亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        秩1修正矩陣特征值問(wèn)題的推廣及其應(yīng)用

        2011-01-02 01:17:02呂海玲明清河
        棗莊學(xué)院學(xué)報(bào) 2011年5期
        關(guān)鍵詞:投貸首單棗莊

        呂海玲,明清河

        (1.棗莊學(xué)院 信息科學(xué)與工程學(xué)院,山東 棗莊 277160;2.棗莊學(xué)院 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,山東 棗莊 277160)

        1 Introduction

        In this paper we prove a spectral perturbation theorem for an extension eigenvalues of rank- one update matrix of special structure,which shows how to modify r eigenvalues of a matrix of order n,(r≤n),ia a rank-k updated matrix,without changing any of the n-rremaining eigenvalues.This theorem plays a relevan t role in the study of the nonnegative inverse eigenvalue problem(NIEP).The main idea behind our proof is from the simple relation between the determinants of a matrix and this result,using a well known determinant identity.Furthermore,we extent this theorem to the block eigenvalues problem.By using this extension,we give a Application on eigenvalues problem of matrix perturbation of special structure.

        Because we apply a classic determinant equality to our spectral analysis,we are able to find explicit expression of the characteristic polynomial of the rank-r update matrix.All eigenvalues of the matrix are immediately available.

        Lemma1 If A is an invertible n×n matrix,and u and v are two n-dimensional column vectors,then

        Proof.We may assume A=I,the n × n identity matrix,since then(1)follows from

        in the general case.In this special case,the result comes from the equality

        so(2)becomes

        Remark1 If A is an invertible n×n matrix,B is a n×r matrix,C is a r×n matrix,then

        In the next section we present the main result.

        2 Main result

        Let A be an n×n matrix.The eigenvalues of A are all the complex zeros of the characteristic polynomial pA(λ)=det(λI- A)of A.Letσ(A)= {λ1,λ2,…,λn}be the set of the eigenvalues of A,counting algebraic multiplicity,that is spectrum of A.

        Theorem 1[1]Let u and v are two n - dimensional column vectors such that u is an eigenvector of A associated with eigenvalue λ1. Then,the eigenvalues of A + uvTare {λ1+vTu,λ2,…,λn},counting algebraic multiplicity.

        The following result is an extension of the theorem 1.This extension shows how to change r eigenvalues λ1,λ2,…,λr,r≤ n,of a matrix A of order n,via a rank - k updated matrix,without changing any of the n - rremaining eigenvaluesλr+1,λr+2,…,λn.

        繼上海之后,云南第二個(gè)獲得設(shè)立人民幣國(guó)際投貸基金的試點(diǎn)資格,人民幣國(guó)際投貸基金落戶云南,且啟動(dòng)了首單人民幣國(guó)際投貸基金海外投資項(xiàng)目,為推動(dòng)人民幣“走出去”探索了新路徑,為企業(yè)“走出去”搭建了新平臺(tái)。

        Theorem 2 Let A be an n × n matrix with eigenvalues λ1,λ2,…,λn.Let X =[x1x2…xr]be such that rank(X)=r and AX=Xdiag [λ1,λ2,…,λr],r≤n.Let C be a r × n matrix.Then the matrix A+XC has eigenvalues γ1,γ2,…,γr,λr+1,λr+2,…,λn.where γ1,γ2,…,γrare eigenvalues of the matrix K+CX with K=diag [λ1,λ2,…,λr].

        Proof Letλ ? σ(A)be any complex number.Then,by applying remark 1 to the equality

        W e have

        The condition AX=Xdiag [λ1,λ2,…,λr]implies that

        so(7)becomes

        Since the above equality is true for allλ ? σ(A),the theorem is p roved.

        Remark2.2 Since A and AThave the same eigenvalues counting algebraic multiplicity,the conclusion of Theorem 2.1 also holds for A+XC,where X= [x1x2… xr]be such that rank(X)=r and AX=Xdiag [λ1,λ2,…,λr].

        Furthermore,we extent this theorem to the block eigenvalues problem

        Definition 1[4].A matrix X of order n is a block eigenvalue of a matrix A of order mn,if there exists a block vector V of full rank,such that AV=VX,X is a block eigenvector of A.

        The matrix A is partitioned into m ×m blocks of order n,and the block vector V.

        Definition 2[4].A set of block eigenvalues of a block matrix is a complete set if the set of all the eigenvalues of these block eigenvalues is the set of the matrix.

