劉變枝朱曉鳴韓 冬楊云霞金俊琰解綬啟
(1.中國科學院水生生物研究所, 淡水生態(tài)與生物技術(shù)國家重點實驗室, 武漢 430072; 2.河南農(nóng)業(yè)大學牧醫(yī)工程學院, 鄭州 450002)
劉變枝1,2朱曉鳴1韓 冬1楊云霞1金俊琰1解綬啟1
(1.中國科學院水生生物研究所, 淡水生態(tài)與生物技術(shù)國家重點實驗室, 武漢 430072; 2.河南農(nóng)業(yè)大學牧醫(yī)工程學院, 鄭州 450002)
以長吻仔魚為實驗對象, 探討不同投喂水平對7—14日齡階段和21—29日齡階段的長吻仔稚魚存活、生長以及魚體組成的影響。7—14日齡階段設(shè)計6個投喂水平, 分別為: 20、30、40、50、60和70 % IBW/d(IBW: initial body weight); 21—29日齡階段設(shè)計6個投喂水平: 10、20、30、40、50、60 % IBW/d。實驗結(jié)果表明: (1)投喂水平顯著影響長吻仔稚魚的存活和生長(P<0.05)。7—14日齡階段, 投喂水平為30%—60% IBW/d處理組的仔魚存活率顯著高于20%與70 % IBW/d投喂組(P<0.05)。特定生長率隨投喂水平的增加顯著上升, 以60% IBW/d投喂組最高(P<0.05)。21—29日齡期間, 10% IBW/d投喂組存活率顯著低于50% IBW/d投喂組(P<0.05), 特定生長率(SGR)則顯著低于其他各處理組(P<0.05); (2)魚體體長體重變異系數(shù)未受投喂水平的顯著影響。魚體產(chǎn)出與飼料投入之比、魚體水分含量隨投喂水平升高顯著下降(P<0.05),粗蛋白含量則顯著上升(P<0.05); 粗脂肪和粗灰分含量無顯著差異; (3)分別通過存活率和投喂水平做一元二次回歸、特定生長率與投喂水平做折線回歸得到7—14日齡階段的仔魚最適投喂水平為43 % IBW/d; 通過仔魚存活率和特定生長率與飼料投喂水平做折線回歸得到21—29日齡階段的仔魚最適投喂水平分別為30.62% IBW/d和28.41% IBW/d。
長吻; 投喂水平; 仔稚魚; 生長
投喂水平、水溫和魚體大小是影響魚體生長最主要的三個因素[1]。魚體的生長、飼料轉(zhuǎn)化效率、營養(yǎng)物質(zhì)的儲積、魚體的化學組成等均受到投喂水平的影響[2—7]。魚類對營養(yǎng)物質(zhì)的需求也受投喂水平的影響[8,9]。投餌不足危害魚類的健康[6]或者減緩生長[5,10,11], 過量投喂則增加魚體胃腸道的負擔, 降低消化和吸收的效率[12], 從而降低飼料的利用率[5,6]。合適的投喂水平能夠使得飼料的利用最大化, 減少飼料浪費, 降低水體污染和養(yǎng)殖成本。最適投喂水平因魚規(guī)格的大小、水溫、投喂策略和養(yǎng)殖條件的不同而不同[6,13,14]。相對于成魚而言, 仔魚一方面需要充足的食物來滿足正常生長和發(fā)育, 另一方面更容易遭受投餌過度、或者投餌不足所造成的影響,從而影響苗種產(chǎn)出率。目前, 在長吻苗種培育中,長吻幼魚體重、水溫、投喂水平對其生長的影響本實驗室已有所研究[15,16], 而關(guān)于長吻仔魚最適投喂水平的研究尚未見報道。本文旨在研究投喂微顆粒飼料的情況下, 不同投喂水平對長吻仔魚生長、存活以及魚體組成的影響。
1.1 實驗魚和飼養(yǎng)條件
實驗在室內(nèi)循環(huán)水養(yǎng)殖系統(tǒng)內(nèi)進行, 系統(tǒng)有27個圓形平底玻璃纖維缸組成(直徑: 70 cm, 容積: 90 L)。實驗缸底部出水口處包有一絹篩(孔徑550 mm),用以防止仔魚逃逸。因魚類仔魚階段生長速度較快,短期內(nèi)體重變化較大, 為方便管理以及保證以初始體重為表述的投喂水平結(jié)果的真實性, 我們對長吻仔魚期最適投喂水平的需求進行分階段實驗: 實驗用仔魚于6日齡時由石首長吻良種場運回本所,一部分放入暫養(yǎng)缸內(nèi)暫養(yǎng)(110 L水體, 作為二期實驗用魚)。一部分直接入實驗缸進行一期實驗(7—14 dph, days post hatching), 養(yǎng)殖密度為500尾/缸。同時隨機取樣20組魚(每組10尾), 瀝干水分稱重, 用以計算初始平均體重 (約9.8 mg)。二期(21—29 dph)實驗用魚于20日齡時轉(zhuǎn)入實驗系統(tǒng), 每缸放置200尾。同時隨機取樣150尾魚, 瀝干水分稱重, 用以計算初始平均體重(約42 mg)。兩期實驗的投喂環(huán)境和投喂條件相同。
每期實驗均設(shè)6個投喂水平(表1), 一期: 20、30、40、50、60、70% IBW/d; 二期: 10、20、30、40、50、60% IBW/d。每個處理4個重復。實驗期間每天投喂三次(09: 00; 13: 00; 17: 00)。每次投喂量約為總投喂量的1/3。每次連續(xù)投喂1h, 用以減少微顆粒飼料在水中的營養(yǎng)流失, 同時保證仔魚能夠較好的攝食。1h后, 未被攝食的飼料、死魚和糞便用虹吸管及時移出。
每期實驗結(jié)束時, 計數(shù)每缸魚數(shù)量, 整缸魚瀝干水分稱重, 用于計算魚體終末平均體重。同時, 每缸隨機取樣10尾, 濾紙吸干水分后, 單尾測量體重體長, 計算終末變異系數(shù)。取樣后魚樣入?20℃冰箱保存, 用于體成分分析。
實驗期間連續(xù)充氣, 每天兩次測定并記錄水溫、余氯和pH, 每周檢測一次氨氮和溶氧含量。實驗缸水流調(diào)整至(500 mL/min), 光亮周期為08: 00—21: 00, 氨氮≤0.5 mg/L, 水體溶氧≥5 mg/L, pH保持在7.0—7.2。
1.2 實驗飼料
實驗用飼料為武漢市高龍飼料有限公司生產(chǎn)的100#稚甲配合飼料粉料。飼料蛋白含量52.25%、脂肪含量為5.23%。將粉料加水, 用手揉搓成顆粒狀,然后過篩分級, 制成粒徑在40到60目之間(投喂7—14日齡階段仔魚)和40到30目之間(21—29日齡階段仔魚)的顆粒。放入?20℃冰箱中待用。實驗飼料在水中的穩(wěn)定性較好, 投喂后先在水面分散, 然后慢慢下沉, 有利于魚苗充分攝食。
