鮑捷 王國祥
1 蘇州大學(xué)體育學(xué)院運(yùn)動人體科學(xué)系(蘇州 215021)
2 蘇州大學(xué)捷美生物醫(yī)學(xué)工程儀器聯(lián)合重點(diǎn)實(shí)驗(yàn)室
Wnt/β連環(huán)蛋白信號通路在Wnt信號通路中最為經(jīng)典,其對應(yīng)力刺激敏感,能夠?qū)C(jī)械信號轉(zhuǎn)化為生物化學(xué)信號,并對OPG/RANKL/RANK骨代謝信號進(jìn)行調(diào)控[1]。COX-2/PGE-2作為Wnt/β連環(huán)蛋白信號對骨代謝信號通路調(diào)控的中間途徑,同時也作為獨(dú)立的一個信號存在,對應(yīng)力刺激敏感,在整個信號通路中起到重要的作用[2]。細(xì)胞因子白介素6(IL-6)對運(yùn)動應(yīng)激敏感,可以影響COX-2活性,與PGE-2共同作為Wnt/β連環(huán)蛋白信號-COX-2/PGE-2-OPG/RANKL/RANK信號鏈的正反饋信號[3],可以解釋機(jī)體應(yīng)激條件下的過度運(yùn)動應(yīng)力促骨細(xì)胞及形態(tài)學(xué)改變致骨損傷易感性增高的機(jī)理。
環(huán)氧化酶(cyclooxygenase,COX)是游離花生四烯酸合成前列腺素(prostaglandin,PG)和血栓素的限速酶,包括COX-1和COX-2兩種亞型。COX-1在大多數(shù)正常細(xì)胞中呈穩(wěn)定表達(dá)狀態(tài),維持正常的生理功能,而COX-2是誘導(dǎo)應(yīng)激性表達(dá)基因,在細(xì)胞應(yīng)激時迅速合成,參與應(yīng)激過程,在多種炎癥及腫瘤的發(fā)生發(fā)展中常見[4-6]。COX-2主要定位于細(xì)胞的核膜,其產(chǎn)生的PG可以直接進(jìn)入核內(nèi),調(diào)節(jié)靶基因的轉(zhuǎn)錄。PG是存在于動物和人體內(nèi)的一類不飽和脂肪酸組成的具有多種生理活性的物質(zhì),在人體內(nèi)由花生四烯酸合成,由一個五環(huán)和兩條側(cè)鏈構(gòu)成,分為A~I(xiàn)等9個類型。實(shí)驗(yàn)證實(shí),當(dāng)選擇性上調(diào)COX-2,使其持續(xù)表達(dá),可促PG持續(xù)分泌[7]。PGE-2通過特異性受體介導(dǎo)完成對骨組織代謝的調(diào)節(jié),在骨代謝中具有雙向調(diào)節(jié)作用,有劑量依賴性。使用3μM的PGE-2對血清培養(yǎng)基中的3~5個/視野的成骨細(xì)胞培養(yǎng)24小時,每視野下成骨細(xì)胞數(shù)目增殖至10~15個;在使用western-blot法測試PGE-2對膠原纖維蛋白水平表達(dá)的實(shí)驗(yàn)中,同樣發(fā)現(xiàn)膠原纖維蛋白水平無論從PGE-2的刺激時間還是刺激濃度上都有顯著的依賴性[8]。Somayaji等在對成骨細(xì)胞培養(yǎng)過程中,加入COX-2的抑制劑NS-398后發(fā)現(xiàn),加抑制劑組PGE-2含量遠(yuǎn)低于對照組,RANKL蛋白水平顯著下降。此外,還有更多的研究表明低濃度的PGE-2促成骨細(xì)胞膠原纖維合成,高濃度PGE-2參與骨的吸收過程,其劑量受COX-2的調(diào)節(jié)[9-11]。
在牙科學(xué)的研究中發(fā)現(xiàn),COX-2/PGE-2對炎癥和應(yīng)力刺激敏感,牙周炎組的COX-2、PGE-2水平較健康組顯著升高,而牙齒矯形領(lǐng)域的研究發(fā)現(xiàn),機(jī)械牽張力促COX-2,PGE-2水平升高,且升高水平與NF-κB受體活化因子配體(ligand of receptor activator of NF-κB,RANKL)成正相關(guān)。RANKL由成骨/基質(zhì)細(xì)胞分泌,在1,25(OH)2D3、PTH和IL-11輔助作用下,可以被前破骨細(xì)胞識別并通過該分子與成骨/基質(zhì)細(xì)胞發(fā)生作用,繼而分化為破骨細(xì)胞(osteoclast,OC),其在體外能誘導(dǎo)成骨細(xì)胞(osteoblast,OB)膠原纖維的生成,在體內(nèi)能促進(jìn)骨吸收[12,13]。將骨髓培養(yǎng)細(xì)胞放入重組sRANKL環(huán)境,發(fā)現(xiàn)其在沒有成骨/基質(zhì)細(xì)胞條件下分化為OC。當(dāng)給小鼠注射sRANKL后也發(fā)現(xiàn)OC數(shù)量增多,骨吸收活躍,血鈣升高[14],表明RANKL除了刺激OC分化成熟,還能活化OC,增強(qiáng)OC的功能。多個實(shí)驗(yàn)表明,PGE-2通過刺激OB細(xì)胞中RANKL的表達(dá),調(diào)節(jié)OC活性和分化[15-17](圖 1)。
