余 蓉,邱少紅,李傳珩,張 勤,簡維國 (石首市人民醫(yī)院檢驗科, 湖北 石首 434400)
HBV前S基因芯片檢測研究
余 蓉,邱少紅,李傳珩,張 勤,簡維國 (石首市人民醫(yī)院檢驗科, 湖北 石首 434400)
新發(fā)明的芯片法檢測前S基因缺失突變發(fā)現(xiàn)一個乙肝攜帶者體內(nèi)往往存在多種突變,傳統(tǒng)分析方法耗時耗力。經(jīng)研究發(fā)現(xiàn),單個PCR反應(yīng)產(chǎn)物足夠?qū)η癝基因缺失分型。個體基因克隆后的產(chǎn)物用于前S芯片法雜交檢測,比傳統(tǒng)DNA測序法省時經(jīng)濟。前S芯片為0.7cm2大小的尼龍膜,對于沒有測序儀器的臨床機構(gòu)來講更方便經(jīng)濟。同時,芯片自動檢測多種前S克隆,更適合于對慢性乙肝病毒攜帶者大范圍的突變掃描。雙盲法對比芯片法和傳統(tǒng)測序法,二者對前S突變的檢出率相近。
前S基因缺失突變;傳統(tǒng)基因序列檢測法;芯片法
慢性乙肝病毒感染是世界范圍內(nèi)原發(fā)性肝細(xì)胞癌發(fā)病的一個重要原因[1-6],血液或體液為其主要傳播途徑。在癌癥發(fā)展之前乙肝病毒數(shù)十年的持續(xù)存在,多在40歲及以上病人發(fā)生乙肝相關(guān)原發(fā)性肝細(xì)胞癌[6-7]。慢性乙肝病毒攜帶者長期對病毒的控制可能對原發(fā)性肝癌的發(fā)生起到抑制作用。用于檢測慢性乙肝病毒攜帶者體內(nèi)病毒狀況的乙型肝炎病毒標(biāo)記物包括DNA滴度、乙肝病毒表面抗原、核心抗原、以及e抗原[7-8]。標(biāo)記物聯(lián)合檢測揭示了體內(nèi)病毒的復(fù)制情況以及宿主肝細(xì)胞內(nèi)病毒顆粒數(shù)量。乙肝病毒活動性復(fù)制以及高病毒滴度與乙肝病毒導(dǎo)致的肝臟病情如炎癥、纖維化、硬化和肝細(xì)胞癌的嚴(yán)重性相符[9]。
圖1 灰色部分標(biāo)示前S1和前S2突變部位,圖上的箭頭指示HBV基因的起始位點
19世紀(jì)90年代末兩種類型的因前S基因缺失突變而形成的大蛋白被發(fā)現(xiàn),并被認(rèn)為與原發(fā)性肝細(xì)胞癌高度相關(guān)[10-11]。大蛋白主要表達(dá)在慢性乙肝病毒感染的后期,病毒基因組整合進(jìn)入宿主染色體以后[12-15]。這種突變基因翻譯而成的大蛋白首先在毛玻璃樣肝細(xì)胞中被發(fā)現(xiàn),組織學(xué)證據(jù)提示其多出現(xiàn)在慢性乙肝病毒感染者及原發(fā)性肝細(xì)胞癌患者體內(nèi)[16]。前S突變形成的大蛋白與包括肝硬化和原發(fā)性肝癌在內(nèi)的嚴(yán)重肝臟疾病密切相關(guān),可能原因是其參與了肝細(xì)胞癌變的發(fā)生發(fā)展過程[17-25]。前S基因突變包括前S1和前S2兩種不同的突變(見圖1)。突變基因翻譯而成的蛋白在內(nèi)質(zhì)網(wǎng)聚集,引發(fā)了劇烈的內(nèi)質(zhì)網(wǎng)壓力[26],進(jìn)而導(dǎo)致氧化毒性和DNA損傷[27]。同時存在非內(nèi)質(zhì)網(wǎng)途徑,突變的前S2蛋白能夠延長肝細(xì)胞壽命[28]。與原癌基因(c-jun)激活域結(jié)合蛋白1(JAB1)作用,誘導(dǎo)腫瘤抑制基因(p27kip1)降解,細(xì)胞周期進(jìn)行,細(xì)胞增長[30]。因此認(rèn)為在乙肝相關(guān)的肝細(xì)胞癌發(fā)生過程中前S突變很關(guān)鍵。
圖2 前S基因芯片 7mm×10mm/w 包含42個核苷酸探針
圖3 A顯示野生型大蛋白基因;B顯示前S1突變蛋白基因,探針6、7信號陰性;C顯示前S2突變蛋白基因,信號12、13信號陰性
在發(fā)現(xiàn)前S突變以后,眾多相關(guān)研究結(jié)果報道了其在慢性乙肝病毒攜帶者體內(nèi)的廣泛存在[17-25]。突變的前S形成的大蛋白,尤其是前S2蛋白與包括肝癌在內(nèi)的乙肝相關(guān)疾病的嚴(yán)重性高度關(guān)聯(lián)。前S基因缺失突變掃描對于慢性乙肝病毒攜帶者診治尤其重要,同時與其他乙肝標(biāo)志物聯(lián)合檢測以評估發(fā)生原發(fā)性肝癌的風(fēng)險。
