黃召亞 張 東 譚昭怡
(中國(guó)工程物理研究院核物理與化學(xué)研究所 綿陽(yáng) 621900)
沉淀法制備磷鉬酸銨及其對(duì)Cs+的吸附特性研究
黃召亞 張 東 譚昭怡
(中國(guó)工程物理研究院核物理與化學(xué)研究所 綿陽(yáng) 621900)
采用兩種沉淀方法合成了磷鉬酸銨(Ammonium Molybdophosphate, AMP, (NH4)3P(Mo3O10)4·xH2O),通過(guò)XRD和FT-IR等手段對(duì)其進(jìn)行了表征和比較,獲得了具有理想純度的AMP;研究了溫度、時(shí)間、競(jìng)爭(zhēng)離子等條件對(duì)AMP吸附Cs+的影響。結(jié)果顯示,AMP對(duì)Cs+的吸附在10 min即可達(dá)到動(dòng)態(tài)平衡;Cs+在AMP上的吸附過(guò)程可很好地用準(zhǔn)二級(jí)動(dòng)力學(xué)方程描述(R2>0.999);Na+、K+的存在對(duì)吸附容量有明顯影響,其中K+的競(jìng)爭(zhēng)作用更為明顯,表明AMP對(duì)Cs的吸附為Cs+與[NH4]+的離子交換過(guò)程。
AMP, Cs+, 吸附
隨著核工業(yè)、核技術(shù)的發(fā)展及核能的開(kāi)發(fā)利用,產(chǎn)生了大量放射性廢液(水)。137Cs是高放廢液中半衰期較長(zhǎng)(T1/2=30 a)的高釋熱裂變產(chǎn)物核素,在對(duì)放射性廢液(水)最終處置前將其去除是必不可少的環(huán)節(jié)。離子交換和吸附法是目前國(guó)內(nèi)外去除溶液中Cs+的主要方法[1,2],沸石、多價(jià)金屬磷酸鹽、雜多酸鹽、不溶性亞鐵氰化物、硅鈦酸鹽等無(wú)機(jī)離子交換劑由于其對(duì)Cs+的高選擇性、高吸附容量和良好的穩(wěn)定性而受到廣泛關(guān)注[3–8]。
AMP是具有Keggin結(jié)構(gòu)的典型十二鉬磷雜多酸鹽,基本結(jié)構(gòu)是四組三個(gè)鉬氧八面體,每一組中三個(gè)鉬氧八面體共用頂角上的氧原子,結(jié)合成Mo3O10單元,[NH4]+位于其結(jié)構(gòu)的空隙中。Archer等[9,10]利用水熱法合成了AMP,并研究其在弱酸溶液中的溶解度和雜多酸銨鹽的陽(yáng)離子交換性能。其合成過(guò)程比較復(fù)雜,且受當(dāng)時(shí)表征手段的限制。Lehto[11]研究了多種離子在AMP上的吸附和分離,發(fā)現(xiàn)AMP對(duì)Cs的吸附容量約為1.0 mmol/g,由此推測(cè)形成了Cs2NH4PMo12O40,文獻(xiàn)[12]對(duì)此進(jìn)行了驗(yàn)證。田國(guó)新等[13]合成了更適于柱操作的AMP粒狀結(jié)晶,但其對(duì)Cs+的靜態(tài)和動(dòng)態(tài)交換性能僅為0.63和0.55 mmol/g。為進(jìn)一步研究和驗(yàn)證AMP對(duì)Cs+的吸附特性及吸附機(jī)理,本文采用兩種沉淀方法制備了AMP,并通過(guò)XRD和FTIR表征和分析,得到理想的AMP。在此基礎(chǔ)上,研究了其對(duì)溶液中Cs+的吸附行為及溫度、吸附時(shí)間和競(jìng)爭(zhēng)陽(yáng)離子等對(duì)吸附過(guò)程的影響。
1.1試劑與儀器
(NH4)6Mo7O24·4H2O、K4P2O7·3H2O、CsCl、NaCl、KCl等所用試劑均為分析純,實(shí)驗(yàn)用水為去離子水。