圖1 COX-2/PGE-2/RANKL信號通路的作用機(jī)制
近年來應(yīng)力刺激對COX-2/PGE-2水平上調(diào)的作用廣受關(guān)注,相關(guān)研究試圖解釋運(yùn)動應(yīng)力對骨健康的雙向調(diào)節(jié)機(jī)制[18]。研究發(fā)現(xiàn),力學(xué)信號轉(zhuǎn)化為生物化學(xué)信號并不直接引起COX-2水平的上調(diào),而是通過細(xì)胞間隙結(jié)構(gòu)-分子信號轉(zhuǎn)換作用實(shí)現(xiàn)。鈣粘附蛋白是一個介導(dǎo)細(xì)胞間黏附聚集和信號轉(zhuǎn)導(dǎo)的家族,在不同的組織,分布有E-鈣粘附蛋白、N-鈣粘附蛋白、P-鈣粘附蛋白等三種類型。鈣粘附蛋白分子的胞漿區(qū)高度保守,并與細(xì)胞內(nèi)骨架相連,在包括成骨細(xì)胞在內(nèi)的很多種細(xì)胞里存在。鈣粘附蛋白作為一種跨膜的鈣依賴性黏附分子,在細(xì)胞膜上直接與β-連環(huán)蛋白結(jié)合形成一個復(fù)合體,它把β-連環(huán)蛋白隔離于細(xì)胞膜上,阻止β-連環(huán)蛋白向胞漿及胞核轉(zhuǎn)位,發(fā)揮其調(diào)控下游基因表達(dá)的作用[19]。Adkison等給鼠肺動脈血管內(nèi)皮細(xì)胞施加34%的牽張應(yīng)力24 h后發(fā)現(xiàn),與β-連環(huán)蛋白結(jié)合的E-鈣粘附蛋白明顯減少[20]。采用細(xì)胞形態(tài)與生物學(xué)、分子生物學(xué)等多種研究手段探討牽張應(yīng)力作用下成骨細(xì)胞Wnt/β-連環(huán)蛋白信號通路的變化和作用發(fā)現(xiàn),牽張應(yīng)力可以激活Wnt/β-連環(huán)蛋白信號,促進(jìn)GSK-3β復(fù)合物解體,游離β-連環(huán)蛋白增多,GSK-3β與和E-鈣粘附蛋白結(jié)合的β-連環(huán)蛋白結(jié)合后促β-連環(huán)蛋白脫離E-鈣粘附蛋白后降解,無β-連環(huán)蛋白結(jié)合的E-鈣粘附蛋白則引起細(xì)胞骨架的變化,而從GSK-3β復(fù)合物脫落的β-連環(huán)蛋白入核后與Tcf/Lef結(jié)合,促下游目的基因COX-2、c-Fos、c-Jun等表達(dá),β-連環(huán)蛋白在這個過程中發(fā)揮著重要的樞紐作用。成骨細(xì)胞胞膜上的β-連環(huán)蛋白/E-粘附蛋白復(fù)合體在牽張力的作用下解聚并引起β-連環(huán)蛋白入核則可能是機(jī)械信號轉(zhuǎn)導(dǎo)的內(nèi)在機(jī)制之一[21]。細(xì)胞骨架的松散及COX-2/PGE-2大量生成,通過RANKL的促破骨細(xì)胞活性作用致骨結(jié)構(gòu)改變,骨強(qiáng)度下降,從而使骨損傷易感性增高(圖2)。
圖2 -連環(huán)蛋白-E-鈣粘附蛋白復(fù)合物與細(xì)胞骨架鏈接結(jié)構(gòu)
白細(xì)胞介素(interleukin,IL)是一組由多種細(xì)胞產(chǎn)生的介導(dǎo)細(xì)胞之間相互作用的細(xì)胞因子。IL-6是白介素家族的一類具有促炎抗炎及對運(yùn)動應(yīng)激敏感的細(xì)胞因子,在炎癥時由T細(xì)胞和巨噬細(xì)胞分泌,促進(jìn)創(chuàng)傷部位免疫反應(yīng)。IL-6通過對TNF-α和IL-1的抑制以及對IL-1Ra和IL-10的激活實(shí)現(xiàn)抗炎作用。運(yùn)動應(yīng)激狀態(tài)下肌肉收縮,肌組織分泌IL-6,并在血循環(huán)中提前于其他細(xì)胞因子出現(xiàn)。