湯曉麗 鄧連瑞 張鵬霞 林加日 劉 揚(yáng) 徐勁松 鄧立彬 (南昌大學(xué)醫(yī)學(xué)院,江西 南昌 00)
2型糖尿病(T2DM)是一種常見(jiàn)的以胰島素抵抗(IR)和β細(xì)胞分泌缺陷為特征的復(fù)雜性疾病,占糖尿病群體的大多數(shù)(95%)。因遺傳因素在T2DM的發(fā)生發(fā)展過(guò)程中起著重要的作用〔1〕,易感基因的發(fā)現(xiàn)一直是T2DM研究的熱點(diǎn)。近年來(lái),隨著全基因組關(guān)聯(lián)研究(GWAS)在復(fù)雜性狀/疾病研究中的成功應(yīng)用〔2〕,T2DM的遺傳學(xué)研究也取得了一系列成果。本文從T2DM發(fā)病機(jī)制及相關(guān)性狀兩方面對(duì)這些易感基因/位點(diǎn)進(jìn)行總結(jié),以期了解遺傳因素在糖尿發(fā)病過(guò)程中的作用機(jī)制。
在GWAS策略出現(xiàn)之前,連鎖分析和候選基因關(guān)聯(lián)研究是篩查疾病(或表型)有關(guān)易感基因/位點(diǎn)的主要方案。在連鎖分析方面,T2DM的基因組掃描已在全球多個(gè)群體中進(jìn)行,鑒定了一些與T2DM有關(guān)的數(shù)量性狀基因座(QTLs)區(qū)域〔3〕。雖然后繼的定位克隆的確發(fā)現(xiàn)了可靠的易感基因(如CAPN10〔4〕),但由于該方法存在不能精細(xì)定位等缺點(diǎn)限制了其在復(fù)雜疾病研究中的廣泛應(yīng)用。候選基因關(guān)聯(lián)研究是篩查疾病易感基因的另一傳統(tǒng)方法,前期T2DM候選基因多態(tài)性的研究為理解其發(fā)病機(jī)制提供了有益的線索(如 PPARG〔5〕、HNF1B〔6〕、WFS1〔7〕、TCF7L2〔8〕和 KCNJIl〔9〕),但候選基因的選擇帶有一定的盲目性。因此T2DM的遺傳學(xué)篩查亟需一個(gè)分辨力高且不存在生物假設(shè)的全基因組篩查策略。近年來(lái),得益于組學(xué)數(shù)據(jù)的積累及芯片技術(shù)的發(fā)展,GWAS已被廣泛應(yīng)用到T2DM的遺傳學(xué)研究中,取得了一系列成果。從2007年至今,全球已發(fā)表31項(xiàng)針對(duì)T2DM的GWAS篩查〔10~40〕,共鑒定出97個(gè) T2DM易感基因/位點(diǎn),其中包括了多個(gè)傳統(tǒng)方法確定的T2DM易感基因(如PPARG、KCNJ11、HNF1B、WFS1 和 TCF7L2等)。
同時(shí),針對(duì)T2DM相關(guān)性狀的GWAS研究也的確表明,T2DM易感基因的多態(tài)性可以影響正常人的餐后2 h血糖和糖化血紅蛋白水平。其中,TCF7L2/rs12243326和腺苷酸環(huán)化酶5(ADCY5)/rs2877716既能增加空腹血糖,也能增加餐后2 h血糖水平〔41〕。而糖化血紅蛋白水平是一項(xiàng)反映慢性血糖水平的穩(wěn)定指標(biāo),多篇研究提示錨定蛋白1基因(ANK1)〔42〕、周期素依賴性激酶5調(diào)節(jié)蛋白1樣蛋白1(CDKAL1)〔43〕、溶質(zhì)載體家族 30(鋅轉(zhuǎn)運(yùn)體)成員 5(SLC30A8)〔44〕和 TCF7L2〔45〕與糖化血紅蛋白水平相關(guān)。這些比較不但印證了T2DM-GWAS篩查結(jié)果的可靠性,也進(jìn)一步為易感基因多態(tài)性導(dǎo)致疾病的分子機(jī)制研究提供線索。