1.3 樣品測定方法
樣品用冷凍干燥機干燥, 然后在碾缽內(nèi)充分研磨成粉狀用于魚體成分測定。實驗魚體樣品的干物質(zhì)、粗蛋白、粗脂肪、灰分的測定均參照AOAC(1984)的方法。干物質(zhì)含量通過在105℃下烘烤至恒重測得。粗蛋白含量用凱氏定氮儀(2300 Kjeltec Analyzer Unit, FOSS TECATOR, Sweden)測定; 粗脂肪用氯仿-甲醇抽提法測得; 灰分在馬福爐中550℃下充分灼燒測得。
1.4 統(tǒng)計方法
實驗魚的存活率(Survival)、特定生長率(Specific growth rate, SGR)、終末體重變異系數(shù)Coefficient of variation for final body wet weight, CVBWW)、終末體長變異系數(shù)(Coefficient of variation for final body length, CVBL)計算公式如下:
存活率(Survival, %)=100×終末存活/初始魚數(shù)
特定生長率(SGR, %/d)=100×[(ln魚體末重)?(ln魚體初重)]/天數(shù)
終末體重變異系數(shù)(CVBWW)=標準差體重/平均值體重
終末體長變異系數(shù)(CVBL)=標準差體長/平均值體長
所有實驗結(jié)果均采用Statistica 6.0軟件進行分析。齊性檢驗(Homogeneity of variances)后做一元方差分析(One-way ANOVA), P<0.05為差異顯著。若結(jié)果顯著再進行鄧肯多重比較(Duncan’s multiple range test)。
2.1 存活、生長和魚體組成
表1 實驗設(shè)計和實驗條件Tab.1 The experimental design and rearing conditions
7—14日齡階段, 特定生長率隨投喂水平增加顯著上升, 以60% IBW/d投喂組最高(圖1B, P< 0.05)。21—29日齡階段, 特定生長率以10% IBW/d投喂組最低(圖1B, P<0.05), 其他各處理組間隨投喂水平增加而增加, 但無顯著差異(P>0.05)。
在本實驗中, 仔魚魚體分化未受投喂水平顯著影響(表2, P<0.05)。各期仔魚魚體產(chǎn)出與飼料投入之比隨投喂水平升高顯著下降 (圖2, P<0.05)。
魚體水分、蛋白顯著受投喂水平的影響(P<0.05),脂肪和灰分含量在各處理間無顯著性差異(表3、表4, P>0.05)。7—14日齡階段仔魚(表3)魚體水分含量隨投喂水平增加而上升, 以70% IBW/d投喂組最高,顯著高于20% IBW/d處理組(P<0.05)。粗蛋白含量以60%和70% IBW/d投喂組最高, 顯著高于10%和20% IBW/d處理組(P<0.05)。21—29日齡階段仔魚(表4)投喂10% IBW/d投喂組仔魚魚體水分、粗蛋白含量均顯著低于其他處理組(P<0.05)。
圖1 不同投喂水平對長吻仔稚魚存活率和特定生長率的影響(平均值±標準誤)Fig.1 Survival rate and growth of Chinese longsnout catfish larvae at different feeding levels (mean±SE)
圖2 單位飼料魚體產(chǎn)出比值Fig.2 Ratio of weight gain and feed consumption in Chinese longsnout catfish larvae fed at different feeding levels (mean±SE)
2.2 最適投喂水平
7—14日齡階段 將7—14日齡段仔稚魚存活率和投喂水平做二次回歸得到存活率與飼料投喂水平的關(guān)系為: y=?0.022x2+1.905x+21.96 (R2=0.766, n=6, P<0.05) 其中y表示為7—14日齡長吻仔稚魚的存活率, x表示為飼料投喂水平。二者曲線關(guān)系(圖3), 曲線最高處對應的飼料投喂水平為43.29% IBW/d, 表明滿足7—14日齡仔魚最大存活的飼料投喂水平為43.29% IBW/d。
將7—14日齡仔魚各處理組的特定生長率與飼料投喂水平做折線回歸(Broken-line regression), 得到特定生長率和飼料投喂水平之間的關(guān)系如下: 1.y= 0.09x+12.59 R2=0.932, n=5, P<0.05 (20 21—29日齡階段 將21—29日齡仔魚各處理組的存活率與飼料投喂水平做折線回歸(Brokenline regression), 得到存活率和飼料投喂水平之間的關(guān)系如下: 1.y=0.462x+38.95 R2=0.993, n= 3, P<0.05 (10 表2 不同投喂水平對長吻仔魚體長、體重分化的影響(平均值±標準誤)Tab.2 The dispersion of growth and length in Chinese longsount catfish larvae at different feeding levels(Mean±SE) 表2 不同投喂水平對長吻仔魚體長、體重分化的影響(平均值±標準誤)Tab.2 The dispersion of growth and length in Chinese longsount catfish larvae at different feeding levels(Mean±SE) 注: 1.CVBWW終末體重變異系數(shù)Coefficient of variation of final body weight; 2.CVBL終末體長變異系數(shù): Coefficient of variation of final body length 投喂水平Feeding level仔魚日齡7—14 dph仔魚日齡21—29 dph (% IBW/d) 終末體重變異系數(shù)1CVBWW投喂水平Feeding