多數(shù)組織IL-6會在運(yùn)動應(yīng)激狀態(tài)下升高,升高程度與運(yùn)動強(qiáng)度、運(yùn)動量及運(yùn)動方式密切相關(guān)[22,23],有研究發(fā)現(xiàn)肌肉離心運(yùn)動時產(chǎn)生IL-6顯著高于向心運(yùn)動[24]。而在對大鼠進(jìn)行6周遞增負(fù)荷的研究中,由于大鼠免疫應(yīng)激的適應(yīng)過程導(dǎo)致血清IL-6比較平穩(wěn),說明IL-6與機(jī)體對運(yùn)動量或強(qiáng)度的不適應(yīng)所導(dǎo)致的應(yīng)激相關(guān),而逐步遞增的適應(yīng)性負(fù)荷不易引起 IL-6的變化[25]。
IL-6作為研究最完善的細(xì)胞因子之一,其通過與IL-6R結(jié)合后再與信號轉(zhuǎn)導(dǎo)亞單位gp130結(jié)合,從而調(diào)節(jié)IL-6的生物功能[26]。gp130 是糖蛋白,也是重要的受體復(fù)合物信號調(diào)節(jié)元件,受到細(xì)胞因子刺激后,gp130發(fā)生二聚化,與gp130近膜端連接的非受體型的酪氨酸激酶(Janus kinase,JAK)被激活,從而啟動一系列信號轉(zhuǎn)錄[27]。信號傳遞轉(zhuǎn)錄激活蛋白(signal transduction and activation of transcription,STAT)是一類信息傳遞與轉(zhuǎn)錄激活蛋白,其主要功能是促進(jìn)信息核轉(zhuǎn)移[28],JAK信號對其酪氨酸磷酸化后轉(zhuǎn)移入核,并激活下游基因表達(dá)[29]。JAK/STAT通路是IL-6參與應(yīng)激反應(yīng)的細(xì)胞因子傳導(dǎo)信號的重要途徑,其可被EPO、IL-3、G-CSF、IL-6等多種細(xì)胞因子刺激所激活,可能是這些不同的細(xì)胞因子受體信號轉(zhuǎn)導(dǎo)途徑中的一個共同因素,這種與受體相聯(lián)的JAK激酶可能因受體結(jié)構(gòu)的不同而催化不同的底物,使JAK介導(dǎo)許多不同的生物學(xué)功能[30]。
在成骨細(xì)胞內(nèi),RANKL基因的表達(dá)嚴(yán)格地受一些促骨因子的調(diào)節(jié),包括1,25(OH)2D3,甲狀旁腺激素,還有細(xì)胞因子如IL-1、IL-6、IL-11等。IL-6與細(xì)胞膜上的gp130發(fā)生二聚化以后,激活酪氨酸激酶JAK,隨后激活的JAK對STAT磷酸化,STAT3蛋白抑制分子PIAS3解離,被磷酸化的STAT入核,并促進(jìn)RANKL的轉(zhuǎn)錄及表達(dá),從而促進(jìn)破骨細(xì)胞的成熟[31,32](圖 3)。
圖3 IL-6的JAK/STAT3途徑直接對RANKL的影響(Tomohiro H,Takaishi H,Takito J,et al. Blood,2009[32])
除此以外,IL-6通過與gp130二聚化后,通過激活JAK促進(jìn)磷脂酰肌醇-3激酶(PI-3K)磷酸化,后通過蛋白激酶(Akt)途徑,激活MAPK;另一條通路是JAK和Ras結(jié)合,促Ras/MAPK通路激活,從而促破骨細(xì)胞活性[33,34]。(圖 4)
圖4 IL-6與gp130二聚化后的其他信號通路(Steeve KT,Marc P,Sandrine T,et al. Cytokine and Growth Factor Reviews,2004[38])
近年研究認(rèn)為IL-6與COX-2的調(diào)節(jié)過程密切相關(guān),其機(jī)制涉及運(yùn)動干預(yù)、受體免疫、信號激活等多個方面[35,36]。IL-6由單核巨噬細(xì)胞、內(nèi)皮細(xì)胞及淋巴細(xì)胞分泌,刺激骨組織中成骨細(xì)胞進(jìn)一步分泌IL-6,從而調(diào)節(jié)破骨細(xì)胞的分化和成熟[37,38]。
COX-2/PGE-2/RANKL是骨吸收的重要信號之一,其同時作為Wnt/β連環(huán)蛋白信號通路的下游信號,參與對OPG/RANKL/RANK骨代謝信號調(diào)控。
