亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Sn上的變換群探究

        2010-01-25 02:29:04鄧艷娟
        關(guān)鍵詞:內(nèi)積洛倫茲弧度

        鄧艷娟,陳 軍

        (中國(guó)青年政治學(xué)院 經(jīng)濟(jì)系,北京 100089)

        1 Sn上的簡(jiǎn)單介紹

        Sn為n維球空間,定義為

        1.1 球坐標(biāo)表示

        下面討論中,用·代表歐氏內(nèi)積,<,>代表洛倫茲內(nèi)積.令C為Sn上的中心為c∈Sn,弧度為θ,0<θ<π的n維閉-cap,

        C={x∈Sn∶x·c≥cosθ}.

        (1)

        此時(shí)對(duì)于Sn上的屬于C的點(diǎn)x我們可以表示為

        x·c-1·cosθ≥0,

        (2)

        由于sinθ>0,我們有

        (3)

        可用(n+2)維向量來(lái)表示點(diǎn)x和cap-C,令

        (4)

        即確定了Sn上的一個(gè)定向球.由上可知,

        定理1 球空間上的定向球與洛倫茲空間中的點(diǎn)一一對(duì)應(yīng).

        ≥0.

        (5)

        性質(zhì)1 (1)如果一個(gè)向量C表示一個(gè)cap當(dāng)且僅當(dāng)C滿足條件=1;(2)如果一個(gè)向量表示一點(diǎn)X當(dāng)且僅當(dāng)=0并且X的第一個(gè)分量為1.

        由此規(guī)定,如果有正數(shù)λ,點(diǎn)λX與X表示同一點(diǎn).

        如果一個(gè)capC=(cotθ,cscθc)的中心為c,弧度為θ,那它的補(bǔ)C′記為中心為-c,弧度為π-θ的cap.C′的坐標(biāo)表示記為-C.

        性質(zhì)2 n-1維球上的點(diǎn)X是C和C′的公共邊界點(diǎn)當(dāng)且僅當(dāng)=0.

        特別的,當(dāng)γ是大圓時(shí),反演就是得到γ的那個(gè)截Sn的平面的反射.如果γ不是大圓,那么就有Rn+1中唯一一點(diǎn)與γ上點(diǎn)的連線與Sn相切.

        由于球坐標(biāo)的引入,可將球上的反演線性化.所以有

        定理2U關(guān)于C和C′的公共邊界的反演記為線性變換

        U→U′=U-2C

        (6)

        證明 只需驗(yàn)證變換保持線性和保內(nèi)積.

        假設(shè)U,V為球上cap,U′,V′為U,V關(guān)于C和C′的公共邊界的反演,所以有內(nèi)積

        (7)

        對(duì)于球上的點(diǎn)上式同樣成立.由此說(shuō)明變換將cap映成cap,點(diǎn)映成點(diǎn).特別的,當(dāng)C為半球時(shí),即C=(0,c)(C的第一個(gè)分量為0),c為n-維平面的法向,此時(shí)反射即為我們的反演.點(diǎn)X=(1,x)的反射

        x→x-2(c·x)c.

        通常情況下,C不是半球時(shí),點(diǎn)X的反演可寫(xiě)成

        (8)

        其中

        λ=?1+cos2θ-2(c·x)cosθ」csc2θ

        (9)

        容易看出λ>0并且==0,X′是球上的點(diǎn),并且可看出點(diǎn)x′是x和θc的線性組合.

        1.2 定向球之間的位置關(guān)系

        任意兩個(gè)定向球C1=(cotθ1,cscθ1c1),C2=(cotθ2,cscθ2c2).=cosθ,其中θ為兩個(gè)定向球之間的夾角.

        由洛倫茲內(nèi)積我們有,

        (10)

        另一方面,x∈定向球C上,有法向量n在C和x確定的平面上,C=ax+bn,a=C·x=cosθ.同時(shí)又有=1,故可得到b=sinθ.因此,

        (11)

        由此可看出

        定理3 兩個(gè)定向球之間的夾角即為兩個(gè)定向球法向之間的夾角.

        通過(guò)夾角θ,可以來(lái)判斷兩個(gè)定向球的位置關(guān)系:

        (1)當(dāng)θ=0,兩個(gè)定向球相內(nèi)切,=1;

        (2)當(dāng)θ=0,兩個(gè)定向球相外切,=-1;

        (3)當(dāng)θ≠0,π,兩個(gè)定向球相交,||<1;

        (4)兩個(gè)定向球相外離,即||>1;

        (5)兩個(gè)定向球正交,即=0.

