馮 超, 葛成敏, 王寅光, 張淑華
(桂林理工大學(xué) 化學(xué)與生物工程學(xué)院,廣西 桂林 541004)
過(guò)渡金屬聚合物具有明確有序的一維或者多維微觀結(jié)構(gòu)以及獨(dú)特的宏觀特性,選取適當(dāng)?shù)倪^(guò)渡金屬離子、配體以及合成方法可調(diào)控配位聚合物的結(jié)構(gòu),進(jìn)而調(diào)控其性質(zhì)[1~10]。配位聚合物由于結(jié)構(gòu)的多樣性和在催化、化學(xué)吸附、磁性和電子導(dǎo)體等方面的功能特性, 近年來(lái)已受到研究人員的廣泛關(guān)注[11]。在配位聚合物的合成研究中,配體是影響結(jié)構(gòu)特征的決定性因素之一。配體的給體基團(tuán)性質(zhì)、配體的齒數(shù)、配體點(diǎn)間的間距、配體間的連接基團(tuán)以及配體異構(gòu)等諸多因素都可能對(duì)配位聚合物的最終結(jié)構(gòu)產(chǎn)生影響[12]。但是在設(shè)計(jì)和合成金屬有機(jī)骨架時(shí),控制維度仍然是一個(gè)重大挑戰(zhàn)。除了溶劑、溫度、金屬與配體的配比、模板和平衡電荷的離子外,最終的結(jié)構(gòu)還會(huì)受到如氫鍵和π-π相互作用[13]等因素的微妙影響。盡管配體的空間結(jié)構(gòu)對(duì)配合物領(lǐng)域和催化活性金屬中心有巨大的影響力,但其影響力在超分子結(jié)構(gòu)方面還沒(méi)有得到充分的重視[14,15]。在4,4′-聯(lián)吡啶(4,4′-bipy)為有機(jī)配體的合成體系中,加入客體小分子的研究較多[16,17],但單獨(dú)以4,4′-bipy構(gòu)筑的配位聚合物的研究報(bào)道較少[18~21]。
本文以4,4′-bipy和CuCl2·2H2O為原料,在DMF中用溶劑熱法合成了新型一維配位聚合物——[Cu(4,4′-bipy)Cl]n(1),其結(jié)構(gòu)經(jīng)IR,元素分析和X-射線單晶衍射表征。
Bruker Vector 22 FT-IR型紅外光譜儀(KBr壓片);Perkin-Elmer 240C型元素分析儀;Bruker SMART CCD型X-射線單晶衍射儀。所用試劑均為分析純,使用前未作進(jìn)一步純化處理。
在聚四氟乙烯內(nèi)襯不銹鋼反應(yīng)釜(15 mL)中加入CuCl2·2H2O 17 mg(0.1 mmol), 4,4′-bipy 15.6 mg(0.1 mmol)和DMF 10 mL,攪拌下滴加三乙胺,調(diào)至pH 8左右。置入烘箱,于120 ℃反應(yīng)120 h。自然冷卻至室溫,過(guò)濾,濾餅自然晾干得紫紅色晶體1,產(chǎn)率51%(基于Cu); IRν: 3 459, 3 044, 1 560, 1 528, 1 478, 1 410, 1 214, 797, 723, 629, 474 cm-1; Anal.calcd for 1: C 40.07, H 3.16, N 10.97; found C 40.03, H 3.22, N 10.89。
1的分子結(jié)構(gòu)見(jiàn)圖1,主要鍵長(zhǎng)和鍵角見(jiàn)表1。由圖1可見(jiàn),在1的結(jié)構(gòu)單元中包括兩個(gè)Cu+,四個(gè)4,4′-bipy分子,兩個(gè)Cl-。 Cu+具有四面體的配位幾何構(gòu)型,與其配位的4個(gè)原子分別是兩個(gè)4,4′-bipy分子中的兩個(gè)N原子,兩個(gè)Cl原子。Cu-N鍵長(zhǎng)從0.198 3(2) nm~0.199 1(2) nm; Cu-Cl鍵長(zhǎng)為0.241 46 (9) nm,相應(yīng)的鍵角(N2-Cu1-Cl1,N1-Cu1-N2, N1-Cu1-Cl1和N1-Cu1-Cl1i)分別為99.4°, 126.5°, 111.2°和108.30(8)°。其中兩個(gè)Cl-起到橋聯(lián)作用連接兩個(gè)Cu+, Cu1-Cu1i鍵長(zhǎng)[0.274 7(1) nm]介于羧酸的雙核銅(0.259 nm~0.275 nm)的銅銅距離之間[24]。說(shuō)明兩個(gè)Cu+間有相互作用。為更好的精密堆積,在4,4′-bipy分子中,兩個(gè)吡啶環(huán)間的二面角是22.06°。
圖 1 1的分子結(jié)構(gòu)圖Figure 1 Molecular structure of 1