骨骼系統(tǒng)的發(fā)育對運(yùn)動應(yīng)力敏感,并在運(yùn)動應(yīng)力的刺激下不斷地進(jìn)行生理重塑。骨的重塑受骨細(xì)胞系活性影響,其中最主要的就是成骨細(xì)胞(osteoblasts),骨細(xì)胞(osteocytes)及破骨細(xì)胞(osteoclasts)。成骨細(xì)胞和破骨細(xì)胞在時間和空間上有很近的聯(lián)系,當(dāng)獲得一個刺激信號(負(fù)荷、激素或生長因子),破骨細(xì)胞出現(xiàn)在骨的表面,并通過細(xì)胞外酸溶機(jī)制吸收骨的礦物成分[39]。
Wnt/β連環(huán)蛋白信號對骨形成和骨量起到直接作用,目前被看作骨質(zhì)疏松發(fā)生最重要因素之一[40,41]。其中 Lrp5 作為 Wnt的輔助受體,Wnt/Lrp5信號是骨合成的重要信號[42,43],通過Wnt/β連環(huán)蛋白信號刺激可以促進(jìn)成骨細(xì)胞增殖及分化,并誘導(dǎo)抑制脂質(zhì)細(xì)胞[44,45],部分實(shí)驗(yàn)發(fā)現(xiàn)其機(jī)制為與骨形成蛋白、甲狀旁腺素信號互相作用,促進(jìn)成骨細(xì)胞基因表達(dá),促進(jìn)成骨細(xì)胞生長[46-48]。
John給大鼠連續(xù)使用GSK-3β抑制劑(GSK-3βi),同時對大鼠活體脛骨固定后施4點(diǎn)彎曲力2周后發(fā)現(xiàn),使用GSK-3βi的大鼠COX-2、eNOS、Wnt10B、FzD2等基因表達(dá)顯著增加,其中COX-2表達(dá)是對照組的28倍[49]。在對MC3T3-E1細(xì)胞5小時內(nèi)采用微壓力系統(tǒng)加力3400次發(fā)現(xiàn),COX-2和eNOS基因表達(dá)增加2.5倍,與c-fos和c-jun基因表達(dá)增加(3.5倍)相關(guān)。以上實(shí)驗(yàn)表明COX2、eNOS、c-fos和c-jun都是對壓力敏感基因,且通過用GSK-3βi的實(shí)驗(yàn)證實(shí)這些基因與Wnt/β連環(huán)蛋白信號相關(guān),且屬于Wnt/β連環(huán)蛋白信號通路轉(zhuǎn)換的生物化學(xué)信號的一部分。Sawakami在LRP5基因缺失的成骨細(xì)胞中發(fā)現(xiàn)流體力學(xué)刺激增加PGE-2的釋放,從而驗(yàn)證了PGE-2信號與Wnt/β連環(huán)蛋白信號對于力學(xué)刺激的感應(yīng)與LRP5無關(guān)[50]。在使用機(jī)械應(yīng)力進(jìn)行體內(nèi)外的刺激的實(shí)驗(yàn)表明,Wnt/β連環(huán)蛋白信號的激活,包括脂肪生成抑制基因Wnt10B的表達(dá),可以誘導(dǎo)COX2、eNOS、c-fos和c-jun等基因的表達(dá),也有人認(rèn)為這是機(jī)械力刺激與Wnt/β連環(huán)蛋白信號協(xié)同刺激的結(jié)果[51,52]。
有研究發(fā)現(xiàn)在結(jié)腸癌的發(fā)生過程中COX-2與Wnt/β連環(huán)蛋白信號有著高相關(guān)性,并在信號通路共同路徑中相互影響[53]。而PGE-2的升高能通過3個途徑介導(dǎo),促進(jìn)入核與轉(zhuǎn)錄因子T細(xì)胞因子/淋巴增強(qiáng)因子(Tcf/Lef)的活性,從而使得COX-2基因表達(dá)進(jìn)一步加強(qiáng)。其機(jī)制在于:(1)PGE-2與G雙蛋白受體(GPR)結(jié)合直接影響Wnt/β連環(huán)蛋白信號通路軸蛋白(Axin)結(jié)合復(fù)合物能力,使β-連環(huán)蛋白結(jié)合細(xì)胞膜上的E-鈣黏蛋白(E-cadherin),軸蛋白(Axin)、酪蛋白激酶(casein kinase,CK)、糖原合成酶激酶-3β(GSK-3β)的巨大復(fù)合物解體,β連環(huán)蛋白游離入核與Tcf/Lef作用。(2)PGE-2與GFR的復(fù)合物通過磷酸蛋白激酶A(PKA)-cAMP旁路直接激活 Tcf/Lef的活性[54]。(3)PGE-2與 GPR 的復(fù)合物與生長因子受體(growth factor receptors,GFR)進(jìn)一步結(jié)合,通過磷脂酰肌醇-3激酶/蛋白激酶B(PI3K/Akt)途徑介導(dǎo)β連環(huán)蛋白的去磷酸化并促進(jìn)其入核。