慢性乙肝病毒攜帶者體內(nèi)前S基因突變的確認(rèn)通常需要許多實驗步驟,因為突變的前S基因來源于野生的前S基因,一個攜帶者體內(nèi)可能存在許多前S自然突變,需要逐一克隆和測序,直接導(dǎo)致大樣本檢測的困難。新發(fā)明的檢測方法,省略傳統(tǒng)的DNA測序步驟,縮短程序使檢測時間由7d減少至3d。
DNA序列分析結(jié)果表明急性乙肝感染患者的前S基因突變率相對較低(為7%),乙肝持續(xù)感染病程中前S基因缺失突變率逐漸上升至37%,在原發(fā)性肝癌患者中突變率升至60%,乙肝攜帶者基因組內(nèi)的前S突變易化了肝癌的發(fā)展。
前S基因芯片包含42個基因探針(見圖2),檢測野生型大蛋白基因,前S1基因突變蛋白,前S2基因突變蛋白[27]。野生型能與芯片上所有探針雜交(見圖3A),前S1突變顯示信號6、7探針缺失(見圖3B),前S2突變顯示探針12、13缺失(見圖3C)。
傳統(tǒng)基因序列檢測法檢測前S1基因 21個克隆,前S1基因芯片分析檢測19個;前S1缺失突變檢出率傳統(tǒng)基因序列檢測法為70%,芯片法為65%。對比結(jié)果顯示芯片法可以提供敏感性分析。
新發(fā)明的芯片法檢測前S基因缺失突變發(fā)現(xiàn)一個乙肝攜帶者體內(nèi)往往存在多種突變,傳統(tǒng)分析方法耗時耗力。經(jīng)研究發(fā)現(xiàn),單個PCR反應(yīng)產(chǎn)物足夠?qū)η癝基因缺失分型。個體基因克隆后的產(chǎn)物用于前S芯片法雜交檢測,比傳統(tǒng)DNA測序法省時經(jīng)濟。前S芯片為0.7cm2大小的尼龍膜,對于沒有測序儀器的臨床機構(gòu)來講更方便經(jīng)濟。同時,芯片自動檢測多種前S克隆,更適合于對慢性乙肝病毒攜帶者大范圍的突變掃描。雙盲法對比芯片法和傳統(tǒng)測序法,二者對前S突變的檢出率相近。
研究結(jié)果表明急性乙肝感染HBV病毒高滴度,前S缺失突變率低;慢性乙肝感染后期,HBV病毒滴度小,前S缺失突變率較急性期明顯升高,至乙肝相關(guān)原發(fā)性肝癌階段,突變率甚至高至60%。提示前S缺失發(fā)生在HBV長期持續(xù)感染階段,最終成為乙肝病毒攜帶者。因此假設(shè)前S突變是肝臟癌變的重要因素,前S在內(nèi)質(zhì)網(wǎng)的聚集導(dǎo)致內(nèi)質(zhì)網(wǎng)壓力增加以及氧化毒性,引起DNA損傷和突變[26-27]。有研究表明前S2突變引起細(xì)胞周期素A過表達(dá),引發(fā)細(xì)胞周期開始,細(xì)胞增長[28-29]。結(jié)果表明,突變大蛋白尤其是前S2型參與了癌癥的發(fā)生過程。因此對于原發(fā)性肝癌的高危人群慢性乙肝攜帶者,檢測前S基因缺失突變很重要。
除外前S基因缺失,HBV一系列標(biāo)志物例如HBV 滴度檢測、HbeAg也與慢性乙肝攜帶者罹患肝癌的風(fēng)險相關(guān)[30-31]。乙肝病毒復(fù)制引起肝臟損傷、炎癥,釋放腫瘤壞死因子,易化了纖維化的進(jìn)程以及肝細(xì)胞的增殖[7-8]。HBV蛋白HBX能與許多宿主因子交互反應(yīng),是病毒原癌蛋白[32-33]。HBX與細(xì)胞啟動子結(jié)合反應(yīng),作用于反式調(diào)控元件[34];同時調(diào)節(jié)蛋白酶體的功能,調(diào)控細(xì)胞降解以及病毒蛋白的合成[35]。因此假設(shè)前S突變加強了HBX的有害作用,引起細(xì)胞增殖和基因組的不穩(wěn)定性,從而易化了肝細(xì)胞癌的發(fā)生。
[1]Bréchot C, Gozuacik D, Murakami Y,et al. Molecular bases for the development of hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC)[J]. Sem Cancer Biol, 2000,10:211-231.