BondLength/nmBondAngle/(°)BondAngle/(°)Cu1-N10.198 30(2)N1-Cu1-Cl1111.20(8)N2-Cu1-Cl199.44(8)Cl1-Cu1i0.241 46(9)N1-Cu1-Cl1i108.30(8)Cl1i-Cu1-Cl1104.86(3)Cu1-N20.199 10(2)Cl1-Cu1-Cu1i54.94(2)N2-Cu1-Cu1i132.14(7)Cu1-Cu1i0.274 70(8)N1-Cu1-N2126.49(10)Cl1i-Cu1-Cu1i56.42(2)Cu1-Cl1i0.241 46(9)N1-Cu1-Cu1i101.29(7)Cu1i-Cl1-Cu168.63(3)Cu┈Cu0.274 70(1)N2-Cu1-Cl1i104.49(8)
i-x, -y+3/2, z
由圖2(1的2-D層狀結(jié)構(gòu)圖)可見(jiàn),在a+c軸方向,兩個(gè)Cu+和兩個(gè)4,4′-bipy分子經(jīng)橋連作用形成一個(gè)大的20元環(huán),并且延伸形成二維層狀網(wǎng)格,層與層之間互相平行(圖3)。這些由非常規(guī)的C-H┈Cl氫鍵(C7┈Cl1=0.093 00 nm, C7-H17┈Cl1夾角為151.70°)構(gòu)筑的二維層與另一方向的二維層形成互穿插結(jié)構(gòu)而形成三維網(wǎng)狀結(jié)構(gòu)。運(yùn)用OLEX[25]軟件,如果氯橋簡(jiǎn)化為藍(lán)線,4,4′-bipy簡(jiǎn)化為紅線,四配位的Cu簡(jiǎn)化為一個(gè)棕色點(diǎn),則二維層可簡(jiǎn)化為一個(gè)4.82的拓?fù)?圖4)。
圖 2 1沿b軸方向的2-D層狀網(wǎng)格圖Figure 2 2-D network structure of 1 along b axis
圖 3 1沿c軸方向的堆積圖Figure 3 Packing diagram of 1 along c axis
圖 4 1的拓?fù)浣Y(jié)構(gòu)圖Figure 4 Topology structure of 1
應(yīng)用溶劑熱法合成了新型的一維配位聚合物[Cu(4,4′-bipy)Cl]n,單晶X-射線研究表明,聚合物二維4.82的拓?fù)渫ㄟ^(guò)互相穿插形成三維空間結(jié)構(gòu)。雖然形成了20元大環(huán)結(jié)構(gòu),但由于互相穿插自填補(bǔ)而使整個(gè)化合物并沒(méi)有空洞存在。
[1] Hegetschweiler K, Morgenstern B, Zubieta J,etal. Strong ferromagnetic interaction in [V9O14(H2taci)2]:An unprecedented large spin ground state for a vanyl cluster[J].Angew Chem,Int Ed,2004,43:3436-3439.
[2] Morgenstein B, Steinhauser S, Hegetschweiler K,etal. Complex formation of vanadium(Ⅳ) with 1,3,5-triamino-1,3,5-trideoxy-cis-inositol and related ligands[J].Inorg Chem,2004,43:3116-3126.
[3] Applegrarth L, Goeta A E, Steed J W. Influence of hydrogen bonding on coordinaton polymer assembly[J].Chem Commun,2005:2405-2406.
[4] Manna S C, Ribas J, Zangrando E,etal. Supramolecular networks of dinuclear copper(Ⅱ):Synthesis,crystal structure and magnetic study[J].Inorg Chim Acta,2007,360:2589-2597.
[5] Masaoka S, Tanaka D, Nakanishi Y,etal. Reaction-temprature-dependent supramolecular isomerism of coordination network based on the organometallic building block[CuI2(μ2-BQ)(μ2-OAc)2][J].Angew Chem,Int Ed,2004,43:2530-2534.
[6] Sun D, Ke Y, Mattox T M,etal. Temperature-dependent supramolecular stereoisomerism in porous copper coordination networks based on a design carboxylate ligand[J].Chem Commun,2005:5477-5449.