目前,雖然GWAS為T2DM易感基因的發(fā)現(xiàn)帶來(lái)了突破性的進(jìn)展,但眾多易感基因/位點(diǎn)的功能及其導(dǎo)致T2DM的分子機(jī)制仍需深入探討。
2.1 與β細(xì)胞胰島素分泌相關(guān)的T2DM易感基因 β細(xì)胞的功能下降(胰島素分泌受損)是T2DM的主要病理特征之一。在97個(gè)GWAS發(fā)現(xiàn)的T2DM易感基因中,目前認(rèn)為與β細(xì)胞的胰島素分泌功能有關(guān)的有20個(gè)。其中,12個(gè)基因的功能被一些零散的研究所證實(shí)(KCNJ11、造血表達(dá)同源異形盒(HHEX)、HNF1B、CDKAL1、WFS1、CDKN2A/B、鋅指并列基因1(JAZF1)、電壓門控性鉀離子通道 KQT樣家族成員1(KCNQ1)、細(xì)胞分裂周期蛋白/鈣/鈣調(diào)蛋白依賴蛋白激酶ID(CDC123/CAMK1D)、甲狀腺腺瘤相關(guān)基因(THADA)、金屬肽酶含血小板反應(yīng)蛋白9(ADAMTS9)、四旋蛋白8/富含亮氨酸重復(fù)單位的G蛋白耦聯(lián)受體5(TSPAN8/LGR5)〔46〕。而針對(duì)胰島素分泌相關(guān)性狀的 GWAS研究發(fā)現(xiàn),GLIS家族鋅指3(GLIS3)、C2 鈣依 賴 域-含 蛋 白 4B(C2CD4B)、ADCY5、SLC30A8、TCF7L2、胰島素樣生長(zhǎng)因子 2結(jié)合蛋白 2(IGF2BP2)、細(xì)胞周期蛋白依賴性激酶抑制劑2B(CDKN2B)和C2鈣依賴域-含蛋白4B(C2CD4A)等8個(gè)T2D易感基因的多態(tài)性可影響胰島素的分泌〔6~9,41~50〕。
空腹血糖水平(FBG)可反映β細(xì)胞的基礎(chǔ)分泌能力。2010年,MAGIC(Meta-Analyses of Glucose and Insulin-related traits Consortium)進(jìn)行了一項(xiàng)針對(duì)FBG的GWAS研究,發(fā)現(xiàn)了16個(gè) FBG關(guān)聯(lián)的基因/位點(diǎn),其中5個(gè)(GLIS3、C2CD4B、ADCY5、SLC30A8和TCF7L2)為已知的T2DM易感基因〔48〕。后續(xù)的meta分析,不但印證了MAGIC的發(fā)現(xiàn);還報(bào)道了20個(gè)新的與FBG關(guān)聯(lián)的基因,其中包含2個(gè)已知的T2DM易感基因(IGF2BP2、CDKN2B)〔49〕。這些研究表明已知的 T2DM 易感基因中有 7個(gè)與 FBG關(guān)聯(lián),其中 4個(gè)基因 GLIS3、TCF7L2、SLC30A8和ADCY5得到了重復(fù)驗(yàn)證。另一方面,這些研究也提示多數(shù)的FBG關(guān)聯(lián)基因可能僅與“生理”狀態(tài)下血糖的變化相關(guān),并不影響“病理”狀態(tài)下血糖水平,但這一假設(shè)還需更深入的研究證實(shí)。
胰島素原是胰島素的前體,其水解過(guò)程是胰島素產(chǎn)生和分泌的關(guān)鍵步驟。2011年,Strawbridge等〔47〕的 GWAS分析發(fā)現(xiàn)了8個(gè)與血Proinsulin水平關(guān)聯(lián)的基因,其中有3個(gè)是T2DM的易感基因(TCF7L2、SLC30A8和C2CD4A/B)。有趣的是,這三個(gè)基因均被證實(shí)同空腹血糖性狀關(guān)聯(lián),提示研究胰島素的加工成熟過(guò)程可為理解T2DM病理生理機(jī)制提供新的見(jiàn)解。而后續(xù)的的功能學(xué)研究進(jìn)一步證實(shí) TCF7L2〔51〕和 SLC30A8〔52〕的確與胰島素原轉(zhuǎn)化為胰島素有關(guān);其中TCF7L2-rs7903146的TT基因型與胰島素原轉(zhuǎn)化能力降低及胰島素分泌下降相關(guān)〔53〕,但具體機(jī)制尚不明確。
