亓愛國(guó),蘇 彬
(中國(guó)電子科技集團(tuán)公司第四十七研究所,沈陽(yáng) 110032)
微機(jī)械陀螺儀是利用MEMS(Micro Electro-mechanical System,即微電子機(jī)械系統(tǒng))技術(shù)制造的新型陀螺儀。它與傳統(tǒng)的機(jī)械陀螺儀、激光陀螺儀等相比較具有體積小、重量輕、成本低、可靠性高、抗振動(dòng)沖擊能力強(qiáng)以及易于大批量生產(chǎn)等特點(diǎn)。因此大大拓展了陀螺儀的應(yīng)用范圍,在戰(zhàn)術(shù)武器系統(tǒng),姿態(tài)穩(wěn)定系統(tǒng),機(jī)器人,汽車等方面獲得了廣泛應(yīng)用。關(guān)于微機(jī)械陀螺的相關(guān)文獻(xiàn)很多,但大多數(shù)資料都集中于器件性能和加工工藝的介紹。本文從應(yīng)用的角度利用時(shí)間序列分析方法對(duì)Silicon Sensing System 公司的CRS 03-04 振動(dòng)環(huán)式微機(jī)械陀螺零點(diǎn)隨機(jī)漂移進(jìn)行建模分析,給出該型陀螺的ARMA 模型,并利用該模型設(shè)計(jì)了Kalman 濾波器。仿真結(jié)果表明此方法能夠有效抑制微機(jī)械陀螺零點(diǎn)隨機(jī)漂移。
對(duì)于一個(gè)平穩(wěn)、零均值的時(shí)間序列(xt),t=1,2,…,N,一定能對(duì)它擬合一個(gè)如下形式的隨機(jī)差分方程:
式中xt是時(shí)間序列{xt}在時(shí)刻t的元素,φi(i=1,2,…,n)稱為自回歸參數(shù),θj(j=1,2,…,m)稱為滑動(dòng)平均參數(shù),αt稱為殘差,{αt}應(yīng)為白噪聲。(1)式左邊n 階差分多項(xiàng)式稱為n 階自回歸部分,右邊m 階差分多項(xiàng)式稱為m 階滑動(dòng)平均。(1)式稱為n 階自回歸m 階滑動(dòng)平均模型,記為ARMA(n,m)。若θj=0(j=1,2,…,m),則有:
上式稱為n 階自回歸模型AR(n)。
若φi=0(i=1,2,…,n),則有:
上式稱為m 階滑動(dòng)平均模型MA(m)。
ARMA 模型的建模,就是對(duì)觀測(cè)所得的時(shí)間序列xt(t=1,2,…,N)擬合出適用的ARMA(n,m)模型。它主要包含以下幾步工作:
(1)數(shù)據(jù)采集:是對(duì)連續(xù)信號(hào)進(jìn)行離散采樣。主要包括確定合適的采樣頻率fs和樣本長(zhǎng)度,以便獲得正確包含連續(xù)信號(hào)信息的時(shí)間序列{xt}。
(2)數(shù)據(jù)的檢驗(yàn)和預(yù)處理:對(duì)采集得到的時(shí)間序列{xt}進(jìn)行平穩(wěn)性判別,去掉均值,趨勢(shì)項(xiàng)和隱周期使其成為零均值,平穩(wěn),正態(tài)時(shí)序。
(3)模型形式的選取、模型參數(shù)φi,θj的估計(jì):選定模型階數(shù)和參數(shù)估計(jì)方法,估計(jì)出(1)式中的各個(gè)參數(shù)。
(4)模型實(shí)用性檢驗(yàn):選擇一種適用性檢驗(yàn)準(zhǔn)則對(duì)模型的有效性進(jìn)行檢驗(yàn)。
ARMA 模型建模的更詳細(xì)介紹,詳見文獻(xiàn)[1]。
將微機(jī)械陀螺水平放置通電1 分鐘后,進(jìn)行試驗(yàn)。采樣時(shí)間為1S,共采集10000S 數(shù)據(jù)。陀螺漂移的原始數(shù)據(jù)如圖1 所示。