主要儀器:Mettler-Toledo SevenMult精密酸度計(jì)(瑞士Mettler-Toledo公司生產(chǎn));AA700原子吸收光譜儀(美國(guó)PerkinElmer公司生產(chǎn));X'Pert Pro MPD X射線衍射儀(荷蘭Philips公司生產(chǎn));Nicolet 6700紅外光譜儀(美國(guó)Thermo Fisher Scientific公司生產(chǎn))。
1.2 AMP的制備
AMP-1:將0.025 mol (NH4)6Mo7O24·4H2O溶于180 mL去離子水中;在溶液中緩慢滴加30 mL含有0.0125 mol K4P2O7·3H2O的溶液,邊加邊攪拌;在混合溶液中滴加濃HNO3至沉淀完全后繼續(xù)攪拌1 h,陳化18 h后過(guò)濾出沉淀,分別用1 mol/L HNO3和去離子水洗滌,在(40±1)oC下干燥。
AMP-2:將0.018 mol (NH4)6Mo7O24·4H2O溶于300 mL去離子水中;在溶液中緩慢滴加7.5 mL 2 mol/L 的H3PO4,邊加邊攪拌;用濃HNO3調(diào)節(jié)混合溶液的pH至1,出現(xiàn)黃色沉淀,在室溫下持續(xù)攪拌1.5 h后陳化16 h;過(guò)濾出沉淀,用1 mol/L 的HNO3溶液洗滌3次,再用去離子水洗滌1次,過(guò)濾出沉淀,在(40±1)oC下干燥,即得黃色粉末狀A(yù)MP。
1.3吸附實(shí)驗(yàn)及吸附動(dòng)力學(xué)
1.3.1 吸附量的確定
吸附實(shí)驗(yàn)所用AMP均為AMP-2。按各實(shí)驗(yàn)要求稱(chēng)取一定質(zhì)量的AMP,加入盛有一定體積和濃度的Cs+溶液,在水浴恒溫磁力攪拌器中恒溫?cái)嚢枰欢〞r(shí)間后,移取一定體積溶液進(jìn)行過(guò)濾、稀釋?zhuān)缓笥迷游諆x測(cè)量吸附前后溶液中Cs+濃度,結(jié)果以吸附量q(mg/g)表示為:q = (c0?ct)×V/m。其中,c0為溶液中Cs+的初始濃度(mg/L),ct為吸附后溶液中Cs+的濃度,V為吸附溶液的體積(L),m為AMP質(zhì)量(mg)。
1.3.2 準(zhǔn)二級(jí)動(dòng)力學(xué)
準(zhǔn)二級(jí)動(dòng)力學(xué)方程表達(dá)式為t/qt= t/qe+1/kq2e。式中,qt和qe分別為t時(shí)刻和平衡時(shí)的吸附量(mg/g);k為準(zhǔn)二級(jí)速率常數(shù)(min·g/mg)。利用t/qt對(duì)t作線性擬合,可得準(zhǔn)二級(jí)動(dòng)力學(xué)方程,并由斜率獲得理論平衡吸附量。
2.1 AMP的表征
圖1為所制備的兩種AMP的XRD衍射譜圖與(NH4)3P(Mo3O10)4·xH2O的標(biāo)準(zhǔn)譜圖。由圖可見(jiàn),AMP-1的峰形較尖銳,但雜峰較多,說(shuō)明含一種或多種雜質(zhì),可能是合成過(guò)程中形成的磷酸鹽或鉬酸鹽。AMP-2的XRD衍射峰的位置和峰強(qiáng)與標(biāo)準(zhǔn)圖譜符合得很好,峰形尖銳且無(wú)明顯雜峰,說(shuō)明AMP-2的純度優(yōu)于AMP-1。
圖1 AMP-1和AMP-2的XRD譜圖與標(biāo)準(zhǔn)譜圖Fig.1 XRD spectra of the synthetic AMP-1, AMP-2 and (NH4)3P(Mo3O10)4·4H2O.