2.2 與胰島素敏感性相關(guān)的T2DM易感基因 IR是T2DM的另一個(gè)病理特征,是指體內(nèi)周圍組織對(duì)胰島素的敏感性降低。將前期針對(duì)IR衡量指標(biāo)(HOMA-IR)及其他IR有關(guān)性狀(空腹胰島素水平、高胰島素血癥)的GWAS研究綜合共發(fā)現(xiàn)11個(gè)T2DM的易感基因(WFS1、胰島素受體底物1(IRS1)、TCF7L2、SLC30A8、鋅指AN1型域3(ZFAND3)、萌芽同源物2(果蠅)(SPRY2)、肽酶D(PEPD)、神經(jīng)突觸素2(SYN2)、生長(zhǎng)因子受體結(jié)合蛋白14(GRB14)、PPARG和CDKAL1)可影響胰島素敏感性〔49,54〕。此外,非GWAS研究提示,其他一些基因與外周胰島素敏感性或胰島素抵抗相關(guān),如ENPP1、ADIPOQ、AHSG、ADAMTS9、CAPN10、SREBF1、PPARGC1A 和 SHBG 等。其中 ADAMTS9已被GWAS研究證實(shí)是T2DM的易感基因〔48〕。
HOMA-IR是數(shù)值化衡量IR的常用指標(biāo)〔55〕,在97個(gè)T2DM易感基因中已確定 6 個(gè)基因(WFS1、IRS1、TCF7L2、CDKAL1、SLC30A8和ZFAND3)與其相關(guān)〔54〕??崭挂葝u素水平是反映IR的另一常用指標(biāo),在血糖水平正?;蛏叩娜巳褐?,空腹胰島素水平增高表明IR情況的存在。而另一些研究則提示,空腹胰島素水平可識(shí)別糖尿病前期〔56〕。在97個(gè)GWAS確定的T2DM 的易感基因中,7 個(gè)基因 SPRY2、PEPD、IRS1、SYN2、GRB14、PPARG和TCF7L2與空腹胰島素水平相關(guān)〔49〕。高胰島素血癥和IR緊密聯(lián)系,被認(rèn)為是IR的又一標(biāo)志,是引發(fā)糖尿病患者大血管并發(fā)癥(如心肌梗死、腦卒中、高血壓、血脂紊亂、糖尿病腎病等糖尿病并發(fā)癥)的主要原因。在GWAS確定的T2DM 的易感 基 因中,WFS1、IRS1、TCF7L2、CDKAL1 和SLC30A8等與高胰島素血癥相關(guān)〔54〕,這幾個(gè)基因也與HOMAIR指標(biāo)關(guān)聯(lián)。
相關(guān)性狀的研究發(fā)現(xiàn)IRS1和TCF7L2與HOMA-IR、空腹胰島素及高胰島素血癥等三種性狀均相關(guān)。其中IRS1為胰島素受體底物1,可以與胰島素受體結(jié)合并參與胰島素介導(dǎo)的信號(hào)轉(zhuǎn)導(dǎo);其作為T2DM的易感基因,無(wú)論是從基因及蛋白的表達(dá)水平,還是變異導(dǎo)致氨基酸的替換方面都已被廣泛的研究。如在脂肪細(xì)胞中IRS1基因及蛋白的低表達(dá)可預(yù)測(cè)胰島素抵抗和 T2DM〔57〕。Almind 等〔58〕提出 IRS 的 Gly971Arg替換可能損害胰島素刺激的信號(hào)傳導(dǎo),導(dǎo)致胰島素抵抗。而Clausen等〔59〕報(bào)道,971Arg等位基因可聯(lián)合肥胖因素,使胰島素敏感性降低50%。而對(duì)于TCF7L2基因,目前多數(shù)研究證實(shí)其可以通過(guò)降低胰島素分泌來(lái)增加T2DM的易感性;但另也有研究提示它可通過(guò)和胰島素分泌不足兩個(gè)環(huán)節(jié)共同起作用,具體機(jī)制尚待深入研究。