圖1 陀螺漂移原始信號(hào)
數(shù)據(jù)檢驗(yàn)就是要判斷實(shí)際采樣所得數(shù)據(jù)的平穩(wěn)性、正態(tài)性、零均值性。預(yù)處理是對(duì)檢驗(yàn)后的時(shí)序進(jìn)行相應(yīng)的處理以得到滿足上述3 條要求的時(shí)序。由于一般的工程問題都具有正態(tài)分布的特性,為簡(jiǎn)單起見本文省去了正態(tài)性檢驗(yàn)。圖2是去掉均值的漂移信號(hào)。本文趨勢(shì)檢驗(yàn)采用逆序檢驗(yàn)法[1],取顯著性水平α=0.05,檢驗(yàn)結(jié)果表明漂移存在趨勢(shì)項(xiàng),采用多項(xiàng)式擬合趨勢(shì)項(xiàng),并從實(shí)驗(yàn)數(shù)據(jù)中剔除趨勢(shì)項(xiàng)后的漂移信號(hào)如圖3 所示。檢測(cè)數(shù)據(jù)在零均值化和去掉趨勢(shì)項(xiàng)后還要進(jìn)行隱周期分析,以得到建模所要求的平穩(wěn)時(shí)間序列。本文隱周期分析采用FISHER 檢驗(yàn)方法。關(guān)于該方法的詳細(xì)介紹參見文獻(xiàn)[2]。圖4是去除隱含周期后的陀螺漂移信號(hào)。
圖2 去掉均值的漂移信號(hào)
圖3 剔除趨勢(shì)項(xiàng)的漂移信號(hào)
本文采用Pandit- Wu 法[1]建立ARMA 模型。這種方法是建立ARMA(2n,2n-1)模型,從n=1開始,首先擬合ARMA(2,1)模型,用最小二乘法估計(jì)參數(shù)值,用F 檢驗(yàn)和AIC 準(zhǔn)則作為判定合適階次的依據(jù)。并由低階向高階遞推,直至確定出適用的ARMA(2n,2n-1)模型。然后,再回過頭來降低自回歸部分的階次或滑動(dòng)平均部分的階次進(jìn)行搜索,以得到階次最低(參數(shù)最少)的適用模型ARMA(n,m)。采用此法對(duì)所測(cè)數(shù)據(jù)建立的模型為:
圖4 去除隱含周期的陀螺漂移信號(hào)
設(shè)某系統(tǒng)的n 維狀態(tài)方程和m 維觀測(cè)方程為:
Wk,Vk的統(tǒng)計(jì)特性是:
初始狀態(tài)X0的統(tǒng)計(jì)特性是:
則有如下遞推公式:)
根據(jù)遞推公式(6),給定初值P0就可循環(huán)遞推,進(jìn)行實(shí)時(shí)狀態(tài)估計(jì)。
根據(jù)實(shí)測(cè)數(shù)據(jù)建立的ARMA 模型(4)取狀態(tài)Xk=[xk,xk-1]T,Wk=[αk,αk-1]T,則有:
根據(jù)遞推公式組(6)便可進(jìn)行實(shí)時(shí)狀態(tài)估計(jì)。將另外一組實(shí)測(cè)數(shù)據(jù)作為所設(shè)計(jì)的Kalman 濾波器的輸入,經(jīng)仿真,得到濾波器的輸入/輸出曲線如圖5 所示。圖中,淺色線為濾波器的輸出曲線。由圖中可見濾波器具有良好的濾波效果。
圖5 濾波器輸入/輸出曲線
由本文的分析可以看出,振動(dòng)環(huán)式微機(jī)械陀螺的零點(diǎn)漂移可以用ARMA(2,1)模型擬合,基于ARMA(2,1)模型的卡爾曼濾波器可以有效的濾除隨機(jī)噪聲。
[1]楊叔子,吳雅.時(shí)間序列分析的工程應(yīng)用(第二版)[M].武漢:華中理工大學(xué)出版社,2007.
[2]施仁杰,盧科學(xué).時(shí)間序列分析引論[M].西安:西安電子科技大學(xué)出版社,1988.