        1.3 相切的定向球之間的位置關(guān)系

        定理4 定向球C1,C2∈Sn,C1,C2相切,即

        ===1,則有

        tC1+(1-t)C2,t∈R.

        證明 過(guò)C1,C2的直線為

        C=tC1+(1-t)C2∈Sn,t∈R,

        (12)

        此時(shí)說(shuō)明Sn上相切的一簇定向球?qū)?yīng)洛倫茲空間中的一條直線.

        2 Sn上的四種變換群

        定義1 球Sn上反演變換的復(fù)合就是M?bius變換群.

        性質(zhì)3 保正向的洛倫茲變換群O+(n+1,1)是O(n+1,1)的子群.

        定義3 如果映射σ∶Sn→Sn是微分同胚且滿足σ*g=λg,λ∈C∞,這時(shí)我們稱(chēng)σ為Sn上共形變換群.

        定義4 如果映射σ∶Sn→Sn是微分同胚且把Sn上每個(gè)Sn-1變成Sn-1,這時(shí)我們稱(chēng)σ為Sn上保球換群.

        性質(zhì)4 保球變換將定向球映到定向球.

        參考文獻(xiàn):

        [1] Blaschke. W.Verlesungen ueber Differentiallgeometry.Vol[M]. Springer, Berlin , 1929.

        [2] Bryant, R.A dualitytheorem for Willmore surfaces[J].Differential Geom, 1984(20):23-53.

        [3] J. B. Wilker.Inversive geometry[M].The geometric vein (C. Davis, et ah, eds.), Springer, New York, 1981.

        [4]Kulkarni, R.S. and Pinkall, U. Conformal Geometry.Aspecs[M].Math. E12, Friedr. Vieweg Son, Braunschweig, 1988.

        [5]Li, H.Zh., Liu, H.L., Wang, C.P. and Zhao, G.S., M bius isoparametric hypersurfaces inSn+1with two distinct principle curvatures[J]. Acta Math. Sinica, English series , 2002(18):437-446.

        猜你喜歡
        內(nèi)積洛倫茲弧度
        基于KF-LESO-PID洛倫茲慣性穩(wěn)定平臺(tái)控制
        高中物理解題中洛倫茲力的應(yīng)用
        不自由
        詩(shī)潮(2017年2期)2017-03-16 20:02:06
        基于矩陣的內(nèi)積函數(shù)加密
        南瓜
        希臘:日落最美的弧度
        Coco薇(2016年7期)2016-06-28 19:11:56
        關(guān)于矩陣的Frobenius內(nèi)積的一個(gè)推廣
        弧度制的應(yīng)用
        橫看成嶺側(cè)成峰,洛倫茲力不做功
        火花(2015年7期)2015-02-27 07:43:57
        關(guān)于概率內(nèi)積空間定義的平凡性
        亚洲国产成人av在线观看| 亚洲av熟女天堂久久天堂| 无码超乳爆乳中文字幕| 亚洲图文一区二区三区四区 | 手机av在线播放网站| 久久99精品久久久久久琪琪| 久久不见久久见免费影院www| 亚洲综合色区无码专区| 久久亚洲精品中文字幕蜜潮| 久久精品国产亚洲超碰av| 中文字字幕在线精品乱码| 亚洲AV秘 无码一区二区三区1| 久久亚洲精品成人av观看| 国产精品国产三级第一集| 亚洲精品无码不卡在线播放he| 久久国产精品视频影院| 亚洲精品久久麻豆蜜桃| 亚洲a∨无码精品色午夜| 内射精品无码中文字幕| 无码一区二区三区在| 精品少妇人妻av一区二区蜜桃| 激情伊人五月天久久综合| 五十路熟妇亲子交尾| 在线视频一区二区在线观看| 亚洲综合中文字幕综合| 国产麻豆md传媒视频| 成人午夜视频一区二区无码| 男女搞基视频免费网站| 国产精品久久久久9999无码| 大地资源网更新免费播放视频| 亚洲中文字幕国产综合| 国产黄片一区二区三区| 国内精品久久久久影院优| 亚洲狠狠婷婷综合久久| 挑战亚洲美女视频网站| 亚洲国产中文字幕在线视频综合| 免费观看的a级毛片的网站| 国产肉体XXXX裸体784大胆| 97女厕偷拍一区二区三区| 日韩精品专区av无码| 又白又嫩毛又多15p|