【摘要】一道數(shù)學(xué)試題,由于思考角度的不同,往往能得到不同的解題方法.本文中,筆者將以2011年全國(guó)高中數(shù)學(xué)聯(lián)賽一試(A卷)第2題為對(duì)象,進(jìn)行不同角度的審視,從而用多種不同的解法得到相同的結(jié)果,為大家研究數(shù)學(xué)試題提供一個(gè)可供借鑒的實(shí)踐性解題案例.
【關(guān)鍵詞】2011年;全國(guó)高中數(shù)學(xué)聯(lián)賽;多方位探究
因此,真是通過(guò)這一微不足道的結(jié)構(gòu)變化,輕輕一變使得式子整齊對(duì)稱,富有美感,也使我們的思維迅速活躍起來(lái).至此,問(wèn)題得到了有效的簡(jiǎn)化,我們也終于到達(dá)了原試題的源頭,真切地把握住了命題人的思維脈搏.
2.改變形式,新解展現(xiàn)
目標(biāo)的平凡,結(jié)構(gòu)的熟稔讓我們的思維之花瞬間綻放,問(wèn)題是一個(gè)耳熟能詳?shù)呐f題,解法豐富.觀察函數(shù)解析式的結(jié)構(gòu)特征,進(jìn)行合理建構(gòu)數(shù)學(xué)運(yùn)用,將會(huì)得到原題看似高不可攀的新解法,如:
3.建構(gòu)模型,寓學(xué)于樂(lè)
四、題后反思
“讓學(xué)生體會(huì)到思維過(guò)程”,應(yīng)該成為我們?cè)跀?shù)學(xué)解題教學(xué)中遵循的基本原則,也是培養(yǎng)學(xué)生數(shù)學(xué)學(xué)習(xí)興趣重要的手段之一.以上這幾種解法,反映出不同的思維方式在數(shù)學(xué)問(wèn)題中的應(yīng)用,也是新課程理念下,建構(gòu)式數(shù)學(xué)課堂教學(xué)研究的積極探索.盡可能為學(xué)生建構(gòu)有效的數(shù)學(xué)情境,引導(dǎo)學(xué)生積極主動(dòng)地參與思考,從而獲得對(duì)數(shù)學(xué)學(xué)科的積極的體驗(yàn)及情感.
本題的探究不但使學(xué)生從多方位進(jìn)行一題多思,對(duì)數(shù)學(xué)的知識(shí)聯(lián)系有了更多的感悟和認(rèn)識(shí),而且更重要的是能從這些不同的思維發(fā)展過(guò)程中,培養(yǎng)思維的創(chuàng)造性,樹立全方位、多角度審視問(wèn)題的觀念,養(yǎng)成良好的思維習(xí)慣,從而培養(yǎng)了優(yōu)良的數(shù)學(xué)思維品質(zhì),提升了數(shù)學(xué)素養(yǎng).