level (% IBW/d) 終末體重變異系數(shù)1CVBWW終末體長變異系數(shù)2CBL 20 0.21±0.02 10 0.41±0.03 0.13±0.01 30 0.10±0.06 20 0.43±0.05 0.15±0.01 40 0.20±0.03 30 0.39±0.06 0.11±0.02 50 0.18±0.04 40 0.32±0.04 0.11±0.01 60 0.27±0.04 50 0.40±0.04 0.14±0.01 70 0.41±0.26 60 0.35±0.04 0.11±0.01 表3 不同投喂水平對7—14日齡階段長吻仔稚魚體組成的影響(%濕重)(平均值±標準誤)*Tab.3 Effects of feeding level on body composition in Chinese longsnout catfish larvae of 7—14dph fed with microdiet(% wet weight)(Mean±SE) 表3 不同投喂水平對7—14日齡階段長吻仔稚魚體組成的影響(%濕重)(平均值±標準誤)*Tab.3 Effects of feeding level on body composition in Chinese longsnout catfish larvae of 7—14dph fed with microdiet(% wet weight)(Mean±SE) 注:*表中同列數(shù)值后不同的字母上標代表差異顯著(n=4, P<0.05)Note: Means with different superscripts in the same column are significantly different (n=4, P<0.05) 7—14dph投喂水平Feeding level (% IBW/d) 水Moisture 粗蛋白Protein 粗脂肪Fatty 灰分Ash 20 91.69±0.27a5.54±0.16a1.63±0.07 0.82±0.08 30 91.54±0.40ab5.62±0.28a1.61±0.08 0.84±0.07 40 90.90±0.46ab6.30±0.09ab1.58±0.05 0.98±0.06 50 90.92±0.18ab6.03±0.11ab1.12±0.57 0.99±0.03 60 90.83±0.35ab6.02±0.23b1.68±0.07 1.01±0.06 70 90.52±0.24b6.45±0.22b1.82±0.09 0.92±0.06 表4 不同投喂水平對21—29日齡階段長吻仔稚魚體組成的影響(%濕重)(平均值±標準誤)*Tab.4 Effects of feeding level on body composition in Chinese longsnout catfish larvae of 21—29dph (% wet weight) (mean±SE) 表4 不同投喂水平對21—29日齡階段長吻仔稚魚體組成的影響(%濕重)(平均值±標準誤)*Tab.4 Effects of feeding level on body composition in Chinese longsnout catfish larvae of 21—29dph (% wet weight) (mean±SE) 注:*表中同列數(shù)值后不同的字母上標代表差異顯著(n=4, P<0.05)Note: Means with different superscripts in the same column are significantly different (n=4, P<0.05) 投喂水平Feeding level (% IBW/d) 水分Moisture 粗蛋白Protein 粗脂肪Fatty 灰分Ash 21—29 dph 10 90.64±0.56a6.24±0.34a1.52±0.19 1.37±0.09 20 88.86±0.57b7.49±0.38b1.21±0.40 1.19±0.20 30 89.17±0.29b7.35±0.21b1.61±0.06 1.42±0.07 40 88.82±0.28b7.45±0.19b1.41±0.48 1.45±0.03 50 88.67±0.51b7.49±0.36b1.80±0.04 1.46±0.07 60 88.77±0.38b7.47±0.24b1.83±0.20 1.45±0.05 圖3 投喂水平對7—14日齡長吻仔稚魚存活率的影響Fig.3 Effect of feeding level on the survival rate of 7—14dph larvae 圖4 投喂水平對7—14日齡段仔魚特定生長率的影響Fig.4 Effect of feeding level on specific growth rate (SGR) of 7—14dph larvae 圖5 投喂水平對21—29日齡段仔魚存活率的影響Fig.5 Effect of feeding level on the survival rate of 21—29dph larvae 圖6 投喂水平對21—29日齡段仔魚特定生長率的影響Fig.6 Effect of feeding level on specific growth rate (SGR) of 21—29dph larvae 在本實驗中, 隨著飼料投喂水平的增加魚體水分顯著降低、粗蛋白含量顯著升高。粗脂肪含量隨著投喂水平的增加而上升, 但各處理組間無顯著的差異。投喂水平對魚體成分的影響在很多文獻中已經(jīng)報道[3,6,14,25—32]。投喂水平的升高導致魚體水分降低、脂肪水平升高[3,6]。Ahmed[33]報道高投喂水平組囊鰓鲇的體蛋白含量顯著高于低投喂水平組, 體脂肪含量隨投喂水平增加直線上升, 水分含量則呈直線下降的趨勢。Gatlin, et al.[34]報道鯰魚稚魚魚體水分含量隨投喂水平增加而下降。Storebakken 和Austreng[7]認為魚體水分組成的變化與飼料投喂水平直接相關(guān)。