[2]Arbuthnot P, Kew M.Hepatitis B virus and hepatocellular carcinoma[J]. Int J Exp Pathol,2001, 82:77-100.
[3]Parkin D M, Pisani P, Ferlay J.Estimates of the worldwide incidence of the 18 major cancers in 1985[J].Int J Cancer,1993,54:594-606.
[4]Parkin D M, Whelan S L, Ferlay J, et al. Cancer Incidence in Five Continents[M]. In IARC Cancer Base,2005,7:153 .
[5]Bosch F X.Global epidemiology of hepatocellular carcinoma. In Liver Cancer Edited by: Okuda K, Tabor E[M]. New York:Churchill Livingstone, 1997:13-28.
[6]Beasley J, Hwang LY, Lin C C,Chien C S. Hepatocellular carcinoma and HBV[J]. A prospective study of 22,707 men in Taiwan. Lancet,1981,2:11290-11133.
[7]Levy J A, Owens R A.Fraenkel-Conrat H: Virology [M]. Prentice-Hall, Englewood Cliffs,1994:325.
[8]Feitelson M. Molecular components of hepatitis B virus[J]. Nijhoff Publications, Boston, 1985:26.
[9]Yu M W, Yeh S H, Chen P J, et al. Hepatitis B virus genotype and DNA level and hepatocellular carcinoma: a prospective study in men[J]. J Natl Cancer Inst,2005, 97:265-272.
[10]Fan Y F, Lu C C, Chang Y C, et al. Identification of a pre-S mutant in hepatocytes expressing a novel 2 marginal pattern of surface antigen in advanced disease of chronic hepatitis B virus infection[J]. J Gastro Hepat,2000, 15:519-528.
[11]Fan Y F, Lu C C, Chen W C, et al. Prevalence and significance of hepatitis B virus (HBV) pre-S mutants in serum and liver at different replicative stages of chronic HBS infection[J]. Hepatology,2001,33:277-286.
[12]Bréchot C, Hadchouel M, Scotto J,et al. State of hepatitis B virus DNA in hepatocytes of patients with hepatitis B surface antigen-positive and negative liver disease[J]. Proc Natl Acad Sci USA,1981, 78:3906-3910.
[13]Shafritz D A. Integration of hepatitis B virus DNA into the genome of liver cells in chronic liver disease and hepatocellular carcinoma[J]. N Engl J Med,1981, 305:1067-1073.
[14]Takada S, Gotoh Y, Hayashi S, et al. Structural rearrangement of integrated hepatitis B virus DNA as well as cellular flanking DNA is present in chronically infected hepatic tissues[J]. J Virol,1990, 64:822-828.
[15]Hsu T, Moroy T, Etiemble J, et al. Activation of c-myc by woodchuck hepatitis virus insertion in hepatocellular carcinoma[J]. Cell,1988, 55:627-635.
[16]Hadziyannis S, Gerber M A, Vissoulis C,et al. Cytoplasmic hepatitis B antigen in “ground-glass” hepatocytes of carriers[J].Arch Pathol,1973, 96:327-330.
[17]Huy T T, Ushijima H, Win K M, et al.Abe K: High prevalence of hepatitis B virus pre-s mutant in countries where it is endemic and its relationship with genotype and chronicity[J]. J Clin Microbiol, 2003, 41:5449-5455.
[18]Santantonio T, Jung M C, Schneider R, et al. Hepatitis B virus genomes that cannot synthesize pre-S proteins occur frequently and as 2 dominant virus populations in chronic carriers in Italy[J]. Virology,1992, 188:948-952.