        Let us suppose now that we have computed mn scalar eigenvalues of a partitioned matrix A.We can construct a complete set of block eigenvalues by taking m matrix of order n in Jordan form where the diagonal elements are those scalar eigenvalues.Furthermore,if the scalar eigenvalues of A are distinct,these m matrix are diagonal matrix as is shown in the following construction:

        where theλi,i=1,…,mn,are the eigenvaluesof A.The proof that the matrix Xj,j=1,…,m,are a complete set of block eigenvalues of A is in[1,p.74].

        Theorem 2.If the scalar eigenvalues of A are distinct,let V and C be the block vectors such that V is a block eigenvector of A associated with block eigenvalues X1,Then,the eigenvalues of A + VCTare μ1,…,μn,λn+1,…,λ2n,…λ(m-1)n+1,…,λmnwhere μ1,…,μnare eigenvalues of the matrix K+CTV with K=diag[λ1,…,λn].Proof.The same to theorem 1.

        3 Application of the theorem

        A direct consequence of Theorem 2.1 is the following.

        One Application of the result is given to illustrate the eigenvalues problem with the perturbation matrix.

        Proposition 3.1Let A,B,C,D ∈ Cn×n,D=A+B,where B is the perturbation of A.If B=XC,where X= [x1,x2,…,xn],xiis an eigenvector of A dissociate with eigenvalue xi,i=1,2,…,n.So thatthen,the eigenvalues of A+B are the eigenvalues of the matrix diag[λ1,λ2,…,λn]+CX.

        [1]Jiu D,Zhou A H.Eigenvalues of rank -one updated matrix with some applications[J].Applied Mathematics Letters,2007,20:1223-1226.

        [2]Ricrdo L S,Oscar R.Applications of a Brauer theorem in the nonnegative inverse eigenvalue problem[J].Linear Algebra and its Applications,2006,416:844 -856.

        [3]Bapat R B,Raghavan E S.Nonnegative Matrices and Applications,Cambridge University press,1997.

        [4]Dennis J E,Traub J F and Weber R.P.On the matrix polynomial,lambda- matrix and block eigenvalue problem,Tech.Rep.71 - 109,Computer Science Department,Cornell Univ,Ithaca,NY and Carnegie - Mellon Univ.,Pitsburgh,PA,(1971).

        猜你喜歡
        投貸首單棗莊
        全國(guó)首單水土保持項(xiàng)目碳匯交易在福建長(zhǎng)汀簽約
        山東海洋順利完成中國(guó)首單LNG船-船同步加注業(yè)務(wù)
        無(wú)錫首單知識(shí)產(chǎn)權(quán)海外保險(xiǎn)落地
        山東棗莊:大白鵝“叫開(kāi)”致富門(mén)
        高生豬“保險(xiǎn)+期貨”規(guī)?;?xiàng)目 山西完成首單理賠
        天津市設(shè)立投貸聯(lián)動(dòng)風(fēng)險(xiǎn)緩釋資金池鼓勵(lì)銀行開(kāi)展外部投貸聯(lián)動(dòng)業(yè)務(wù)
        棗莊學(xué)院
        投貸聯(lián)動(dòng)模式分析
        投貸聯(lián)動(dòng):銀行新的“風(fēng)口”
        銀行家(2016年6期)2016-06-27 08:42:09
        棗莊探索公共衛(wèi)生醫(yī)聯(lián)體
        久久久国产精品福利免费| 无码熟妇人妻av影音先锋| 亚洲av成人无码精品电影在线| 亚洲熟妇少妇69| 一区二区丝袜美腿视频| 新久久国产色av免费看| 日日摸天天摸97狠狠婷婷| 精品一区二区久久久久久久网站| 久久精品成人91一区二区| 老熟妇嗷嗷叫91九色| 欧美疯狂性受xxxxx喷水| 精品人妻少妇一区二区三区不卡| 中文字幕在线久热精品| 国产一区二区三区在线观看免费版| 国产丝袜美腿精品91在线看| 国产免国产免费| 伊人久久一区二区三区无码| 亚洲av午夜福利一区二区国产 | 自慰无码一区二区三区| 国产亚洲精品综合一区| 日本一区二区三区综合视频| 热re99久久精品国99热| 日韩成人无码一区二区三区| 国产亚洲AV片a区二区| 亚洲国产精品悠悠久久琪琪| av无码av天天av天天爽| 在线天堂中文字幕| 高清亚洲精品一区二区三区| 色中文字幕在线观看视频| 亚洲av国产精品色午夜洪2| 精品人伦一区二区三区蜜桃麻豆 | 中文字幕无码日韩欧毛| 久久亚洲精品中文字幕蜜潮| 亚洲成av人综合在线观看| 亚洲视频一区| 欧美亚洲另类 丝袜综合网| 久久国产在线精品观看| 无码av天堂一区二区三区| 亚洲午夜无码久久yy6080| 成人在线观看视频免费播放| 乱中年女人伦|