亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Classification of Phase Portraits of Z2-Equivariant Planar Hamiltonian Vector Fields of Degree 7(Ⅱ)*

        2012-07-02 03:01:30LIYanmei

        LI Yanmei

        (Department of Mathematics,Chuxiong Normal University,Yunnan Chuxiong,675000,China)

        The phase portraits of planar Zq-equivariant Hamiltonian vector fields of degree 7 are much more complicated than that of degree 5,and only a few vector fields of degree 7 have been discussed[1—5].In this paper,we will classify the phase portraits of a new planar Z2- equivariant Hamiltonian vector field of degree 7

        where k is a parameter with k>0.

        1 Qualitative Analysis of the Singular Points

        Because the system(1)has the property of Z2- equivariant,namely,the phase portrait is the same when it rotates π clockwise,so we only need to study the singular points in the first and second quadrants.

        The Jacobian of this system is

        in which

        Discussing the Jacobians of these singular points,we can obtain the following results without difficulty:

        Obviously,the function H(x,y)satisfies the equality H(x,y)=H(x,0)+H(0,y),and we can readily obtain

        2 Phase Portraits of the System(1)

        The Hamiltonian of the system(1)is

        H(x,y)= [3x8- (k2+2k+2.36)x6+(0.51k2+1.02k+0.645)x4- 0.0675(k+1)2x2

        Comparing the Hamiltonians of the singular points,we get the following results.

        Theorem 2

        (1)If0<k<0.239066,the phase portrait of the system(1)can be shown as Fig.1(1).

        (2)If k=0.239066,the phase portrait of the system(1)can be shown as Fig.1(2).

        (3)If 0.239066<k<0.255214,the phase portrait of the system(1)can be shown as Fig.1(3).

        (4)If k=0.255214,the phase portrait of the system(1)can be shown as Fig.1(4).

        (5)If 0.255214<k<0.2806248,the phase portrait of the system(1)can be shown as Fig.1(5).

        (6)If k=0.2806248,the phase portrait of the system(1)can be shown as Fig.1(6).

        (7)If 0.2806248<k<0.28217,the phase portrait of the system(1)can be shown as Fig.1(7).

        (8)If k=0.28217,the phase portrait of the system(1)can be shown as Fig.1(8).

        (9)If 0.28217<k<0.282535,the phase portrait of the system(1)can be shown as Fig.1(9).

        (10)If k=0.282535,the phase portrait of the system(1)can be shown as Fig.1(10).

        (11)If k >0.282535,the phase portrait of the system(1)can be shown as Fig.1(11).

        Proof

        We denote H(0,0),H(± a,0),H(± b,0),H(± c,0),H(0,l),H(0,m),H(0,n),H(± a,l),H(± a,m),H(± a,n),H(± b,l),H(± b,m),H(± b,n),H(± c,l),H(± c,m),and H(± c,n)by h00,ha0,hb0,hc0,h0l,h0m,h0n,hal,ham,han,hbl,hbm,hbn,hcl,hcmand hcm,respectively.Obviously,we have hxy=hx0+h0y,h0l=h0n,h0m=0.

        (1)If k=0.229005,then hcl=ha0.Hence,when 0 < k < 0.239066,the Hamiltonians of the singular points satisfy the relations hal=han<ha0=ham≤hcl=hcn<hc0=hcm<hbl=hbn<hb0=hbm<h0l=h0n<h00=h0m,so the phase portrait can be shown as Fig.1(1).

        (2)When k=0.239066,we have hcm=hbl,and the Hamiltonians of the singular points satisfy the relations hal=han<hcl=hcn<ha0=ham<hc0=hcm=hbl=hbn<hb0=hbm<h0l=h0n<h00=h0m,so the phase portrait can be shown as Fig.1(2).

        (3)When 0.239066<k<0.255214,the Hamiltonians of the singular points satisfy the relations hal=han<hcl=hcn<ha0=ham<hbl=hbn<hc0=hcm<hb0=hbm≤h0l=h0n<h00=h0m,so the phase portrait can be shown as Fig.1(3).

        (4)When k=0.255214,we get ha0=hbl,and the Hamiltonians of the singular points satisfy the relations hal=han<hcl=hcn<ha0=ham=hbl=hbn<hc0=hcm<h0l=h0n<hb0=hbm<h00=h0m,so the phase portrait can be shown as Fig.1(4).

        (5)When0.255214<k<0.2806248,the Hamiltonians of the singular points satisfy the relations hal=han<hcl=hcn<hbl=hbn<ha0=ham<hc0=hcm<h0l=h0n<hb0=hbm<h00=h0m,so the phase portrait can be shown as Fig.1(5).