[19]Chen B F, Liu C J, Jow G M, et al. High prevalence and mapping of pre-S deletion in hepatitis B virus carriers with progressive liver diseases[J].Gastroenterology,2006,130:1153-1168.
[20]Chen C H, Hung C H, Lee C M, et al. Pre-S deletion and complex mutations of hepatitis B virus related to advanced liver disease in HBeAg-negtive patients[J]. Gastroenterology,2007, 133:1466-1474.
[21]Chen C H, Changchien C S, Lee C M,et al. Combined mutations in pre-S/surface and core promoter/precore regions of hepatitis B virus increase the risk of hepatocellular carcinoma: a case-control study[J]. Infect Dis,2008, 198:1634-1642.
[22]Fang Z L, Sabin C A, Dong B Q, et al. Hepatitis B virus pre-S deletion mutations are a risk factor for hepatocellular carcinoma: a matched nested case-control study[J]. J Gen Virol, 2008,89:2882-2890.
[23]Suwannakarn K, Tangkijvanich P, Thawornsuk N, et al. Molecular epidemiological study of hepatitis B virus in Thailand based on the analysis of pre-S andS genes[J]. Hepatol Res,2008,38:244-251.
[24]Kajiya Y, Hamasaki K, Nakata K, et al.Eguchi K: Full-length sequence and functional analysis of hepatitis B virus genome in a virus carrier: a case report suggesting the impact of pre S and core promoter mutations on the progression of the disease[J]. J Viral Hepat, 2002, 9:149-156.
[25]Preikschat P, Günther S, Reinhold S,et al. Complex HBV populations with mutations in core promoter, C gene, and pre-S region are associated with development of cirrhosis in long-term renal transplant recipients[J]. Hepatology,2002, 35:466-477.
[26]Wang H C, Wu H C, Chen C F, et al. Different types of ground glass hepatocytes in chronic hepatitis B virus infection contain specific pre-S mutants that may induce endoplasmic reticulum stress[J]. Am J Path,2003, 163:2441-2449.
[27]Hsieh Y H, Su I J, Wang H C, et al. The pre-S mutant surface antigens in chronic hepatitis B virus infection induce oxidative stress and DNA damage[J]. Carcinogenesis,2004, 25:2023-2032.
[28]Wang H C, Chang W T, Chang W W, et al. Upregulation of cyclin A and nodular proliferation of hepatocytes induced by a pre-S deletion mutant 2 in chronic HBV infection[J]. Hepatology,2005, 41:761-770.
[29]Hsieh Y H, Su I J, Wang H C, et al. Hepatitis B virus pre-S mutant surface antigen 2 induces degradation of cyclin-dependent kinase inhibitor Kip1p27 through c-Jun activation domain-binding protein 1[J]. Mol Cancer Res,2007, 5:1063-1072.
[30]Schlicht H J.Schaller H: Analysis of hepatitis B virus gene functions in tissue culture and in vivo[J]. Curr Top Microbiol Immunol,1989, 144:253-263.
[31]Chang H C, Tsai J H, Guo Y L, et al. Differential UVC-induced gadd45 gene expression in xeroderma pigmenstosum cells[J]. Biochem Biophy Res Comm,2003, 305:1109-1115.
[32]Natoli G, Avantaggiati M L, Chirllo P, et al. Induction of the DNA-binding activity of c-jun/c-fos heterodimers by the hepatitis B virus transactivator pX[J]. Mol Cell Biol,1994, 14:989-998.
[33]Natoli G, Avantaggiati M L, Chirillo P, et al. Ras- and Raf-dependent activation of c-jun transcriptional activity by the hepatitis B virus transactivator pX[J]. Oncogene,1994, 9:2837-2843.
[34]Benn J, Su F, Doria M.Schneider RJ:Hepatitis B virus HBx protein induces transcription factor AP-1 by activation of extracellular signal-related and c-Jun N-terminal mitogen-activated protein kinases[J]. J Virol,1996, 70:4978-4985.
[35]Becker S A, Lee T H, Butel J S. Slagle BL: Hepatitis B virus X protein interferes with cellular DNA repair[J]. J Virol,1998, 72:266-272.
[編輯] 何 勇
10.3969/j.issn.1673-1409(R).2012.02.035
R349.6
A
1673-1409(2012)02-R073-04
2011-11-30
余蓉(1969-),女,湖北監(jiān)利人,副主任檢驗技師,碩士,主要從事臨床免疫學(xué)及質(zhì)量控制工作。