圖2 是合成的AMP的FT-IR譜圖。分析AMP-2的紅外譜圖,3430.39 cm–1和1616.15 cm–1處的兩個(gè)吸收峰分別為H-O-H伸縮振動(dòng)和彎曲振動(dòng)引起的吸收峰,說(shuō)明所合成的磷鉬酸銨中含有結(jié)晶水;3206.16 cm–1和1404.44 cm–1處的兩個(gè)吸收峰分別為N-H伸縮振動(dòng)吸收峰和彎曲振動(dòng)吸收峰,這表明了[NH4]+的存在;1063.60、962.81、867.91和790.88 cm–1的幾個(gè)吸收峰分別與[PMo12O40]3–Keggin結(jié)構(gòu)的特征峰(1068、962、869和785 cm–1)[14]吻合較好,說(shuō)明存在完整的[PMo12O40]3–骨架結(jié)構(gòu);IR圖譜中并沒(méi)有出現(xiàn)其他雜峰,說(shuō)明合成的AMP純度較高。而AMP-1的譜圖中,869 cm–1和785 cm–1處兩個(gè)吸收峰不明顯,且在680 cm–1處出現(xiàn)雜質(zhì)吸收峰,可能是磷酸鹽或鉬酸鹽雜質(zhì)引起的。結(jié)合XRD譜圖對(duì)比,AMP-2的純度優(yōu)于AMP-1。
圖2 AMP-1和AMP-2的FT-IR譜圖Fig.2 FT-IR spectra of the synthetic AMP-1, AMP-2.
2.2吸附動(dòng)力學(xué)結(jié)果
2.2.1 溫度和接觸時(shí)間對(duì)吸附的影響
溫度和接觸時(shí)間對(duì)吸附的影響示于圖3。由圖可見(jiàn),吸附量在前10 min上升明顯,其后上升緩慢??梢哉J(rèn)為,在120 min時(shí)吸附過(guò)程達(dá)到動(dòng)態(tài)平衡。在Cs+初始濃度為80 mg/g、固液比為400 mg/L條件下,吸附容量最高可達(dá)125.7 mg/g,與文獻(xiàn)[11]結(jié)果相符,高于粒狀A(yù)MP結(jié)晶對(duì)Cs+的吸附容量。隨著溫度升高,AMP對(duì)Cs的平衡吸附容量有減小的趨勢(shì)。
圖3 溫度和吸附時(shí)間對(duì)吸附的影響Fig.3 Effect of temperature and contact time on the uptake of Cs+. (c0 = 80 mg/L, V = 0.5 L, m = 200 mg)
2.2.2 準(zhǔn)二級(jí)動(dòng)力學(xué)擬合
用準(zhǔn)二級(jí)速率方程對(duì)不同溫度下吸附過(guò)程的擬合結(jié)果見(jiàn)圖4,擬合曲線的相關(guān)系數(shù)R2分別為0.99996、0.99975、0.99975。由擬合曲線的斜率計(jì)算得到30oC、40oC、50oC下的平衡吸附量分別為125.8、123.9、120.6 mg/g。
圖4 吸附過(guò)程的準(zhǔn)二級(jí)動(dòng)力學(xué)擬合Fig.4 Simulated results using pseudo second-order kinetic equation.(c0 = 80 mg/L, V = 0.5 L, m = 200 mg)
因?yàn)槲竭^(guò)程的活化熵變?chǔ)o和活化焓變?chǔ)o受溫度的影響可忽略不計(jì)[15],根據(jù)Arrhenius公式有:lnk = ?Ea/rT+c。其中,k為反應(yīng)速率常數(shù);Ea為吸附活化能(kJ·mol–1);r為理想氣體常數(shù)(8.314×10–3kJ·K–1·mol–1);T為絕對(duì)溫度。取k為準(zhǔn)二級(jí)吸附速率常數(shù),以lnk對(duì)1/T作圖,由斜率計(jì)算得到吸附的表觀活化能為Ea= ?15.3 kJ·mol–1,說(shuō)明吸附過(guò)程不需通過(guò)吸收能量來(lái)跨越能壘,吸附現(xiàn)象很容易發(fā)生[16]。
2.3 Na+、K+對(duì)AMP吸附Cs+的影響
由于放射性廢液中存在的主要競(jìng)爭(zhēng)離子為Na+和K+等,分別考察了其濃度對(duì)吸附容量的影響,結(jié)果如圖5所示。由圖可見(jiàn),Na+和K+的引入均會(huì)使AMP吸附Cs+的吸附容量明顯降低;隨著溶液中Na+濃度的增大,AMP對(duì)Cs+的吸附容量緩慢降低,而隨著K+濃度的增大,AMP對(duì)Cs+的吸附容量明顯下降,說(shuō)明K+與Cs+的競(jìng)爭(zhēng)作用更明顯。磷鉬酸銨晶體中存在12個(gè)鉬氧八面體結(jié)構(gòu),[NH4]+存在其結(jié)構(gòu)空隙中,因此,原因可能是相對(duì)Na+而言,K+與的離子半徑更接近,通過(guò)置換進(jìn)入到的位置所引起的晶體結(jié)構(gòu)畸變更小,而更容易與Cs+形成競(jìng)爭(zhēng)關(guān)系。Na+(NaNO3)、K+(KNO3)、[NH4]+、Cs+(CsCl)的離子半徑分別為0.095、0.138、0.143、0.169[17]。
利用向鉬酸銨和磷酸的混合溶液中滴加硝酸的方法制備AMP,方法簡(jiǎn)便,成品純度達(dá)到理想水平。靜態(tài)吸附實(shí)驗(yàn)結(jié)果顯示,不同溫度下,AMP對(duì)Cs+的吸附在10 min內(nèi)可達(dá)到平衡,隨著溫度升高,吸附容量呈下降趨勢(shì);吸附過(guò)程可用準(zhǔn)二級(jí)方程很好描述,根據(jù)Arrhenius公式計(jì)算得到吸附活化能為?15.3 kJ·mol–1;Na+和K+的競(jìng)爭(zhēng)作用使吸附容量明顯降低,其中K+的競(jìng)爭(zhēng)作用更為明顯,原因可能是K+與[NH4]+的離子半徑更接近,通過(guò)置換進(jìn)入到AMP晶體中[NH4]+的位置所引起的晶格畸變更小,也表明AMP對(duì)Cs+的吸附是Cs+與[NH4]+的交換過(guò)程。但是,合成的AMP為微晶結(jié)構(gòu),不利于離子交換柱中大量廢液的連續(xù)除Cs+處理。因此,開(kāi)展對(duì)AMP-復(fù)合材料的研究很有必要。