(4)PGE-2與GFR的復(fù)合物與生長因子受體(growth factor receptors,GFR)進(jìn)一步結(jié)合,通過Ras/MAPK途徑促Tcf/Lef的活性[55(]圖5)。由此可見,在持續(xù)應(yīng)力刺激的情況下,Wnt/β連環(huán)蛋白信號通路對COX-2/PGE-2的促生成呈正反饋趨勢,導(dǎo)致PGE-2濃度持續(xù)升高,刺激成骨細(xì)胞的RANKL大量分泌并發(fā)揮其生物學(xué)效應(yīng)。PEG-2的正反饋積累效應(yīng)也解釋了長期持續(xù)應(yīng)力作用下致骨細(xì)胞及形態(tài)學(xué)變化使骨損傷易感性增高的機(jī)制。
圖5 IL-6、COX-2/PGE-2在Wnt/連環(huán)蛋白信號通路中的相互作用
運(yùn)動應(yīng)激產(chǎn)生的IL-6與gp130形成二聚體后,一方面通過Jak/STAT機(jī)制促RANKL直接分泌,另一方面通過Jak促PI3K/Akt途徑及ras/MAPK途徑,與PGE-2形成了共刺激信號,共同促進(jìn)β連環(huán)蛋白的入核及細(xì)胞核內(nèi)Tcf/Lef的活性。同時,IL-6促進(jìn)PGE-2大量生成也進(jìn)一步促進(jìn)成骨細(xì)胞分泌IL-6,也形成了運(yùn)動應(yīng)激的正反饋機(jī)制。持續(xù)運(yùn)動應(yīng)力刺激必然產(chǎn)生持續(xù)運(yùn)動應(yīng)激,當(dāng)機(jī)體在應(yīng)激過程中打開免疫窗口,IL-6的正反饋機(jī)制與應(yīng)力刺激的PEG-2正反饋積累效應(yīng)相互促進(jìn),共同抑制成骨細(xì)胞的活性,并促進(jìn)破骨細(xì)胞功能,使骨形態(tài)學(xué)發(fā)生改變,應(yīng)力致骨損傷易感性增高。
COX-2/PGE-2是Wnt/β連環(huán)蛋白信號對骨代謝信號調(diào)控通路的中間途徑,其通過Wnt/β連環(huán)蛋白,將力學(xué)信號轉(zhuǎn)換為生物信號的機(jī)制,對OPG/RANKL/RANK骨代謝信號進(jìn)行調(diào)控,其研究目前多集中在口腔醫(yī)學(xué)領(lǐng)域,是否能在運(yùn)動醫(yī)學(xué)的骨損傷領(lǐng)域運(yùn)用,尚需研究。IL-6是運(yùn)動應(yīng)激下多組織分泌的細(xì)胞因子,在運(yùn)動時伴隨運(yùn)動應(yīng)力的刺激使COX-2/PGE-2與IL-6系統(tǒng)同時激活,PGE-2與IL-6是一對能夠相互影響的共刺激信號,分別通過其共同及獨(dú)有的分子信號鏈對Wnt/β連環(huán)蛋白信號進(jìn)行正反饋調(diào)節(jié),通過從口腔醫(yī)學(xué)及其他醫(yī)學(xué)學(xué)科基礎(chǔ)與臨床實(shí)驗(yàn)中總結(jié)PGE-2與IL-6的正反饋積累效應(yīng),可嘗試解釋過度應(yīng)力刺激及應(yīng)激狀態(tài)下骨細(xì)胞代謝及骨形態(tài)改變,使骨損傷易感性增高的機(jī)制,但應(yīng)力是否促骨損傷尚無相關(guān)基礎(chǔ)實(shí)驗(yàn)驗(yàn)證,值得進(jìn)一步研究。
[1]鮑捷,王國祥. 應(yīng)力刺激對β-連環(huán)蛋白的影響以及Wnt/β-連環(huán)蛋白在骨代謝信號通路中的作用.中國運(yùn)動醫(yī)學(xué)雜志,2011,30(8):795-801.
[2]Yewseok S,F(xiàn)arrukh A,Jeremy J,et al. A plant fl avonoid fisetin induces apoptosis in colon cancer cells by inhibition of COX2 and Wnt/EGFR/NF- B-signaling pathways. Carcinogenesis,2009,30:300-307.