在本實驗中, 各日齡階段仔魚的體蛋白和體脂肪含量均隨投喂水平增加而增加, 這種魚體蛋白和脂肪隨投喂水平增加而增加的趨勢和在虹鱒[6]、革胡子鲇[29]中的研究結(jié)果一致。Rasmussen 和Ostenfeld[35]也證明脂肪在高投喂水平下快速生長的魚體內(nèi)更容易沉積。在低投喂水平下, 盡管魚體能夠儲積較初始魚體含量多的體蛋白, 魚體脂肪沉積卻處在較低的水平, 這也正說明脂肪是魚體最先被動員的能量來源。這種在餌料不足的情況下, 脂肪最先被動員的現(xiàn)象在髙首鱘[5]、clariid catfish hybrid[30]、Clarias batrachus[36]的研究中得到了證實。有研究認為魚體灰分含量隨投喂水平的增加而降低[34], 在本實驗中未觀察到灰分與投喂水平之間的顯著關(guān)系, 可能是由于本實驗中樣本量較少, 測定誤差所致。 結(jié)合本實驗中存活率和特定生長率, 得出7—14日齡仔魚每天最適投喂水平范圍為: 43.1%—43.29%魚體初始濕重; 21—29日齡仔魚每天最適投喂水平分別為: 28.41%—30.62%魚體初始濕重。 [1] Brett J R.Environmental Factors and Growth [M].In: Hoar W S, Randall D J, Brett J R (Eds.), Fish Physiology.Academic Press, New York, USA.1979, 599—675 [2] Huisman E A.Food conversion efficiencies at maintenance, and production levels for carp.Cyprinus carpio L.and rainbow trout, Salmo gairdneri Richardson [J].Aquaculture, 1976, 22: 279—288 [3] Reinitz G.Relative effect of age, diet, and feeding rate on the body composition of young rainbow trout (Salmo gairdneri) [J].Aquaculture, 1983, 35: 19—27 [4] Henken A M, Kleingeld D W, Tijssen P A T.The effect of feeding level on apparent digestibility of dietary dry matter, crude protein and gross energy in the African catfish Clarias gariepinus (Burchell, 1822) [J].Aquaculture, 1985, 51(1): 1—11 [5] Hung S S O, Lutes P B.Optimum feeding rate of hatchery produced juvenile white sturgeon (Acipenser transmontanus) at 20℃ [J].Aquaculture, 1987, 65(3-4): 307–317 [6] Storebakken T, Austreng E.Ration level for salmonids.I.Growth, survival, body composition and feed conversion in Atlantic salmon fry and fingerlings [J].Aquaculture, 1987a, 60(3—4): 189—206 [7] Storebakken T, Austreng E.Ration level for salmonids.II.Growth, feed intake, protein digestibility, body composition, and feed conversion in rainbow trout weighing 0.5–1.0 kg [J].Aquaculture, 1987b, 60(3—4): 207—221 [8] Tacon A G J, Cowey B C.Protein and amino acid requirements [A].In: Tytler P, Calow P (Eds.), Fish Energtics: New Perspectives [C].The Johns Hopkins University Press, Baltimore, MD.1985, 155—183 [9] Talbot C.Laboratory methods in fish feeding and nutritional studies [A].In: Tytler P, Calow P (Eds.), Fish Energtics: New Perspectives [C].The Johns Hopkins University Press, Baltimore, MD.1985, 125—154 [10] Hung S SO, Lutes P B, Conte F S, et al.Growth and feed efficiency of white sturgeon (Acipenser transmontanus) sub-yearling at different feeding rates [J].Aquaculture, 1989, 80(1—2): 147—153 [11] Fontaine P, Gardeur J N, Kestemont P, et al.Influence of feeding level on growth, intraspecific weight variability and sexual growth dimorphism of Eurasian perch Perca fluviatilis L.reared in a