圖5 Na+和K+對(duì)吸附的影響Fig.5 Effect of concentrations of Na+ and K+ on the uptake of Cs+. (c0 = 80 mg/L, V = 0.5 L, m = 200 mg, t = 90 min)
1 Todd T A, Batcheller T A, Law J D, et al. Cesium and strontium separation technologies literature review[R]. INEEL/EXT-04-01895, Idaho, 2004
2 Naushad M. Inorganic and composite ion exchange materials and their applications[J]. Ion Exchange Letters, 2009,2(1): 1–14
3 徐世平, 張繼榮, 宋崇立. 用無(wú)機(jī)離子交換法從酸性高放廢液中去除銫研究進(jìn)展[J]. 輻射防護(hù)通訊, 2000,119: 8–12
XU Shiping, ZHANG Jirong, SONG Chongli. Advance in the study of removing cesium from acidic HLW by inorganic ion exchangers[J]. Radiation Protection Bulletin, 2000,119: 8–12
4 Tranter T, Herbst R S, Todd T A, et al. Evaluation of ammonium molybdophosphate polyacrylonitrile as a cesium selective sorbent for the removal of137Cs from acidic nuclear waste solutions[J]. Advances in Environmental Research, 2002,6(2): 107–121
5 Borai E H, Harjulab R, Malinen L. Efficient removal of cesium from low-level radioactive liquid waste using natural and impregnated zeolite minerals[J]. Journal of Hazardous Materials, 2009,172(1): 416–422
6 Andersen A M K, Norby P. Structural aspects of the dehydration and dehydroxylation of gamma–titanium phosphate, gamma-Ti(PO4)(H2PO4)H2O[J]. Inorganic Chemistry, 1998,37: 4313–4320
7 LI Bing, LIAO Jiali, WU Jiaojiao, et al. Removal of radioactive cesium from solutions by zinc ferrocyanide[J]. Nuclear Science and Techniques, 2008,19(2): 88–92
8 Anthony R G, Dosch R G, Gu D, et al. Use of silicotitanates for removing cesium and strontium from defense Waste[J]. Industrial & Engineering Chemistry Research, 1994,33(11): 2702–2705
9 Archer D W, Heslop R B. The solubility of ammonium 12-Molybdophosphate in dilute acids[J]. Analytica Chimica Acta, 1964,30: 582–589
10 Smit J V R, Robb W, Jacobs J J. Cation exchange properties of the ammonium heteropolyacid salts[J]. Journal of Inorganic Nuclear Chemistry, 1959,12(1–2): 95–103
11 Lehto J, Harjula R. Separation of cesium from nuclear waste solutions with hexacyanoferrate and ammonium phosphomolybdate[J]. Solvent Extraction and Ion Exchange, 1987,5(2): 343–352
12 HUANG Zhaoya, ZHANG Dong, TAN Zhaoyi. Preliminary research on the uptake behavior of ammonium molybdophosphate for cesium and the corresponding structural transformation[C]. Advanced Materials Research, 2012,535–537: 2191–2194
13 田國(guó)新, 翁皓珉. 粒狀十二磷鉬酸銨結(jié)晶的合成及對(duì)Cs+的交換性能研究[J]. 離子交換與吸附, 1996,12(2): 149–153
TIAN Guoxin, WENG Haomin. Preparation of granular crystal of ammonium molybdophosphate and study on its ion exchange property[J]. Ion Exchange and Adsorption, 1996,12(2): 149–153
