亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        秩1修正矩陣特征值問(wèn)題的推廣及其應(yīng)用

        2011-01-02 01:17:02呂海玲明清河
        棗莊學(xué)院學(xué)報(bào) 2011年5期
        關(guān)鍵詞:投貸首單棗莊

        呂海玲,明清河

        (1.棗莊學(xué)院 信息科學(xué)與工程學(xué)院,山東 棗莊 277160;2.棗莊學(xué)院 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,山東 棗莊 277160)

        1 Introduction

        In this paper we prove a spectral perturbation theorem for an extension eigenvalues of rank- one update matrix of special structure,which shows how to modify r eigenvalues of a matrix of order n,(r≤n),ia a rank-k updated matrix,without changing any of the n-rremaining eigenvalues.This theorem plays a relevan t role in the study of the nonnegative inverse eigenvalue problem(NIEP).The main idea behind our proof is from the simple relation between the determinants of a matrix and this result,using a well known determinant identity.Furthermore,we extent this theorem to the block eigenvalues problem.By using this extension,we give a Application on eigenvalues problem of matrix perturbation of special structure.

        Because we apply a classic determinant equality to our spectral analysis,we are able to find explicit expression of the characteristic polynomial of the rank-r update matrix.All eigenvalues of the matrix are immediately available.

        Lemma1 If A is an invertible n×n matrix,and u and v are two n-dimensional column vectors,then

        Proof.We may assume A=I,the n × n identity matrix,since then(1)follows from

        in the general case.In this special case,the result comes from the equality

        so(2)becomes

        Remark1 If A is an invertible n×n matrix,B is a n×r matrix,C is a r×n matrix,then

        In the next section we present the main result.

        2 Main result

        Let A be an n×n matrix.The eigenvalues of A are all the complex zeros of the characteristic polynomial pA(λ)=det(λI- A)of A.Letσ(A)= {λ1,λ2,…,λn}be the set of the eigenvalues of A,counting algebraic multiplicity,that is spectrum of A.

        Theorem 1[1]Let u and v are two n - dimensional column vectors such that u is an eigenvector of A associated with eigenvalue λ1. Then,the eigenvalues of A + uvTare {λ1+vTu,λ2,…,λn},counting algebraic multiplicity.

        The following result is an extension of the theorem 1.This extension shows how to change r eigenvalues λ1,λ2,…,λr,r≤ n,of a matrix A of order n,via a rank - k updated matrix,without changing any of the n - rremaining eigenvaluesλr+1,λr+2,…,λn.

        繼上海之后,云南第二個(gè)獲得設(shè)立人民幣國(guó)際投貸基金的試點(diǎn)資格,人民幣國(guó)際投貸基金落戶云南,且啟動(dòng)了首單人民幣國(guó)際投貸基金海外投資項(xiàng)目,為推動(dòng)人民幣“走出去”探索了新路徑,為企業(yè)“走出去”搭建了新平臺(tái)。

        Theorem 2 Let A be an n × n matrix with eigenvalues λ1,λ2,…,λn.Let X =[x1x2…xr]be such that rank(X)=r and AX=Xdiag [λ1,λ2,…,λr],r≤n.Let C be a r × n matrix.Then the matrix A+XC has eigenvalues γ1,γ2,…,γr,λr+1,λr+2,…,λn.where γ1,γ2,…,γrare eigenvalues of the matrix K+CX with K=diag [λ1,λ2,…,λr].

        Proof Letλ ? σ(A)be any complex number.Then,by applying remark 1 to the equality

        W e have

        The condition AX=Xdiag [λ1,λ2,…,λr]implies that

        so(7)becomes

        Since the above equality is true for allλ ? σ(A),the theorem is p roved.

        Remark2.2 Since A and AThave the same eigenvalues counting algebraic multiplicity,the conclusion of Theorem 2.1 also holds for A+XC,where X= [x1x2… xr]be such that rank(X)=r and AX=Xdiag [λ1,λ2,…,λr].

        Furthermore,we extent this theorem to the block eigenvalues problem

        Definition 1[4].A matrix X of order n is a block eigenvalue of a matrix A of order mn,if there exists a block vector V of full rank,such that AV=VX,X is a block eigenvector of A.

        The matrix A is partitioned into m ×m blocks of order n,and the block vector V.

        Definition 2[4].A set of block eigenvalues of a block matrix is a complete set if the set of all the eigenvalues of these block eigenvalues is the set of the matrix.