recirculation system [J].Aquaculture, 1997, 157(1—2): 1—9 [12] Jobling M.Gastrointestinal overload—A problem with formulated feeds [J]? Aquaculture, 1986, 51(3—4): 257—263 [13] Hung S S O, Lutes P B, Shqueir A A, et al.Effect of feeding rate and water temperature on growth of juvenile white stur-geon (Acipenser transmontanus) [J].Aquaculture, 1993, 115(3—4): 297—303 [14] Ballestrazzi B, Lanari D, D’Agaro E.Performance, nutrient retention efficiency, total ammonia and reactive phosphorus excretion of growing European sea-bass (Dicntrarchus labrax, L.) as affected by diet processing and feeding level [J].Aquaculture, 1998, 161(1—4): 55—65 [15] Han D.Modeling for feeding system and pollution evaluation in Chinese longsnout catfish.PHD.Thesis.Institute of Hydrobiology, Chinese Academy of Sciences.Wuhan.2005 [韓冬.長吻投喂管理和污染評估動態(tài)模型的研究.中國科學院水生生物研究所博士學位論文.武漢.2005] [16] Liu H Y, Lei W, Zhu X M, et al.Effects of different dietary vitaminC levels on Chinese longsnout catfish (Leiocassis longirostris Günther) [J].Acta Hydrobiologica Sinica, 2009, 33(4): 681—689 [劉海燕, 雷武, 朱曉鳴, 等.飼料中不同維生素C含量對長吻的影響.水生生物學報, 2009, 33(4): 681—689] [17] Chambers R C, Leggett W C, Brown J A.Egg Size, Female Effects, and the Correlations Between Early Life History Traits of Capelin, Mallotus villosus: An Appraisal at the Individual Level [J].Fishery Bulletin, 1989, 87: 515—523 [18] Berkeley S A, Chapman C, Sogard S M.Age as a determinant of larval growth and survival in a marine fish.Sebastes melanops [J].Ecology, 2004, 85(5): 1258—1264 [19] Gisbert E, Williot P, Castello′-Orvay F.Influence of egg size on growth and survival of early stages of Siberian sturgeon (A.baeri) larvae under small scale hatchery conditions [J].Aquaculture, 2000, 183(1—2): 83—94 [20] Herold M A.Lipid Nutrition in White Sturgeon (Acipenser transmontanus) Larvae During Ontogeny.PhD Thesis, University of California, Davis.1996 [21] Deng D F, Koshio S, Yokoyama S, et al.Effects of feeding rate on growth performance of white sturgeon (Acipenser transmontanus) larvae [J].Aquaculture, 2003, 217(1—4): 589—598 [22] Staples D J, Nomura M.Influence of body size and food ration on the energy budget of rainbow trout, Salmo gairdneri, Richardson [J].Journal of Fish Biology, 1976, 9(1): 29—43 [23] Wurtsbaugh W A, Davis G E.Effects of temperature and ration level on the growth and food conversion efficiency of Salmo gairdneri, Richardson [J].Journal of Fish Biology, 1977a, 11(2): 87—98 [24] Wurtsbaugh, W A, Davis, G E.Effects of fish size and ration level on the growth and food conversion efficiency of rainbow trout, Salmo gairdneri, Richardson [J].Journal of Fish Biology, 