2.3 肥胖及相關(guān)體質(zhì)人類學(xué)性狀 肥胖是導(dǎo)致繼發(fā)性IR的最重要的因素。在97個(gè) T2D易感基因/位點(diǎn)中,4個(gè)基因SPRY2、IRS1、脂肪量和肥胖相關(guān)基因(FTO)和包含WW域的氧化還原酶(WWOX)與肥胖相關(guān)〔60〕。研究表明,F(xiàn)TO是通過(guò)肥胖增加 T2DM的易感性〔61〕。此外,5個(gè) T2DM易感基因,GRB14、血管內(nèi)皮生長(zhǎng)因子(VEGFA)、ADAMTS9、FTO和 CDKAL1與肥胖相關(guān)的數(shù)量性狀相關(guān)。如GRB14、VEGFA和ADAMTS9 與腰臀比相關(guān)〔62〕;FTO 與臀圍、腰圍和體重相關(guān)〔63,64〕;CDKAL1和FTO與身體質(zhì)量指數(shù)(BMI)相關(guān)〔65〕。另外,F(xiàn)TO還與兒童早期極端肥胖〔33〕及皮下脂肪組織相關(guān),ADAMTS9和IRS1與內(nèi)臟脂肪組織/皮下脂肪組織的比例相關(guān)〔66〕。雖然肥胖與T2DM之間的關(guān)系已相對(duì)明確,但相當(dāng)一部分重要的肥胖關(guān)聯(lián)基因,僅與T2DM存在弱關(guān)聯(lián)甚至不關(guān)聯(lián)〔61〕,因此肥胖和糖尿病之間的相互關(guān)系還有待深入研究。
同時(shí),在T2DM的易感基因中,還有部分基因與其他一些性狀關(guān)聯(lián):如FTO和TCF7L2與代謝綜合征相關(guān)〔67〕;ADCY5與出生體重相關(guān)〔68〕;GRB14 與血壓相關(guān)〔69〕;IRS1、CMIP、PEPD 和VEGFA與脂聯(lián)素水平相關(guān)〔70〕等。其中T2DM易感基因與脂代謝紊亂的關(guān)聯(lián)最具臨床意義,因?yàn)橄喈?dāng)一部分糖尿病人都伴有高脂血癥。在97個(gè)T2DM的易感基因中,Kruppel樣因子14(KLF14)、c-Maf誘導(dǎo)蛋白(CMIP)、IRS1和肝細(xì)胞核因子4α(HNF4A)與高密度膽固醇相關(guān);肝細(xì)胞核因子1α(HNF1A)與低密度膽固醇水平相關(guān);HNF4A和HNF1A與總膽固醇量相關(guān);IRS1與甘油三酯相關(guān)〔71〕。
綜上所述,近年發(fā)現(xiàn)的T2DM易感基因/位點(diǎn)極大擴(kuò)展了我們對(duì)T2DM遺傳因素的認(rèn)識(shí),但GWAS的結(jié)果與傳統(tǒng)研究尚存在一些出入,如CAPN10、SREBF1、SHBG和PPARGC1A等基因在GWAS篩查中并未得到驗(yàn)證。而在作用機(jī)制方面,雖然先前的一些研究認(rèn)為IR是T2DM發(fā)病的重要分子機(jī)制;但篩查發(fā)現(xiàn)的多數(shù)易感基因與胰島素分泌關(guān)聯(lián),提示β細(xì)胞的功能在T2DM中也發(fā)揮著重要作用。因此T2D的遺傳學(xué)研究不但需要后續(xù)進(jìn)一步基于大樣本篩查易感基因,還需要對(duì)T2DM易感基因/位點(diǎn)的致病機(jī)制進(jìn)行深入的功能學(xué)研究。
