亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Aq-Analogof the Weideman's Formula

        2011-12-23 03:08:00ZHENGDeyinCHENGuang
        關(guān)鍵詞:理學(xué)院二項(xiàng)式恒等式

        ZHENG De-yin,CHEN Guang

        (College of Science,Hangzhou Normal University,Hangzhou 310036,China)

        Aq-Analogof the Weideman's Formula

        ZHENG De-yin,CHEN Guang

        (College of Science,Hangzhou Normal University,Hangzhou 310036,China)

        1 Introduction

        Recently,Weideman's formula[1,Eq.(20)]called one of the hardest challenge identities:

        is closely concerned,where the harmonic numbers Hnand the second order harmonic number H(2)nare defined by

        respectively.Schneider[2,Eq.(16)](cf.[3,Eq.(12)]also)proved the formula(1)via computer algebra package Sigma,while Chu proved it using partial fraction method in[4,Eq.(6)]and hypergeometric series method in[5,Eq.(3)].The main purpose of this paper is to find q-analogs of Weideman's formula by means of partial fraction decomposition.

        We use the standard notation on q-series.The q-shifted factorial(a;q)nis defined by

        The q-binomial coefficient,or the Gauss coefficient,is given by

        The paper investigated the decomposition of a class of rational function by partial fraction method,established a generalized identity about q-harmonic numbers,and obtained twelve striking q-like-Weideman formulas from twelve special cases of this general identity.

        q-binomial coefficients;q-harmonic numbers;algebraic identities

        With the above preparations,we can establish the following general q-algebraicidentity.

        2 Partial fraction decompositions

        Theorem 1 Let xbe an indeterminate and napositive integer.For any polynomial Q(x)of degree≤2+3n,we have

        Multiplying by xacross equation(4)and then letting x→+∞,we can obtain immediately the following general identity on q-binomial-harmonic number.

        Theorem 2 Let n be a positive integer.For any polynomial Q(x)of degree≤1+3n,there holds

        3 q-Harmonic number identities

        Some interesting identities can be obtained by choosing different Q(x)in identity(5).We will display some examples of this class of q-harmonic number identities in this section.

        The list can be endless.However,we are not bothered to extend it further.The interested reader can do that for enjoyment.

        [1]Weideman J A C.Padéapproximations to the logarithm I:derivation via differential equations[J].Quaestiones Mathematicae,2005,28(3):375-390.

        [2]Driver K,Prodinger H,Schneider C,et al.Padéapproximations to the logarithmⅡ:identities,recurrences,and symbolic computation[J].Ramanujan Journal,2006,11(2):139-158.

        [3]Driver K,Prodinger H,Schneider C,et al.Padéapproximations to the logarithm Ⅲ:alternative methods and additional results[J].Ramanujan Journal,2006,12(3):299-314.

        [4]Chu Wenchang.Partial-fraction decompositions and harmonic number identities[J].Journal of Combinatorial Mathematics and Combinatorial Computating,2007,60:139-153.

        [5]Chu Wenchang,F(xiàn)u Mei.Dougall-Dixon formula and harmonic number identities[J].Ramanujan Journal,2009,18(1):11-31.

        Weideman公式的一種q-模擬

        鄭德印,陳 廣
        (杭州師范大學(xué)理學(xué)院,浙江 杭州 310036)

        使用部分分式方法將一類有理函數(shù)分解為部分分式,進(jìn)而建立了一個(gè)一般化的q-harmonic數(shù)恒等式.作為例子,列出了此恒等式的12種特殊情況,得到了12個(gè)漂亮的類q-Weideman公式.

        q-二項(xiàng)式系數(shù);q-harmonic數(shù);代數(shù)恒等式

        date:2010-06-24

        Supported by the Natural Science Foundation of Zhejiang Province of China(Y7080320).

        Biography:ZHENG De-yin(1964—),male,born in Tongbai,Henan Province,associate professor,engaged in combinatorics,hypergeometric series and special function.E-mail:deyinzheng@yahoo.com.cn

        O157.1 MSC2010:05A30;11B65Article character:A

        1674-232X(2011)01-0011-04

        10.3969/j.issn.1674-232X.2011.01.002

        猜你喜歡
        理學(xué)院二項(xiàng)式恒等式
        昆明理工大學(xué)理學(xué)院學(xué)科簡介
        昆明理工大學(xué)理學(xué)院簡介
        活躍在高考中的一個(gè)恒等式
        民族文匯(2022年23期)2022-06-10 00:52:23
        聚焦二項(xiàng)式定理創(chuàng)新題
        二項(xiàng)式定理備考指南
        二項(xiàng)式定理??碱}型及解法
        一類新的m重Rogers-Ramanujan恒等式及應(yīng)用
        Weideman公式的證明
        西安航空學(xué)院專業(yè)介紹
        ———理學(xué)院
        自主招生與數(shù)學(xué)競賽中的計(jì)數(shù)與二項(xiàng)式定理(二)
        在线不卡av天堂| 蜜臀亚洲av无码精品国产午夜.| 神马影院午夜dy888| 女人脱了内裤趴开腿让男躁| 2020年国产精品| 亚洲综合色一区二区三区另类| 亚洲欧美日韩精品久久亚洲区色播| 国产一区二区三区亚洲天堂| 亚洲一区二区三区高清视频| 在线精品国产亚洲av麻豆| 国产大屁股喷水视频在线观看| 国产伦人人人人人人性| 少妇人妻偷人精品免费视频| 精品免费在线| 国产成人自拍小视频在线| 久久少妇高潮免费观看| 就爱射视频在线视频在线| 国产又大又黑又粗免费视频| 亚洲av无码成人专区片在线观看| 精品一区二区三区在线观看视频| 色欲AV成人无码精品无码| av永远在线免费观看| 国产一区资源在线播放| 免费a级毛片在线播放| 久久久久久久波多野结衣高潮| 欧美性狂猛xxxxx深喉| 999精品全免费观看视频| 亚洲高清一区二区三区在线观看 | 亚洲中文字幕人妻久久| 欧美69久成人做爰视频| 午夜成人理论无码电影在线播放 | 五月天激情综合网| 日韩精品人妻少妇一区二区| 亚洲av色福利天堂久久入口| 亚洲成av人片不卡无码| 亚洲人午夜射精精品日韩| 欧美人与动牲交片免费| 国产激情视频在线| 中文字幕高清不卡视频二区| 亚洲欧美v国产一区二区| 久久久久久人妻毛片a片|