知樂園”
        中國德育(2022年12期)2022-08-22 06:17:24
        苗語典型存在動(dòng)詞初探
        巧用同構(gòu)法解決壓軸題
        指對(duì)同構(gòu)法巧妙處理導(dǎo)數(shù)題
        同構(gòu)式——解決ex、ln x混合型試題最高效的工具
        高等代數(shù)教學(xué)中關(guān)于同構(gòu)的注記
        發(fā)展教育,讓每一位師生都得到充分和諧的發(fā)展——上海師范大學(xué)附屬中學(xué)
        數(shù)理:多少人吃飯
        孩子(2019年9期)2019-11-07 01:35:49
        上海師范大學(xué)學(xué)生篆刻作品入選全國大展
        最天然呆筆記 誰說數(shù)理就一定枯燥艱深?
        99蜜桃在线观看免费视频| 亚洲在AV极品无码天堂手机版| 国产成人亚洲精品77| 激情在线视频一区二区三区| 亚洲三级视频一区二区三区| 国产激情综合在线观看| 国产亚洲精久久久久久无码77777| 欧美1区二区三区公司| sm免费人成虐漫画网站| 中文字幕在线日亚州9| 老湿机香蕉久久久久久| 日本精品一区二区三本中文| 美女福利视频在线观看网址| 久久婷婷五月综合色高清| 精品人妻伦九区久久aaa片69| 欧美xxxx新一区二区三区 | 欧洲人体一区二区三区| av新型国产在线资源| а√天堂8资源中文在线| 亚洲精品国产第一区二区尤物| 久久99精品久久久久九色 | 亚洲AV无码永久在线观看| av成人资源在线观看| 极品少妇被黑人白浆直流| 玩弄少妇高潮ⅹxxxyw| 国产欧美曰韩一区二区三区| 女同在线网站免费观看| 日本少妇浓毛bbwbbwbbw| 一卡二卡三卡视频| av黄片免费在线观看| 人妻制服丝袜中文字幕| 2018国产精华国产精品| 国产一区二区三区小说| 亚洲av大片在线免费观看| 国产欧美日韩va另类在线播放| 狠狠躁夜夜躁人人爽天天不卡软件| 中文亚洲成a人片在线观看| 91精品国产乱码久久中文| 午夜性无码专区| 天天干夜夜躁| 精品一区二区三区a桃蜜|