1 O'Rahilly S.Human genetics illuminates the paths to metabolic disease〔J〕.Nature,2009;462(7271):307-14.
2 Klein RJ,Zeiss C,Chew EY,et al.Complement factor H polymorphism in age-related macular degeneration〔J〕.Science,2005;308(5720):385-9.
3 Huang QY,Cheng MR,Ji SL.Linkage and association studies of the susceptibility genes for type 2 diabetes〔J〕.Yi Chuan Xue Bao,2006;33(7):573-89.
4 Horikawa Y,Oda N,Cox NJ,et al.Genetic variation in the gene encoding calpain-10 is associated with type 2 diabetes mellitus〔J〕.Nat Genet,2000;26(2):163-75.
5 Altshuler D,Hirschhorn JN,Klannemark M,et al.The common PPAR-gamma Pro12Ala polymorphism is associated with decreased risk of type 2 diabetes〔J〕.Nat Genet,2000;26(1):76-80.
6 Bonnycastle LL,Willer CJ,Conneely KN,et al.Common variants in maturity-onset diabetes of the young genes contribute to risk of type 2 diabetes in Finns〔J〕.Diabetes,2006;55(9):2534-40.
7 Sandhu MS,Weedon MN,F(xiàn)awcett KA,et al.Common variants inWFS1 confer risk of type 2 diabetes〔J〕.Nat Genet,2007;39(8):951-3.
8 Grant SF,Thorleifsson G,Reynisdottir I,et al.Variant of transcription factor 7-like 2(TCF7L2)gene confers risk of type 2 diabetes〔J〕.Nat Genet,2006;38(3):320-3.
9 Gloyn AL,Weedon MN,Owen KR,et al.Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2(KCNJ11)and SUR1(ABCC8)confirm that the KCNJ11 E23K variant is associated with type 2 diabetes〔J〕.Diabetes,2003;52(2):568-72.
10 Huang J,Ellinghaus D,F(xiàn)ranke A,et al.1000 Genomes-based imputation identifies novel and refined associations for the Wellcome Trust Case Control Consortium phase 1 Data〔J〕.Eur J Hum Genet,2012;20(7):801-5.
11 Palmer ND,McDonough CW,Hicks PJ,et al.A genome-wide association search for type 2 diabetes genes in African Americans〔J〕.PLoS One,2012;7(1):e29202.
12 Cui B,Zhu X,Xu M,et al.A genome-wide association study confirms previously reported loci for type 2 diabetes in Han Chinese〔J〕.PLoS One,2011;6(7):e22353.
13 Sladek R,Rocheleau G,Rung J,et al.A genome-wide association study identifies novel risk loci for type 2 diabetes〔J〕.Nature,2007;22;445(7130):881-5.
14 Tsai FJ,Yang CF,Chen CC,et al.A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese〔J〕.PLoS Genet,2010;19;6(2):e1000847.
15 Yamauchi T,Hara K,Maeda S,et al.A genome-wide association study in the Japanese population identifies susceptibility loci for type 2 diabetes at UBE2E2 and C2CD4A-C2CD4B〔J〕.Nat Genet,2010;42(10):864-8.
16 Scott LJ,Mohlke KL,Bonnycastle LL,et al.A genome-wide association study of type 2 diabetes in Finns detects multiple susce ptibility variants〔J〕.Science,2007;316(5829):1341-5.