        (6)When k=0.2806248,we obtain aa0=hc0,and the Hamiltonians of the singular points satisfy the relations hal=han=hcl=hcn<hbl=hbn<ha0=ham=hc0=hcm<h0l=h0n<hb0=hbm<h00=h0m,so the phase portrait can be shown as Fig.1(6).

        (7)When 0.2806248<k<0.28217,the Hamiltonians of the singular points satisfy the relations hcl=hcn<hal=han<hbl=hbn<hc0=hcm<ha0=ham<h0l=h0n<hb0=hbm<h00=h0m,so the phase portrait can be shown as Fig.1(7).

        (8)When k=0.28217,we obtain ha0=hol,and the Hamiltonians of the singular points satisfy the relations hcl=hcn<hal=han<hbl=hbn<hc0=hcm<ha0=ham=h0l=h0n<hb0=hbm<h00=h0m,so the phase portrait of the system(1)can be shown as Fig.1(8).

        (9)If 0.28217<k<0.282535,the Hamiltonians of the singular points satisfy the relations hcl=hcn<hal=han<hbl=hbn<hc0=hcm<h0l=h0n<ha0=ham<hb0=hbm<h00=h0m,so the phase portrait of the system(1)can be shown as Fig.1(9).

        (10)If k=0.282535,we get h0n=hc0,and the Hamiltonians of the singular points satisfy the relations hcl=hcn<hal=han<hbl=hbn<hc0=hcm=h0l=h0n<ha0=ham<hb0=hbm<h00=h0m,so the phase portrait of the system(1)can be shown as Fig.1(10).

        (11)If k >0.282535,the Hamiltonians of the singular points satisfy the relations hcl=hcn<hal=han<hbl=hbn<h0l=h0n<hc0=hcm<ha0=ham<hb0=hbm<h00=h0m,so the phase portrait of the system(1)can be shown as Fig.1(11).

        Fig.1(1)~(11)The phase portraits of system(1)

        [1]Wu Kaiteng,Cao Hongjun.Classification of phase portraits about planar quintic Z4- equivariant vector fields.Proceedings of the third international conference on nonlinear mechanics[M].Shanghai:Shanghai University press,1998:873—877.

        [2]Li Yanmei.The classification of phase portraits about some Hamiltonian vector field with Z3- equivariant property [J].Journal of Yunnan Normal University,2003,23(6):5—7.

        [3]Li Yanmei.The General Form and Phase Portraits of Planar Septic Hamiltonian Vector Field with Z8- Equivariant Property [J].Journal of Chuxiong Normal University,2010,25(12):32—35.

        [4]Li Yanmei.The Phase Portraits of a type of Planar Septic Hamiltonian Vector Field with Z2- Equivariant Property [J].Journal of Chuxiong Normal University,2011,26(9):47—50.

        [5]Li Yanmei,Hu Zhao.Classification of Phase Portraits of Z2- Equivariant Planar Hamiltonian Vector Fields of degree 7(Ⅰ)[J].Journal of Chuxiong Normal University,2012,27(6):1—4.

        亚洲一卡2卡3卡4卡5卡精品| 偷窥村妇洗澡毛毛多| 亚洲不卡中文字幕无码| 99热在线精品播放| 日韩精品中文字幕 一区| 国产丝袜美腿中文字幕| 一本一道久久综合久久| 欧美色欧美亚洲另类二区| 国产综合久久久久| jjzz日本护士| 麻豆视频在线观看免费在线观看| 久久精品国产福利亚洲av| 亚洲高清三区二区一区| 亚洲精品无码久久久久去q| 日本爽快片18禁免费看| 一本无码人妻在中文字幕| 一区二区三区观看在线视频| 蜜桃视频免费进入观看| 亚洲免费网站观看视频| 国产在线无码免费视频2021| 日本一区二三区在线中文| 老太婆性杂交视频| 国产乱人伦av在线a| 日韩美无码一区二区三区 | 91精品啪在线观看国产色| 亚洲国产精品一区二区久久恐怖片| 免费国产成人肉肉视频大全| 久久夜色撩人精品国产小说| 久久国产av在线观看| 国产一区二区三区我不卡| 久久久久无码精品国产app| 成人国产精品一区二区网站| 91精品啪在线观看国产色| 极品粉嫩嫩模大尺度无码视频| 大桥未久亚洲无av码在线| 无码久久流水呻吟| 国产女主播大秀在线观看| 国产精品福利一区二区| 色偷偷噜噜噜亚洲男人| 麻豆变态另类视频在线观看| 日本在线一区二区免费|