[7] Chiang R K. Synthesis and structure of a one-dimensional cobalt phosphate:(R,S)-(C5H14H2)Co(HPO4)2[J].J Slid State Chem,2000,153:180-184.
[8] Fujita M, Yoshizawa M, Umemoto K,etal. Molecular paneling via coordination[J].Chem Commun,2001:509-518.
[9] Mana S C, Zangrando E, Ribas J,etal. Cobalt(Ⅱ)-(dpyo)-dicarboxylate networks:Unique H-bonded assembly and rare bridging mode of dpyo in one of them [dpyo=4,4′-dipyridyl-N,N′-dioxde][J].Dalton Trans,2007:1383-1391.
[10] Seidel S R, Stang P J. High-symmetry coordination cages via self-assembly[J].Acc Chem Res,2002,35:972-983.
[11] Ye B H, Tong M L, Chen X M. Metal-organic molecular architectures with 2,2′-bipyridyl-like and carboxylate ligands[J].Coord Chem Rev,2005,249:545-565.
[12] Hong M C, Chen R, Liang W P. Inorganic Chemistry of 21th Century[M].Beijing:Science Press,2005.
[13] Zhao B, Cheng P, Chen X Y,etal. Design and synthesis of 3d~4fmetal-based zeolite-type materials with a 3D nanotubular structure encapsulated “water” pipe[J].J Am Chem Soc,2004,126:3012-3013.
[14] Zhang J P, Chen X M. Crystal engineering of binary metal imidazolate and triazolate frameworks[J].Chem Commum,2006:1689-1699.
[15] Kim J, Chen B, Reineke T M,etal. Assembly of metal-organic frameworks from large organic and ino-ganic secondary building units:New examples and simplifying principles for complex structures[J].J Am Chem Soc,2001,123:8239-8247.
[16] Rao C N R, Natarajan S, Vaidhyanathan R. Metal carboxylates with open architectures angew[J].Chem,Int Ed[J].2004,43:1466-1496.
[17] Hagrman P J, Hagrman D, Zubieta J. Organic-inorganic hybrid materials:From simple coordination polymers to organodiamine-templated molybdenum oxides angew[J].Chem Int Ed,1999,38:2638-2684.
[18] Lu J Y, Lawandy M A, Li J. A new type of two-dimensional metal coordination systems:Hydrothermal synthesis and properties of the first oxalate——bpy mixed-ligand framework[M(ox)(bpy)](M=Fe(Ⅱ),Co(Ⅱ),Ni(Ⅱ),Zn(Ⅱ);ox=C2O42-;bpy=4,4′-bipyridine)[J].Inorg Chem,1999,38:2695-2704.
[19] Zheng L M, Fang X, Li K H,etal. Syntheses,crystal structures and magnetic properties of two novel layered compounds:[Fe3(C2O4)3(4,4′-bpy)4] and [Co(C2O4)(4,4′-bpy)](4,4′-bpy=4,4′-bipyridine)[J].J Chem Soc,Dalton Trans,1999,14:2311-2316.
[20] Hao N, Shen E H, Li Y G. Hydrothermal synthesis and crystal structure of a layered coordination polymer:[Zn3(C2O4)3(4,4′-bipy)4]n(4,4′-bipy=4,4′-bipyridine)[J].J Molecular Structure,2004,691:273-277.
[21] Castillo O, Alonso J, Garcia-Couceiro U,etal. A 2D polymer constructed through bridging oxalato and 4,4′-bipyridine ligands:Crystal structure and magnetic behavior of [Cu3(μ-ox)3(μ-4,4′-bpy)2(4,4′-bpy)2]n[J].Inorg Chem Commun,2003,6:803-806.
[22] Bruker SMART(Version 5. 622) , SAINT(Version 6.02a), SADABS(Version 2. 03 ) and SHELXTL(Version 6.10)[K].Bruker AXS Inc,Madison,Wisconsin,USA,2000.
[23] Sheldrick G M. SHELXS97 and SHELXL97 Software,Reference Manual[K].University of G?ttingen,Germany,1997.
[24] Catterick J, Thornton P. Crystal and molecular structure of tera-μ-benzoato-bisquinolinedicobalt(Ⅱ),a binuclear cobalt(Ⅱ) carboxylate[J].Adv Inorg Chem Radiochem,1977,20:291.
[25] Dolomanov O V, Blake A J, Champness N R. Sch?der M. OLEX:New software for visualization and analysis of extended crystal structures[J].J Appl Crystallogr,2003,36:1283-1284.