黃正喜,杜 鍇,胡振龍
(中南民族大學 化學與材料科學學院, 武漢 430074)
Ⅱ-Ⅵ型半導體材料由于量子限域效應、尺寸效應、介電限域效應、宏觀量子隧道效應和表面效應而具有特殊的光電性質,在光電池[1]、光催化制氫[2,3]、光催化降解[4,5]以及熒光檢測[6]等方面有著廣泛的應用. CdS為Ⅱ-Ⅵ型半導體重要材料之一,其禁帶寬度為2.4 eV,具有較寬的可見光響應區(qū)間,在可見光條件下表現(xiàn)出較好的催化活性. 以太陽光為光源,CdS對苯胺的光催化降解行為的研究[7]表明,CdS是一種具有較高催化活性的催化劑.簇形和花形CdS納米結構對甲基橙的光催化降解研究[8]表明,花形CdS納米結構由于具有較大比表面積,其光催化活性優(yōu)于其它的CdS材料.
目前,CdS納米粒子的制備方法主要有溶膠-凝膠法[9,10]、水熱及溶劑熱法[11-13]、模板法[3,14]、微乳液法[15]、沉淀法[16]等.其中,沉淀法具有操作簡單、對反應溫度要求不高、原材料成本低及產品純度高等優(yōu)點.本文以沉淀法在水相中制備出CdS納米顆粒,用X射線衍射(XRD)、X射線光電子能譜(XPS)、掃描電鏡(SEM)、透射電鏡(TEM)對其進行表征,并以羅丹明B的可見光降解反應作為探針反應探討其催化活性.
氯化鎘CdCl2·5H2O(AR 天津東大化工廠),硫代氨基脲CH5N3S(CP 國藥),乙醇(AR 國藥),3 mol·L-1NaOH水溶液,5 mol·L-1羅丹明B水溶液,實驗用水均為二次蒸餾水.
D8 ADVANCE型X-射線衍射儀(德國 Bruker),VG Multilab 2000型X-射線光電子能譜儀(美國 Thermal Electron),S570 掃描電子顯微鏡(日本Hitachi),Tecnai G 20型透射電子顯微鏡(荷蘭 FEI),Lambda Bio35型雙光束紫外-可見分光光度計(美國 PE).
用3 mol·L-1NaOH溶液調節(jié)氯化鎘溶液(0.05 mol·L-1)pH至12,移至三頸瓶中,通入氮氣10 min后,加入0.05 mol·L-1硫代氨基脲溶液,于80 ℃反應數(shù)小時后停止反應.將所得溶液分別用蒸餾水、乙醇洗滌數(shù)次,離心分離,于60 ℃真空干燥4 h,備用.
向容器內加入5 mol·L-1羅丹明B溶液50 mL,一定量的CdS納米粒子,置于暗箱中攪拌2 h,以達到吸附脫附平衡.以氙燈作為光源,模擬可見光進行光催化降解反應,每隔30 min取樣,離心,取上層清液用于UV-Vis分光光度計測其吸光度.
圖1為樣品的XRD譜圖. 由圖1可知,該樣品無明顯的雜峰,在2θ=26.6°,44.1°,52.1°附近出現(xiàn)了對應的特征峰, 與方硫鎘礦立方相結構(JCPDS No.42-1411)相符合,其晶面分別為(111),(220),(311). 文獻[17]表明,立方相結構較六方相結構的催化活性高.根據(jù)Scherrer公式可得,樣品的平均粒徑約為20 nm.
2θ/(°)
圖2為樣品的XPS譜圖.由圖2(a)可見, 除C、O、S、Cd等元素特征能譜峰外,無其他元素能譜峰,表明樣品有較高的純度; 圖2(b)為Cd的3d軌道結合能,Cd的3d5/2和3d3/2結合能分別為405.03和411.75 eV; 圖2(c)為S的2p軌道結合能,其結合能為161.89 eV,其結果與文獻[18]基本一致.
Binding energy/eV
Binding energy/eV
Binding energy/eV
圖3(a)為樣品的SEM圖.由圖3(a)可見,樣品分布均勻,尺寸一致; 圖3(b)為樣品的TEM圖. 由圖3(b)可見,樣品為球形顆粒,粒徑約為20 nm,與XRD分析結果一致.
(a)SEM (b)TEM
圖4為不同催化劑用量條件下,羅丹明B的降解率. 由圖4可知,當CdS用量>0.005 g時,羅丹明B的降解率高于90%,表明CdS用量較少時即可達到較高降解率,由此說明CdS納米顆粒具有較高的催化效率;當CdS用量=0.020 g時,具有最佳催化效率;隨CdS用量不斷增大,引起了光散射,導致光子能量利用率下降,催化效率反而下降.
t/min
圖5為不同降解時間時羅丹明B的UV-Vis吸收光譜,由圖5可知,在60 min內,羅丹明B的主要吸收峰由554 nm逐漸藍移至496 nm,表明在降解過程中伴隨著N,N-二乙基的脫落[19],隨著降解時間的不斷增加,吸收峰的強度不斷降低,表明羅丹明B的碳骨架被氧化斷裂.