[3]Chang WH,Hu SP,Huang YF,et al. Effect of purple sweet potato leaves consumption on exercise-induced oxidative stress and IL-6 and HSP72 levels. J Appl Physiol,2010,109(10):1710-1715.
[4]Park JL,Shu L,Shayman JA,et al. Differential involvement of COX1 and COX2 in the vasculopathy associated with the α-galactosidase A-knockout mouse.Am J Physiol Heart Circ Physiol,2009,296(4):1133-1140.
[5]Frungieri M B. Cyclooxygenase 2(COX2) and prostaglandins:Emerging roles in the testis. Biol Reprod,2008,78:159.
[6]Nakahari T. Different regulation of PGE2 production by COX1 and COX2 in guinea pig gastric antrum. FASEB J,2006,20:1271.
[7]Forwood MR. Inducible cyclo-oxygenase(COX-2)mediates the induction of bone formation by mechanical loading in vivo. J Bone Miner Res,1996,11(11):1688-1693.
[8]Tang CH,Yang RS,F(xiàn)u WM. Prostaglandin E2 stimulates fibronectin expression through EP1 receptor,phospholipase C,protein kinase Ca,and c-Src pathway in primary cultured rat osteoblasts. J Biol Chem,2005,280:22907 -22916.
[9]Somayaji SN,Huet YM,Gruber HE,et al. Staph ylococcus aureus induces expression of receptor activator of NF-kappap ligand and prostaglandin E2in infected murine osteoblasts. Infect Immun,2008,76(11):5120-5126.
[10]Krieger NS,Bushinsky DA. Pharmacological inhibition of intracellular calcium release blocks acid-induced bone resorption. Am J Physiol Renal Physiol,2011,300 :91-97.
[11]Sakurai T,Terashima S,Miyakoshi J. Enhanced secretion of prostaglandin E2 from osteoblasts by exposure to a strong static magnetic field.Bioelectromagnetics,2008,29(4):277-283.
[12]Ikeda T,Kasai M,Utsuyama M,et al. Determination of the three isotoems of the receptor activator of nuclear factor-κB ligand and their differential expression in bone and thymus. Endocrinology,2001,142(4):1419-1426
[13]Kong YY,Yoshda H,Sarosi I,et al. OPGL is a key regulator of osteoclastogenesis,lympholyte development and lymphnode organogensis. Nature,1999,397(6717):315-323.