1977b, 11(2): 99—104 [25] Du Z Y, Liu Y J, Tian L X, et al.The influence of feeding rate on growth, feed efficiency and body composition of juvenile grass carp (Ctenopharyngodon idella) [J].Aquaculture International, 2006, 14(3): 247—257 [26] Parazo M M.Effect of dietary protein and energy level on growth, protein utilization and carcass composition of rabbitfish, Siganus guttatus [J].Aquaculture, 1990, 86(1): 41—49 [27] Lovell R T.Comparison of satiate feeding and restricted feeding in channel catfish with various concentrations of dietary proteins in production ponds [J].Aquaculture, 1992, 103(2): 165—175 [28] Jobling M, Baardvik B M.The influence of environmental manipulation on inter- and intra-individual variation in food acquisition and growth performance of Arctic charr, Salvelinus alpines [J].Journal of Fish Biology, 1994, 44(6): 1069—1087 [29] Panda S, Mishra K, Samantaray K.Effect of feeding rate on the growth performance of Channa punctatus (Bloch) fry, and protein and energy requirement for their maintenance and maximum growth [J].Journal of Aquaculture, 1999, 7: 37—42 [30] Adebayo O T, Balogun A M, Fagbenro O A.Effect of feeding rates on growth, body composition and economic performance of juvenile clariid catfish hybrid (Clarias gariepinus × Heterobranchus bidorsalis) [J].Journal of Aquaculture in the Tropics, 2000, 15(2): 109—117 [31] Khan M A, Ahmed I, Abidi S F.Effect of ration size on growth, conversion efficiency and body composition of fingerling mrigal, Cirrhinus mrigala (Hamilton) [J].Aquaculture Nutrition, 2004, 10(1): 47—53 [32] Ahmed I.Effect of ration size on growth, body composition, and energy and protein maintenance requirement of fingerling Indian major carp, Labeo rohita (Hamilton) [J].Fish Physiology and Biochemistry, 2007, 33(3): 203—212 [33] Ahmed I.Response to the ration levels on growth, body composition, energy, and protein maintenance requirement of the Indian catfish (Clarias gariepinus—Bloch 1974) [J].Fish Physiology and Biochemistry, 2010, 36(4): 1133—1143 [34] Gatlin D M III, Poe W E, Wilson R P.Protein and energy requirements of fingerling channel catfish for maintenance and maximum growth [J].The Journal of Nutrition, 1986, 116(11): 2121—2131 [35] Rasmussen R S, Ostenfeld T H.Effect of growth rate on quality traits and feed utilization of rainbow trout (Oncorhynchus mykiss) and brook trout (Salvelinus fontinalis) [J].Aquaculture, 2000, 184(3—4): 327—337 [36] Hassan M A, Jafri A K.Optimum feeding rate, and energy and protein maintenance requirements of young Clarias batrachus (L.), a cultivable catfish species [J].Aquaculture Research, 1994, 25(4): 