λ/nm
以氯化鎘為鎘源,硫代氨基脲為硫源在水相中制備了CdS納米粒子,得到的CdS納米顆粒尺寸小,分布均勻. 在可見光照射下,用CdS納米粒子對羅丹明B進行降解,結果表明:CdS納米粒子有較高的催化活性,將在有機染料降解及太陽能利用等方面有較大的研究價值.
[1]Lee Yuh Lang, Huang Bau Ming, Chien Huei Jing. Highly efficient CdSe-sensitized TiO2photoelectrode for quantum-dot-sensitized solar cell applications[J]. Chem Mater, 2008, 20(22): 6903-6905.
[2]Ke Dingning, Liu Shilin, Dai Ke, et al. CdS/regenerated cellulose nanocomposite films for highly efficient photocatalytic H2production under visible light irradiation[J]. J Phys Chem C, 2009,113(36): 16021-16025.
[3]Bao Ningzhong, Shen Liming, Taleata T , et al. Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible Light[J]. Chem Mater, 2008,20(1): 110-117.
[4]Liu Guofeng, Zhang Jianwei, Xu Rong. Template-free synthesis of uniform CdS hollow nanospheres and their photocatalytic activities[J]. J Phys Chem C, 2008, 112(19): 7363-7370.
[5]Wang Le, Wei Hongwei, Fan Yingju, et al. One-dimensional CdS/α-Fe2O3and CdS/Fe3O4heterostructures: epitaxial and nonepitaxial growth and photocatalytic activity[J]. J Phys Chem C, 2009,113(32): 14119-14125.
[6]Wang Guangli, Yu Peipei, Xu Jingjuan, et al. A label-Free photoelectrochemical immunosensor based on water-soluble CdS quantum Dots[J]. J Phys Chem C, 2009,113(25): 11142-11148.
[7]Karunakaran C,Senthilvelan S. Solar photocatalysis: oxidation of aniline on CdS[J]. Solar Energy, 2005,79(5): 505-512.
[8]Xu Di, Cao Aimei, Deng Wenli. Self-assembly and photocatalytic properties of clustered and flower like CdS nanostructures[J]. Acta Phys-Chim Sin, 2008,24(7):1219-1224.
[9]Muruganandham M, Kusumoto Y, Okamoto C, et al. Mineralizer-assisted shape-controlled synthesis, characterization, and photocatalytic evaluation of CdS microcrystals[J]. J Phys Chem C, 2009,113(45): 19506-19517.
[10]Cao Y C , Wang Tianhui. One-pot synthesis of high-quality zinc-blende CdS nanocrystals[J]. J Am Chem Soc, 2004,126(44): 14336-14337.
[11]Cao Huaqiang, Wang Guozhi, Zhang Sichun, et al. Growth and optical properties of wurtzite-type CdS nanocrystals[J]. Inorg Chem, 2006,45(13): 5103-5108.
[12]Wang Qingqing, Xu Gang, Han Caorong, et al. Synthesis and characterization of large-scale hierarchical dendrites of single-crystal CdS[J]. Crystal Growth & Design, 2006,6(8): 1776-1780.
[13]Yang Jiang, Zeng Jinghui, Yu Shihong, et al. Forma-
tion process of CdS nanorods via solvothermal route[J]. Chem Mater, 2000,12(11): 3259-3263.
[14]Lemon B, Crooks R. Preparation and characterization of dendrimer-encapsulated CdS semiconductor quantum dots[J]. J Am Chem Soc, 2000,122(51): 12886-12887.
[15]Wang Dayang, Cao Yan, Zhang Xintong, et al. Size control of CdS nanocrystals in block copolymer micelle[J]. Chem Mater, 1999,11(2): 392-398.
[16]Pandey G, Dixit S. Growth mechanism and optical properties determination of CdS nanostructures[J]. J Phys Chem C, 2011,115(36):17633-17642.
[17]Mau A W H, Huang C B, Bard A J. Hydrogen photo-
production by Nafion/cadmium sulfide/platinum films in water/sulfide ion solutions[J]. J Am Chem Soc, 1984,106(22): 6537-6542.
[18]Nakanishi T, Ohtani B, Uosaki K. Fabrication and cha-
racterization of CdS-nanoparticle mono- and multilayers on a self-assembled monolayer of alkanedithiols on gold [J]. J Phys Chem B, 1998,102 (9): 1571-1577.
[19]Xuan Shouhu, Jiang Wanquan, Gong Xinglong, et al. Magnetically separable Fe3O4/TiO2hollow spheres: fabrication and photocatalytic activity[J]. J Phys Chem C, 2009,113(2):553-558.