[14]Shalhoud V,F(xiàn)aust J,Boyle WJ,et al. Osteoprotegerin and osteoprotegerin ligand effects on osteoclast formation from human peripheral blood mononuclear cell pretursors.J Cell Biochem,1999,72(2):251-261.
[15]Liu L,Igarashi K.,Kanzaki H,et al. Clodronate Inhibits PGE2 Production in Compressed Periodontal Ligament Cells. J Dent Res,2006,85(8):757-760.
[16]Steeve KT,Amiable N,Pelletier J P,et al. Modulation of OPG,RANK and RANKL by human chondrocytes and their implication during osteoarthritis. Rheumatology,2009,48:1482-1490.
[17]Suzawa T,Miyaura C,Maruyama T,et al. The Role of Prostaglandin E Receptor Subtypes(EP1,EP2,EP3,and EP4) in Bone Resorption:An Analysis Using Speci fic Agonists for the Respective Eps. Endocrinology,2000,141(6): 1554-1559.
[18]吳昌敬,李友瑞,徐亞娟,等. 細(xì)胞骨架完整性在流體剪切力誘導(dǎo)成骨細(xì)胞COX-2基因表達(dá)中的作用. 中華口腔醫(yī)學(xué)研究雜志電子版,2009,3(4):403-409.
[19]Goodwin M,Yap AS. Classical cadherin adhesion molecules:coordinating cell adhesion signaling and the cytoskeleton. J Mol Histol,2004,35(8-9):839-844.
[20]Adkison JB,Miller GT,Weber DS,et al. Differential responses of pulmonary endothelial phenotypes to cyclical stretch. Microvasc Res,2006,71(3):175-184.
[21]Grigoryan T, Wend P, Klaus A,et al. Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of b-catenin in mice. Genes,2008,22:2308-2341.
[22]Macdonald C,Wojtaszewski JFP,Pedersen BK,et al.Interleukin-6 release from human skeletal muscle during exercise :Relation to AMPK activity. J Appl Physiol,2003,95:2273-2277.
[23]Ronsen O,Lea T,Bahr R,et al. Enhanced plasma IL-6 and IL-1ra responses to repeated vs. single bouts of prolonged cycling in elite athletes. J Appl Physiol,2002,92:2547-2553.
[24]Haahr PM,Pedersen BK,F(xiàn)omsgaard A,et al. Effect of physical exercise on in vitro production of interleukin1,interleukin 6,tumour necrosis factor-alpha,interleukin 2 and interferon-gamma. Int J Sports Med,1991,12(2):223-227.
[25]王茂葉. 6周遞增跑臺運(yùn)動對大鼠血清Th1/Th2平衡和IL-6的影響. 體育科學(xué),2009,29(10):46-50.
[26]M llerg J,Geib T,Jostock T,et al. IL-6 receptor independent stimulation of human gp130 by viral IL-6. J Immunol,2000,164 :4672-4677.
[27]Silver JS,Hunter CA. gp130 at the nexus of inflammation autoimmunity and cancer. J Leukoc Biol,2010,88(10):1145-1156.
[28]劉景生. 細(xì)胞信息與調(diào)控. 北京:北京醫(yī)科大學(xué)中國協(xié)和醫(yī)科大學(xué)聯(lián)合出版社,1998. 246.
[29]Darnell JJ,Kerr IM,Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science,1994,264 :1415-1421.
[30]Bolli R,Dawm B,Xuan YT. Role of the JAK-STAT pathway in protection against myocardial is chemia/reperfusion injury. Trends Cardiovasc Med,2003,13(2):72.
[31]Somayaji SN,Ritchie S,Sahraei M,et al.Staphylococcus aureus induces expression of receptor activator of NF- Kappa B ligand and prostaglandin E2 in infected murine osteoblasts. Infect Immun,2008,76(11):5120-5126.
[32]Tomohiro H,Takaishi H,Takito J,et al. PIAS3 negatively regulates RANKL-mediated osteoclastogenesis directly in osteoclast precursors and indirectly via osteoblasts. Blood,2009,113(10):2202-2212.
[33]O’Brien CA. Control of RANKL gene expression.Bone,2010,46(4):911-919.
[34]Steeve KT,Marc P,Sandrine T,et al. IL-6 RANKL TNF-alpha/IL-1 interrelations in bone resorption pathophysiology. Cytokine Growth Factor Rev,2004,15:49-60.