        Let us suppose now that we have computed mn scalar eigenvalues of a partitioned matrix A.We can construct a complete set of block eigenvalues by taking m matrix of order n in Jordan form where the diagonal elements are those scalar eigenvalues.Furthermore,if the scalar eigenvalues of A are distinct,these m matrix are diagonal matrix as is shown in the following construction:

        where theλi,i=1,…,mn,are the eigenvaluesof A.The proof that the matrix Xj,j=1,…,m,are a complete set of block eigenvalues of A is in[1,p.74].

        Theorem 2.If the scalar eigenvalues of A are distinct,let V and C be the block vectors such that V is a block eigenvector of A associated with block eigenvalues X1,Then,the eigenvalues of A + VCTare μ1,…,μn,λn+1,…,λ2n,…λ(m-1)n+1,…,λmnwhere μ1,…,μnare eigenvalues of the matrix K+CTV with K=diag[λ1,…,λn].Proof.The same to theorem 1.

        3 Application of the theorem

        A direct consequence of Theorem 2.1 is the following.

        One Application of the result is given to illustrate the eigenvalues problem with the perturbation matrix.

        Proposition 3.1Let A,B,C,D ∈ Cn×n,D=A+B,where B is the perturbation of A.If B=XC,where X= [x1,x2,…,xn],xiis an eigenvector of A dissociate with eigenvalue xi,i=1,2,…,n.So thatthen,the eigenvalues of A+B are the eigenvalues of the matrix diag[λ1,λ2,…,λn]+CX.

        [1]Jiu D,Zhou A H.Eigenvalues of rank -one updated matrix with some applications[J].Applied Mathematics Letters,2007,20:1223-1226.

        [2]Ricrdo L S,Oscar R.Applications of a Brauer theorem in the nonnegative inverse eigenvalue problem[J].Linear Algebra and its Applications,2006,416:844 -856.

        [3]Bapat R B,Raghavan E S.Nonnegative Matrices and Applications,Cambridge University press,1997.

        [4]Dennis J E,Traub J F and Weber R.P.On the matrix polynomial,lambda- matrix and block eigenvalue problem,Tech.Rep.71 - 109,Computer Science Department,Cornell Univ,Ithaca,NY and Carnegie - Mellon Univ.,Pitsburgh,PA,(1971).

        猜你喜歡
        投貸首單棗莊
        全國(guó)首單水土保持項(xiàng)目碳匯交易在福建長(zhǎng)汀簽約
        山東海洋順利完成中國(guó)首單LNG船-船同步加注業(yè)務(wù)
        無(wú)錫首單知識(shí)產(chǎn)權(quán)海外保險(xiǎn)落地
        山東棗莊:大白鵝“叫開(kāi)”致富門(mén)
        高生豬“保險(xiǎn)+期貨”規(guī)?;?xiàng)目 山西完成首單理賠
        天津市設(shè)立投貸聯(lián)動(dòng)風(fēng)險(xiǎn)緩釋資金池鼓勵(lì)銀行開(kāi)展外部投貸聯(lián)動(dòng)業(yè)務(wù)
        棗莊學(xué)院
        投貸聯(lián)動(dòng)模式分析
        投貸聯(lián)動(dòng):銀行新的“風(fēng)口”
        銀行家(2016年6期)2016-06-27 08:42:09
        棗莊探索公共衛(wèi)生醫(yī)聯(lián)體
        亚洲成a人片在线观看高清| 国产亚洲精品久久久ai换| 免费黄色电影在线观看| 亚洲成精品动漫久久精久| 亚洲不卡av二区三区四区| 精品国产天堂综合一区在线| 成人黄色网址| 亚洲三级在线播放| 蜜桃在线视频一区二区| 亚洲av无码专区在线| 麻豆亚洲av永久无码精品久久| 亚洲av成人一区二区三区网址| 国产一区二区三区白浆肉丝| 无码国产精品一区二区免费式芒果 | 欧洲熟妇色| 女同久久精品国产99国产精品| 国产亚洲精品日韩香蕉网| 日本va中文字幕亚洲久伊人| 免费人妻无码不卡中文字幕系| 国产精品日韩高清在线蜜芽| 国产一区二区三区视频了| 久久久国产精品123| 中文字幕在线亚洲日韩6页| 久久精品国产亚洲AV无码不| 精品人妻av区二区三区| 免费人成在线观看| 亚洲日本va午夜在线影院| 国产内射视频在线播放| 免费人成视频网站在在线| 日本无码人妻波多野结衣| 亚洲AV无码成人精品区天堂| 伊人五月亚洲综合在线| 久久99国产综合精品| 欧美日韩在线免费看| 日韩av他人妻中文字幕| 丰满少妇被猛烈进入高清播放| 在线va免费看成| 日本一区二区三区在线| 91九色成人蝌蚪首页| 先锋影音最新色资源站| 欧美亚洲尤物久久综合精品 |