427—438 EFFECTS OF FEEDING LEVEL ON GROWTH PERFORMANCE OF CHINESE LONGSNOUT CATFISH (LEIOCASSIS LONGIROSTRIS GüNTHER) LARVAE LIU Bian-Zhi1,2, ZHU Xiao-Ming1, HAN Dong1, YANG Yun-Xia1, JIN Jun-Yan1and XIE Shou-Qi1 Chinese longsnout catfish, Leiocassis longirostris Günther is a high value aquaculture species in China.This study was carried out to investigate the optimal feeding level on the growth, survival, body composition, coefficient of variation of body wet weight and body length for Chinese longsnout catfish larvae of 7—14 dph and 21—29 dph, and for a need to determine the optimal feeding level in the commercial larviculture operations.Six feeding levels of 20, 30, 40, 50, 60 and 70% initial body weight (IBW)/d for 7—14 dph larvae, and 10, 20, 30, 40, 50 and 60% IBW/d for 21—29 dph larvae were adopted, respectively.The results showed that growth performance and survival rate was significantly higher in 7—14 dph larvae fed at the feeding levels of 30%—60% IBW/d than 20% and 70% IBW/d (P<0.05).Specific growth rate (SGR) increased with the increasing feeding levels and reached the highest level at the 60% IBW/d group (P<0.05).For 21—29 dph larvae, the survival rate and SGR were significantly lower in the 10% IBW/d group than in the 50% IBW/d group (P<0.05).In both trials, differentiations of body wet weight and body length in larvae were not affected by the feeding level (P>0.05).Body crude fat and ash content were also not affected by the different feeding level.Ratio of weight gain to feed consumption and body moisture contents in larvae significantly decreased while body protein contents increased with the increasing feeding levels (P<0.05).Based on quadratic linear regression analysis of survival rate and broken line analysis of SGR in relation to the feeding level, the optimal feeding level for 7—14 dph larvae was 43% IBW/d.Based on the broken line analysis between the survival rate or specific growth rate and the feeding level, the optimal feeding levels for 21—29 dph larvae were 30.62% IBW/d and 28.41% IBW/d, respectively. Leiocassis longirostris Günther; Feeding level; Larvae; Growth performance S965 A 1000-3207(2013)02-0261-08 10.7541/2013.13 2011-12-05; 2012-10-31 現(xiàn)代農(nóng)業(yè)產(chǎn)業(yè)技術(shù)體系建設(shè)專項資金(CARS-46-19); 公益性行業(yè)(農(nóng)業(yè))專項“水產(chǎn)養(yǎng)殖動物營養(yǎng)需求與高效配合飼料開發(fā)(201003020)資助 劉變枝(1981-), 女, 河南開封人; 博士研究生; 研究方向為魚類生理生態(tài)學。E-mail: liubianzhi@126.com 解綬啟, E-mail: sqxie@ihb.ac.cn3 討論
4 小結(jié)
(1.State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; 2.Henan Agricultural University, College of Animal Science and Veterinary Medicine, Zhengzhou 450002)