[35]Liu XH,Kirschenbaum A,Yao S,et al. Interactive effect of interleukin-6 and prostaglandin E2 on osteoclastogenesis via the OPG/RANKL/RANK system.Ann N Y Acad Sci,2006,1068 :225-233.
[36]Taketa T,Sakai A,Tanaka S,et al. Selective cyclooxygenase-2 inhibitor prevents reduction of trabecular bone mass in collagen-induced arthritic mice in association with suppression of RANKL/OPG ratio and IL-6 mRNA expression in synovial tissues but not in bone marrow cells. J Bone Miner Metab,2008,26(2):143-151.
[37]Sanchez C,Gabay O,Salvat C,et al. Mechanical loading highly increases IL-6 production and decreases OPG expression by osteoblasts. Osteoarthritis,2009,17(4):473-481.
[38]Steeve KT,Nathalie A,Pelletier JP,et al. Modulation of OPG,RANK and RANKL by human chondrocytes and their implication during osteoarthritis. Rheumatology,2009,48:1482-1490.
[39]Teiteibaum SL. Osteoclast:what do and how do they do it? Am J Pathol,2007,170(2):427-435.
[40]Krishnan V,Bryant HU,Macdougald OA. Regulation of bone mass by Wnt signaling. J Clin Invest,2006,116:1202-1209.
[41]Marie PJ, Kassem M. Osteoblasts in osteoporosis:past,emerging,and future anabolic targets. Eur J Endocrinol,2011,165:1-10.
[42]Glass DA,Karsenty G. In vivo analysis of Wnt signaling in bone. Endocrinology,2007,148:2630-2634
[43]Johnson ML,Harnish K,Nusse R,et al. LRP5 and Wnt signaling:a union made for bone. J Bone Miner Res,2004,19:1749-1757.
[44]Bodine PV ,Komm BS. Wnt signaling and osteoblastogenesis. Rev Endocr Metab Disord,2006,7:33-39.
[45]Qiu W,Andersen TE,Bollerslev J,et al. Patients with high bone mass phenotype exhibit enhanced osteoblast differentiation and inhibition of adipogenesis of human mesenchymal stem cells. J Bone Miner Res,2007,22 :1720-1731.
[46]Almeida M,Han L,Bellido T. Wnt proteins prevent apoptosis of both uncommitted osteoblast progenitors and differentiated osteoblasts by beta-catenindependent and independent signaling cascades involving Src/ERK and phosphatidylinositol 3-kinase/AKT. J Biol Chem,2005,280:41342-41351.
[47]Kramer I,Keller H,Leupin O,et al. Does osteocytic SOST suppression mediate PTH bone anabolism? Trends Endocrinol Metab,2010,21:237-244.
[48]Rawadi G,Vayssiere B,Dunn F,et al. BMP-2 controls alkaline phosphatase expression and osteoblast mineralization by a Wnt autocrine loop. J Bone Miner Res,2003,18:1842-1853.
[49]Robinson JA,Chatterjee-Kishore M,Yaworsky PJ,et al. Wnt/β-Catenin Signaling Is a Normal Physiological Response to Mechanical Loading in Bone. J Bio Chem,2006,281(42):31720-31728.
[50]Sawakami K,Alexander G, Ai M , e t a l. T h e Wnt co-receptor LRP5 is essential for skeletal mechanotransduction but not for the anabolic bone response to parathyroid hormone treatment. J Biol Chem,2006,281:23698-23711.
[51]Bennett CN,Longo KA,Wright WS,et al. Regulation of osteoblastogenesis and bone mass by Wnt10b. PNAS,2005,102:3324-3329.
[52]Ross SE,Hemati N,Kenneth A,et al. Inhibition of 950-953.
[53]Castellone MD,Teramoto H,Williams BO. Prostaglandin E2 promotes colon cancer cell growth through a Gs-Axin-?-Catenin signaling axis. Science,2005,310(12):1504-1510.
[54]Fujino H,Srinivasan D,Regan JW. Cellular conditioning and activation of ?-Catenin signaling by the FPB prostanoid receptor. J Biol Chem,2002,277(12):48786-48795.
[55]Buchanan FG,Raymond N. Connecting COX-2 and Wnt in cancer. Cancer cell,2006,(1):6-8.