摘 要:人的創(chuàng)造力包括創(chuàng)造思維能力和創(chuàng)造個(gè)性方面,而創(chuàng)造思維是創(chuàng)造力的核心。所謂創(chuàng)造思維就是與眾不同的思考。在數(shù)學(xué)教學(xué)中,可以通過(guò)以下途徑培養(yǎng)學(xué)生的創(chuàng)造思維能力:指導(dǎo)觀察、引導(dǎo)想象、鼓勵(lì)求異、誘發(fā)靈感。
關(guān)鍵詞:創(chuàng)造思維;數(shù)學(xué)教學(xué);創(chuàng)造力
中國(guó)分類(lèi)號(hào):G424 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):1992-7711(2010)4-056 -01
數(shù)學(xué)教學(xué)中所研究的創(chuàng)造思維,一般是指對(duì)思維主體來(lái)說(shuō)是新穎獨(dú)到的一種思維活動(dòng)。它包括發(fā)現(xiàn)新事物,提示新規(guī)律,創(chuàng)造新方法,解決新問(wèn)題等思維過(guò)程。它具有獨(dú)特性、求異性、批判性等思維特征,思考問(wèn)題的突破常規(guī)和新穎獨(dú)特是創(chuàng)造思維的具體表現(xiàn)。這種思維能力是正常人經(jīng)過(guò)培養(yǎng)可以具備的。
一、指導(dǎo)觀察
首先,在觀察之前,要給學(xué)生提出明確而又具體的目的、任務(wù)和要求。其次,要在觀察中及時(shí)指導(dǎo)。比如要指導(dǎo)學(xué)生根據(jù)觀察的對(duì)象有順序地進(jìn)行觀察,要知道學(xué)生選擇適當(dāng)?shù)挠^察方法,要指導(dǎo)學(xué)生及時(shí)地對(duì)觀察的結(jié)果進(jìn)行分析總結(jié)等。第三,要科學(xué)地運(yùn)用直觀教具及現(xiàn)代教學(xué)技術(shù),以支持學(xué)生對(duì)研究的問(wèn)題做仔細(xì)、深入地觀察。第四,要努力培養(yǎng)學(xué)生濃厚的觀察興趣;例如教學(xué)《圓的認(rèn)識(shí)》時(shí),我把一根細(xì)線的兩端各系一個(gè)小球,然后甩動(dòng)其中一個(gè)小球,使它旋轉(zhuǎn)成一個(gè)圓。引導(dǎo)學(xué)生觀察小球被甩動(dòng)時(shí),一端固定不動(dòng),另一端旋轉(zhuǎn)一周形成圓的過(guò)程.提問(wèn):“你發(fā)現(xiàn)了什么?”學(xué)生紛紛發(fā)言:“小球旋轉(zhuǎn)形成了一個(gè)圓.”“小球始終繞著中心旋轉(zhuǎn)而不跑到別的地方去。”“我還看見(jiàn)好象有無(wú)數(shù)條線?!薄瓘倪@些學(xué)生樸素的語(yǔ)言中,其實(shí)蘊(yùn)含著豐富的內(nèi)涵,滲透了圓的定義:到頂點(diǎn)的距離相等的點(diǎn)的軌跡??吹健盁o(wú)數(shù)條線”則為理解圓的半徑有無(wú)數(shù)條提供感性材料。
二、引導(dǎo)想象
想象是思維探索的翅膀.愛(ài)因斯坦說(shuō):“想象比知識(shí)更重要,因?yàn)橹R(shí)是有限的,而想象可以包羅整個(gè)宇宙。”在教學(xué)中,引導(dǎo)學(xué)生進(jìn)行數(shù)學(xué)想象,往往能縮短解決問(wèn)題的時(shí)間.獲得數(shù)學(xué)發(fā)現(xiàn)的機(jī)會(huì),鍛煉數(shù)學(xué)思維。