17 Hanson RL,Bogardus C,Duggan D,et al.A search for variants associated with young-onset type 2 diabetes in American Indians in a 100K genotyping array〔J〕.Diabetes,2007;56(12):3045-52.
18 Imamura M,Maeda S,Yamauchi T,et al.A single-nucleotide polymorphism in ANK1 is associated with susceptibility to type 2 diabetes in Japanese populations〔J〕.Hum Mol Genet,2012;21(13):3042-9.
19 Steinthorsdottir V,Thorleifsson G,Reynisdottir I,et al.A variant in CDKAL1 influences insulin response and risk of type 2 diabetes〔J〕.Nat Genet,2007;39(6):770-5.
20 Timpson NJ,Lindgren CM,Weedon MN,et al.Adiposity-related heterogeneity in patterns of type 2 diabetes susceptibility observed in genomewide association data〔J〕.Diabetes,2009;58(2):505-10.
21 Takeuchi F,Serizawa M,Yamamoto K,et al.Confirmation of multiple risk Loci and genetic impacts by a genome-wide association study of type 2 diabetes in the Japanese population〔J〕.Diabetes,2009;58(7):1690-9.
22 Welcome Trust Case Control Consortium.Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls〔J〕.Nature,2007;447(7145):661-78.
23 Zeggini E,Scott LJ,Saxena R,et al.Meta-analysis of genome-wide association data and large-scale replication identifies additional susceptibility loci for type 2 diabetes〔J〕.Nat Genet,2008;40(5):638-45.
24 Zeggini E,Weedon MN,Lindgren CM,et al.Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes〔J〕.Science,2007;316(5829):1336-41.
25 Unoki H,Takahashi A,Kawaguchi T,et al.SNPs in KCNQ1 are associated with susceptibility to type 2 diabetes in East Asian and European populations〔J〕.Nat Genet,2008;40(9):1098-102.
26 Perry JR,Voight BF,Yengo L,et al.Stratifying type 2 diabetes cases by BMI identifies genetic risk variants in LAMA1 and enrichment for risk variants in lean compared to obese cases〔J〕.PLoS Genet,.2012;8(5):e1002741.
27 Sim X,Ong RT,Suo C,et al.Transferability of type 2 diabetes implicated loci in multi-ethnic cohorts from Southeast Asia〔J〕.PLoS Genet,2011;7(4):e1001363.
28 Voight BF,Scott LJ,Steinthorsdottir V,et al.Twelve type 2 diabetes susceptibility loci identified through large-scale association analysis〔J〕.Nat Genet,2010;42(7):579-89.
29 Qi L,Cornelis MC,Kraft P,et al.Genetic variants at 2q24 are associated with susceptibility to type 2 diabetes〔J〕.Hum Mol Genet,2010;19(13):2706-15.
30 Saxena R,Voight BF,Lyssenko V,et al.Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels〔J〕.Science,2007;316(5829):1331-6.
31 Below JE,Gamazon ER,Morrison JV,et al.Genome-wide association and meta-analysis in populations from Starr County,Texas,and Mexico City identify type 2 diabetes susceptibility loci and enrichment for expression quantitative trait loci in top signals〔J〕.Diabetologia,2011;54(8):2047-55.
32 Kooner JS,Saleheen D,Sim X,et al.Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci〔J〕.Nat Genet,2011;43(10):984-9.
33 Parra EJ,Below JE,Krithika S,et al.Genome-wide association study of type 2 diabetes in a sample from Mexico City and a meta-analysis of a Mexican-American sample from Starr County,Texas〔J〕.Diabetologia,2011;54(8):2038-46.
34 Shu XO,Long J,Cai Q,et al.Identification of new genetic risk variants for type 2 diabetes〔J〕.PLoS Genet,2010;6(9).pii:e1001127.
