亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Aq-Analogof the Weideman's Formula

        2011-12-23 03:08:00ZHENGDeyinCHENGuang
        關(guān)鍵詞:理學(xué)院二項(xiàng)式恒等式

        ZHENG De-yin,CHEN Guang

        (College of Science,Hangzhou Normal University,Hangzhou 310036,China)

        Aq-Analogof the Weideman's Formula

        ZHENG De-yin,CHEN Guang

        (College of Science,Hangzhou Normal University,Hangzhou 310036,China)

        1 Introduction

        Recently,Weideman's formula[1,Eq.(20)]called one of the hardest challenge identities:

        is closely concerned,where the harmonic numbers Hnand the second order harmonic number H(2)nare defined by

        respectively.Schneider[2,Eq.(16)](cf.[3,Eq.(12)]also)proved the formula(1)via computer algebra package Sigma,while Chu proved it using partial fraction method in[4,Eq.(6)]and hypergeometric series method in[5,Eq.(3)].The main purpose of this paper is to find q-analogs of Weideman's formula by means of partial fraction decomposition.

        We use the standard notation on q-series.The q-shifted factorial(a;q)nis defined by

        The q-binomial coefficient,or the Gauss coefficient,is given by

        The paper investigated the decomposition of a class of rational function by partial fraction method,established a generalized identity about q-harmonic numbers,and obtained twelve striking q-like-Weideman formulas from twelve special cases of this general identity.

        q-binomial coefficients;q-harmonic numbers;algebraic identities

        With the above preparations,we can establish the following general q-algebraicidentity.

        2 Partial fraction decompositions

        Theorem 1 Let xbe an indeterminate and napositive integer.For any polynomial Q(x)of degree≤2+3n,we have

        Multiplying by xacross equation(4)and then letting x→+∞,we can obtain immediately the following general identity on q-binomial-harmonic number.

        Theorem 2 Let n be a positive integer.For any polynomial Q(x)of degree≤1+3n,there holds

        3 q-Harmonic number identities

        Some interesting identities can be obtained by choosing different Q(x)in identity(5).We will display some examples of this class of q-harmonic number identities in this section.

        The list can be endless.However,we are not bothered to extend it further.The interested reader can do that for enjoyment.

        [1]Weideman J A C.Padéapproximations to the logarithm I:derivation via differential equations[J].Quaestiones Mathematicae,2005,28(3):375-390.

        [2]Driver K,Prodinger H,Schneider C,et al.Padéapproximations to the logarithmⅡ:identities,recurrences,and symbolic computation[J].Ramanujan Journal,2006,11(2):139-158.

        [3]Driver K,Prodinger H,Schneider C,et al.Padéapproximations to the logarithm Ⅲ:alternative methods and additional results[J].Ramanujan Journal,2006,12(3):299-314.

        [4]Chu Wenchang.Partial-fraction decompositions and harmonic number identities[J].Journal of Combinatorial Mathematics and Combinatorial Computating,2007,60:139-153.

        [5]Chu Wenchang,F(xiàn)u Mei.Dougall-Dixon formula and harmonic number identities[J].Ramanujan Journal,2009,18(1):11-31.

        Weideman公式的一種q-模擬

        鄭德印,陳 廣
        (杭州師范大學(xué)理學(xué)院,浙江 杭州 310036)

        使用部分分式方法將一類有理函數(shù)分解為部分分式,進(jìn)而建立了一個(gè)一般化的q-harmonic數(shù)恒等式.作為例子,列出了此恒等式的12種特殊情況,得到了12個(gè)漂亮的類q-Weideman公式.

        q-二項(xiàng)式系數(shù);q-harmonic數(shù);代數(shù)恒等式

        date:2010-06-24

        Supported by the Natural Science Foundation of Zhejiang Province of China(Y7080320).

        Biography:ZHENG De-yin(1964—),male,born in Tongbai,Henan Province,associate professor,engaged in combinatorics,hypergeometric series and special function.E-mail:deyinzheng@yahoo.com.cn

        O157.1 MSC2010:05A30;11B65Article character:A

        1674-232X(2011)01-0011-04

        10.3969/j.issn.1674-232X.2011.01.002

        猜你喜歡
        理學(xué)院二項(xiàng)式恒等式
        昆明理工大學(xué)理學(xué)院學(xué)科簡介
        昆明理工大學(xué)理學(xué)院簡介
        活躍在高考中的一個(gè)恒等式
        民族文匯(2022年23期)2022-06-10 00:52:23
        聚焦二項(xiàng)式定理創(chuàng)新題
        二項(xiàng)式定理備考指南
        二項(xiàng)式定理??碱}型及解法
        一類新的m重Rogers-Ramanujan恒等式及應(yīng)用
        Weideman公式的證明
        西安航空學(xué)院專業(yè)介紹
        ———理學(xué)院
        自主招生與數(shù)學(xué)競賽中的計(jì)數(shù)與二項(xiàng)式定理(二)
        国产亚洲av片在线观看18女人| 久久精品色福利熟妇丰满人妻91| 国产亚洲成av人片在线观黄桃| 亚洲av永久无码天堂网手机版| 久久精品免视看国产盗摄 | 91制服丝袜| 国产白浆精品一区二区三区| 久久在一区二区三区视频免费观看| 国产又爽又黄又刺激的视频| 亚洲欧美日韩高清专区一区| 精品国产一区二区三区久久狼| 风韵犹存丰满熟妇大屁股啪啪| 国产精品自在拍在线拍| 国产精品一区高清在线观看| 亚洲国产精品二区三区| 婷婷色婷婷开心五月四| 久久久久久久岛国免费观看| 日韩欧美第一区二区三区| 白白色日韩免费在线观看| 妺妺窝人体色777777| 欧美日韩亚洲国产精品| 91久久国产情侣真实对白| 久久久精品国产亚洲av网麻豆| 欧美人与禽2o2o性论交| 在线看亚洲十八禁网站| 国产一区二区三区资源在线观看 | 青青草在线成人免费视频| 精品人妻系列无码人妻漫画| 老熟妇乱子伦av| 亚洲国产成人Av毛片大全| 女女同女同一区二区三区| 亚洲国产精品国自产拍av| 国产精品一区二区在线观看99| 久久久国产精品五月天伊人| 亚洲人成在线播放网站| 乱人伦视频中文字幕| 精品亚洲一区二区99| 一区二区三区四区在线观看日本| 99精品人妻少妇一区二区| 久久国产综合精品欧美| 色视频不卡一区二区三区|