想象不同于胡思亂想。數(shù)學(xué)想象一般有以下幾個(gè)基本要素。第一,因?yàn)橄胂笸且环N知識(shí)飛躍性的聯(lián)結(jié),因此要有扎實(shí)的基礎(chǔ)知識(shí)和豐富的經(jīng)驗(yàn)的支持。第二,是要有能迅速擺脫表象干擾的敏銳洞察力和豐富的想象力.第三,要有執(zhí)著追求的情感.因此,培養(yǎng)學(xué)生的想象力,首先要使學(xué)生學(xué)好有關(guān)的基礎(chǔ)知識(shí)。其次,新知識(shí)的產(chǎn)生除去推理外,常常包含前人的想象因素,因此在教學(xué)中應(yīng)根據(jù)教材潛在的因素,創(chuàng)設(shè)想象情境,提供想象材料,誘發(fā)學(xué)生的創(chuàng)造性想象。例如,在復(fù)習(xí)三角形、平行四邊形、梯形面積時(shí),要求學(xué)生想象如何把梯形的上底變得與下底同樣長(zhǎng),這時(shí)變成什么圖形?與梯形面積有什么關(guān)系?如果把梯形上底縮短為0,這時(shí)變成什么圖形?與提醒面積有什么關(guān)系?問(wèn)題一提出學(xué)生想象的閘門(mén)打開(kāi)了:三角形可以看作上底為0的梯形,平行四邊形可以看作是上底和下底相等的梯形。這樣拓寬了學(xué)生思維的空間,培養(yǎng)了學(xué)生想象思維的能力。
三、鼓勵(lì)求異
求異思維是創(chuàng)造思維發(fā)展的基礎(chǔ)。它具有流暢性、變通性和創(chuàng)造性的特征。求異思維是指從不同角度,不同方向,去想別人沒(méi)想到的,去找別人沒(méi)有找到的方法和竅門(mén)。要求異必須富有聯(lián)想,好于假設(shè)、懷疑、幻想,追求盡可能獨(dú)特,即與眾不同的思路。課堂教學(xué)要鼓勵(lì)學(xué)生去大膽嘗試,勇于求異,激發(fā)學(xué)生創(chuàng)新欲望。例如:教學(xué)分?jǐn)?shù)應(yīng)用題時(shí),有這么一道習(xí)題:“修路隊(duì)修一條3600米的公路,前4天修了全長(zhǎng)的1/6,照這樣的速度,修完余下的工程還要多少天?”就要引導(dǎo)學(xué)生從不同角度去思考,用不同方法去解答。
解法1:3600÷(3600×1/6÷4)-4;
解法2:(3600-3600×1/6)÷(3600×1/6÷4);
解法3:4×\\÷(3600×1/6÷4)。
思維較好的同學(xué)將本題與工程問(wèn)題聯(lián)系起來(lái),拋開(kāi)3600米這個(gè)具體量,將全程看作單位“1”,
解法4:1÷(1/6÷4)-4;
解法5:(1-1/6)÷(1/6÷4);
解法6:4×(1÷1/6-1);
此時(shí)學(xué)生思維處于高度活躍狀態(tài),又有同學(xué)想出:
解法7:4÷1/6-4;解法8:4×(1÷1/6)-4;
解法9:4×(6-1)。
學(xué)生在求異思維中不斷獲得解決問(wèn)題的簡(jiǎn)捷方法,有利于各層次的同學(xué)參與,有利于創(chuàng)造思維能力的發(fā)展。
四、誘發(fā)靈感
在教學(xué)中,教師應(yīng)及時(shí)捕捉和誘發(fā)學(xué)生學(xué)習(xí)中出現(xiàn)的靈感,對(duì)于學(xué)生別出心裁的想法,違反常規(guī)的解答,標(biāo)新立異的構(gòu)思,哪怕只有一點(diǎn)點(diǎn)的新意,都應(yīng)及時(shí)給予肯定。同時(shí),還應(yīng)當(dāng)運(yùn)用數(shù)形結(jié)合、變換角度、類(lèi)比形式等方法去誘導(dǎo)學(xué)生的數(shù)學(xué)直覺(jué)和靈感,促使學(xué)生能直接越過(guò)邏輯推理而尋找到解決問(wèn)題的突破口。
例如,有這樣的一道題:把3/7、6/13、4/9、12/25用“>”號(hào)排列起來(lái)。對(duì)于這道題,學(xué)生通常都是采用先通分再比較的方法,但由于公分母太大,解答非常麻煩。為此,我在教學(xué)中,安排學(xué)生回頭觀察后桌同學(xué)抄的題目(7/3、13/6、9/4、25/12),然后再想一想可以怎樣比較這些數(shù)的大小,倒過(guò)來(lái)的數(shù)字誘發(fā)了學(xué)生瞬間的靈感,使很多學(xué)生尋找到把這些分?jǐn)?shù)化成同分子分?jǐn)?shù)再比較大小的簡(jiǎn)捷方法。