14 Katsoulis D E. A survey of applications of polyoxometalates[J]. Chemical Reviews, 1988,98: 359–387
15 沈培友, 徐曉燕, 馬毅杰. 無(wú)機(jī).有機(jī)柱撐蒙脫石吸附對(duì)硝基苯酚的熱力學(xué)與動(dòng)力學(xué)特征研究[J]. 環(huán)境保護(hù)科學(xué), 2005,6(31): 15–19
SHEN Peiyou, XU Xiaoyan, MA Yijie. Study on characteristics of thermodynamics and kinetics of p-Nitrophenol sorption by inorganic-organic pillared montmorillonite from water[J]. Environmental Protection Science, 2005,6(31): 15–19
16 黃開(kāi)輝, 萬(wàn)惠霖. 催化原理[M]. 北京: 科學(xué)出版社, 1983: 188–189
HUANG Kaihui, WAN Huilin. Catalysis principles[M]. Beijing: Science Press, 1983: 188–189
17 錢(qián)庭寶. 離子交換劑應(yīng)用技術(shù)[M]. 天津: 天津科學(xué)技術(shù)出版社, 1984: 419
QIAN Tingbao. Applition of ion exchangers[M]. Tianjin: Tianjin Science & Technology Press, 1984: 419
CLCTL941
Synthesis of ammonium molybdophosphate and the uptake behavior for cesium
HUANG Zhaoya ZHANG Dong TAN Zhaoyi
(Institute of Nuclear Physics and Chemistry,China Academy of Engineering Physics,Mianyang 621900,China)
Background:An enormous amount of liquid radioactive wastes (LRW) was produced by nuclear power plants operation and the reprocessing of spent nuclear fuel. It is necessary to remove137Cs from LRW to reduce the volumes of waste that require solidification prior to final disposal.Purpose:This paper aimed to study the ion exchange mechanism and uptake behavior for cesium of Ammonium Molybdophosphate (AMP, (NH4)3P(Mo3O10)4·xH2O) in more detail.Methods:Two samples of AMP (AMP-1, AMP-2) were synthesized by different precipitation reactions and they were analyzed by X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The uptake behavior of AMP-2 for Cs+under different conditions, such as temperature, contact time, competing ions was investigated through batch experiments.Results:The results show that the adsorption reaches equilibrium in 10 min. The adsorption kinetics can be described by the pseudo second-order equation quite well (R2>0.999). The existence of Na+and K+have negative effects on the uptake of Cs+, while with K+concentration enrichment, the adsorption capacity of Cs+decreases faster.Conclusions:The results support the theory of isomorphous exchange of Cs ions for ammonium ions. In addition, AMP has the potential to be a very useful ion exchanger in treatment with nuclear waste solution for removal of137Cs.
AMP, Cs+, Uptake
TL941
10.11889/j.0253-3219.2013.hjs.36.020301
中國(guó)工程物理研究院科學(xué)技術(shù)發(fā)展基金(2012b0301032)資助
黃召亞,男,1987年出生,2010年畢業(yè)于浙江大學(xué),現(xiàn)為中國(guó)工程物理研究院碩士研究生,核燃料循環(huán)與材料專(zhuān)業(yè)
譚昭怡,liu315351@163.com
2012-09-03,
2012-10-31