35 Rampersaud E,Damcott CM,F(xiàn)u M,et al.Identification of novel candidate genes for type 2 diabetes from a genome-wide association scan in the Old Order Amish:evidence for replication from diabetes-related quantitative traits and from independent populations〔J〕.Diabetes,2007;56(12):3053-62.
36 Hayes MG,Pluzhnikov A,Miyake K,et al.Identification of type 2 diabetes genes in Mexican Americans through genome-wide association studies〔J〕.Diabetes,2007;56(12):3033-44.
37 Cho YS,Chen CH,Hu C,et al.Meta-analysis of genome-wide association studies identifies eight new loci for type 2 diabetes in east Asians〔J〕.Nat Genet,2011;44(1):67-72.
38 Salonen JT,Uimari P,Aalto JM,et al.Type 2 diabetes whole-genome association study in four populations:the DiaGen consortium〔J〕.Am J Hum Genet,2007;81(2):338-45.
39 Kho AN,Hayes MG,Rasmussen-Torvik L,et al.Use of diverse electronic medical record systems to identify genetic risk for type 2 diabetes within a genome-wide association study〔J〕.J Am Med Inform Assoc,2012;19(2):212-8.
40 Liu Y,Zhou DZ,Zhang D,et al.Variants in KCNQ1 are associated with susceptibility to type 2 diabetes mellitus〔J〕.Diabetologia,2009;52(7):1315-21.
41 Saxena R,Hivert MF,Langenberg C,et al.Genetic variation in GIPR influences the glucose and insulin responses to an oral glucose challenge〔J〕.Nat Genet,2010;42(2):142-8.
42 Soranzo N,Sanna S,Wheeler E,et al.Common variants at 10 genomic loci influence hemoglobin A(C)levels via glycemic and nonglycemic pathways〔J〕.Diabetes,2010;59(12):3229-39.
43 Ryu J,Lee C.Association of glycosylated hemoglobin with the gene encoding CDKAL1 in the Korean Association Resource(KARE)study〔J〕.Hum Mutat,2012;33(4):655-9.
44 Paré G,Chasman DI,Parker AN,et al.Novel association of HK1 with glycated hemoglobin in a non-diabetic population:a genome-wide evaluation of 14,618 participants in the Women's Genome Health Study〔J〕.PLoS Genet,2008;4(12):e1000312.
45 Franklin CS,Aulchenko YS,Huffman JE,et al.The TCF7L2 diabetes risk variant is associated with HbA(C)levels:a genome-wide association meta-analysis〔J〕.Ann Hum Genet,2010;74(6):471-8.
46 Schafer SA,Machicao F,F(xiàn)ritsche A,et al.New type 2 diabetes risk genes provide new insights in insulin secretion mechanisms〔J〕.Diabetes Res Clin Pract,2011;93(Suppl 1):S9-24.
47 Strawbridge RJ,Dupuis J,Prokopenko I,et al.Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes〔J〕.Diabetes,2011;60(10):2624-34.
48 Dupuis J,Langenberg C,Prokopenko I,et al.New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk〔J〕.Nat Genet,2010;42(2):105-16.
49 Manning AK,Hivert MF,Scott RA,et al.A genome-wide approach accounting for body mass index identifies genetic variants influencing fasting glycemic traits and insulin resistance〔J〕.Nat Genet,2012;44(6):659-69.
50 Rees SD,Hydrie MZ,O'Hare JP,et al.Effects of 16 genetic variants on fasting glucose and type 2 diabetes in south asians:ADCY5 and GLIS3 variants may predispose to type 2 diabetes〔J〕.PLoS One,2011;6(9):e24710.
51 Stolerman ES,Manning AK,McAteer JB,et al.TCF7L2 variants are as sociated with increased proinsulin/insulin ratios but not obesity traits in the Framingham Heart Study〔J〕.Diabetologia,2009;52(4):614-20.
52 Kirchhoff K,Machicao F,Haupt A,et al.Polymorphisms in the TCF7L2,CDKAL1 and SLC30A8 genes are associated with impaired proinsulin conversion〔J〕.Diabetologia,2008;51(4):597-601.
53 Gjesing AP,Kjems LL,Vestmar MA,et al.Carriers of the TCF7L2 rs7903146 TT genotype have elevated levels of plasma glucose,serum proinsulin and plasma gastric inhibitory polypeptide(GIP)during a meal test〔J〕.Diabetologia,2011;54(1):103-10.
54 Irvin MR,Wineinger NE,Rice TK,et al.Genome-wide detection of allele specific copy number variation associated with insulin resistance in African Americans from the Hyper GEN study〔J〕.PLoS One,2011;6(8):e24052.
55 Matthews DR,Hosker JP,Rudenski AS,et al.Homeostasis model assessment:insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man〔J〕.Diabetologia,1985;28(7):412-9.
56 Johnson JL,Duick DS,Chui MA,et al.Identifying prediabetes using fasting insulin levels〔J〕.Endocr Pract,2010;16(1):47-52.
57 Carvalho E,Jansson PA,Axelsen M,et al.Low cellular IRS 1 gene and protein expression predict insulin resistance and NIDDM〔J〕.FASEB J,1999;13(15):2173-8.
58 Almind K,Inoue G,Pedersen O,et al.A common amino acid polymorphism in insulin receptor substrate-1 causes impaired insulin signaling.Evidence from transfection studies〔J〕.J Clin Invest,1996;97(11):2569-75.
59 Clausen JO,Hansen T,Bjorbaek C,et al.Insulin resistance:interactions between obesity and a common variant of insulin receptor substrate-1〔J〕.Lancet,1995;346(8972):397-402.
60 Kilpelainen TO,Zillikens MC,Stancakova A,et al.Genetic variation near IRS1 associates with reduced adiposity and an impaired metabolic profile〔J〕.Nat Genet,2011;43(8):753-60.
61 Willer CJ,Speliotes EK,Loos RJ,et al.Six new loci associated with body mass index highlight a neuronal influence on body weight regulation〔J〕.Nat Genet,2009;41(1):25-34.
62 Heid IM,Jackson AU,Randall JC,et al.Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution〔J〕.Nat Genet,2010;42(11):949-60.
63 Scherag A,Dina C,Hinney A,et al.Two new Loci for body-weight regulation identified in a joint analysis of genome-wide association studies for early-onset extreme obesity in French and german study groups〔J〕.PLoS Genet,2010;6(4):e1000916.
64 Scuteri A,Sanna S,Chen WM,et al.Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits〔J〕.PLoS Genet,2007;3(7):e115.
65 Okada Y,Kubo M,Ohmiya H,et al.Common variants at CDKAL1 and KLF9 are associated with body mass index in east Asian populations〔J〕.Nat Genet,2012;44(3):302-6.
66 Fox CS,Liu Y,White CC,et al.Genome-wide association for abdominal subcutaneous and visceral adipose reveals a novel locus for visceral fat in women〔J〕.PLoS Genet,2012;8(5):e1002695.
67 Zabaneh D,Balding DJ.A genome-wide association study of the metabolic syndrome in Indian Asian men〔J〕.PLoS One,2010;5(8):e11961.
68 Freathy RM,Mook-Kanamori DO,Sovio U,et al.Variants in ADCY5 and near CCNL1 are associated with fetal growth and birth weight〔J〕.Nat Genet,2010;42(5):430-5.
69 Kato N,Takeuchi F,Tabara Y,et al.Meta-analysis of genome-wide association studies identifies common variants associated with blood pressure variation in east Asians〔J〕.Nat Genet,2011;43(6):531-8.
70 Dastani Z,Hivert MF,Timpson N,et al.Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits:a multi-ethnic meta-analysis of 45,891 individuals〔J〕.PLoS Genet,2012;8(3):e1002607.
71 Teslovich TM,Musunuru K,Smith AV,et al.Biological,clinical and population relevance of 95 loci for blood lipids〔J〕.Nature,2010;466(7307):707-13.