亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Uniqueness of the Best Approximation in a New Haar Type Space*1

        2014-09-06 03:08:50方東輝
        關(guān)鍵詞:吉首向陽廣義

        UniquenessoftheBestApproximationinaNewHaarTypeSpace*1

        The problem of the best approximation with generalized restrictions is considered in this paper.By introducing a new Haar type space,the uniqueness and strong uniqueness of the best approximation on this Haar type space are given.

        best approximation;Haar type space;uniqueness;strong uniqueness

        1 Introduction

        The uniqueness and strong uniqueness of the best approximation have received much attention (ref. [1-9]).In ref. [1],Chalmers and Taylor introduced a general method of investigating uniqueness of best approximations with constraints,which provided a unified approach to the problem.However,this approach essentially provided only sufficient conditions for uniqueness of best constrained approximation.In ref. [4],the authors introduced a new Haar space,namely,LHaar space,and established a Haar type theory for constrained approximation,and gave some necessary and sufficient conditions for uniqueness and strong uniqueness.Note thatIHaar is not Haar as shown in ref. [9].Thus,the authors in ref. [9] introduced another Haar type space and studied the characterization for this Haar type space.

        Inspired by those works mentioned above,we continue to study the problem of the best approximation with generalized restrictions.By introducing a new Haar type space defined in ref. [9],we establish the uniqueness and strong uniqueness of the best approximation.

        2 L* Haar Spaces

        (1)

        Definition2 It is said thatp∈Unvanishes onAorA*ifp(xi)=0(1≤i≤s) and (Lp)(yj)=0(1≤j≤r).

        Definition3UnisL(resp.L*) Haar if nop∈Un{0} vanishes on a nondegenerateL(resp.L*) extremal set forUn.

        Letf∈C[a,b] andp∈Un(l,u), we denote

        The following definition was introduced in ref. [1].

        Definition4 A functionf∈C[a,b]Un(l,u) is said to be admissible if inf{‖f-q‖:q∈Un(l,u)}>max{l(y)-f(x),f(x)-u(y)} holds for eachx∈[a,b] andy∈Kwithex=Ly.

        LetCa[a,b] denote the set of all admissible functions.In particular,ifl(y)≤f(x)≤u(y) for allx∈[a,b] andy∈K,thenf∈Ca[a,b].Letf∈C[a,b],p∈Un(l,u),denoteΓ(f,p)=(EX+ (p)∩LK- (p))∪ (EX-(p)∩LK+ (p)).Then we have the following proposition.

        Proposition1 The following statements are equivalent:

        (ⅰ)f∈Ca[a,b];

        (ⅱ) For everyp∈Un(l,u),ifx∈X(p) andy∈K(p) withex=Ly,thenσ1(f,p,x)=σ2(f,p,y);

        (ⅲ) For eachp∈Un(l,u),we haveΓ(f,p)=?;

        (ⅳ) There existsp0∈Un(l,u) such thatΓ(f,p0)=?;

        (ⅴ) There existsp0∈PUn(l,u)(f) such thatΓ(f,p0)=?.

        Proof(ⅰ)?(ⅱ).Suppose that (ⅰ) holds and that there existp∈Un(l,u),x∈X(p) andy∈K(p) withex=Ly,butσ1(f,p,x) ≠σ2(f,p,y).Without loss of generality,we assume thatσ1(f,p,x)=-1,σ2(f,p,y)=1,that is,f(x)-p(x)=-‖f-p‖ andLp(y)=l(y).Sincefis admissible,it follows that

        max{l(y)-f(x),f(x)-u(y)}<‖f-p‖=ex(p)-f(x)=Ly(p)-f(x)=l(y)-f(x),

        which is a contradiction.

        (ⅱ)?(ⅲ).Suppose that (ⅱ) holds and that there existsp∈Un(l,u) such thatΓ(f,p)≠ ?.Without loss of generality,we assume thatEX+(p)∩LK-(p)≠ ?,then there existx∈X+(p) andy∈K-(p) such thatex=Ly.But this implies thatσ1(f,p,x)=1 andσ2(f,p,y)=-1 ,which contradicts with (ⅱ).

        (ⅲ)?(ⅳ)?(ⅴ) are trivial.

        (ⅴ)?(ⅰ).Suppose that (ⅴ) holds and thatfis not admissible.Then for everyp∈PUn(l,u)(f),x∈[a,b] andy∈Kwithex=Ly,one has ‖f-p0‖≤max{l(y)-f(x),f(x)-u(y)}.Note that

        f(x)-u(y)≤f(x)-Lp0(y)=f(x)-p0(x)≤‖f-p0‖

        (2)

        and

        l(y)-f(x) ≤Lp0(y)-f(x)=p0(x)-f(x) ≤‖f-p0‖.

        Then

        ‖f-p0‖≤max{l(y)-f(x),f(x)-u(y)}≤‖f-p0‖.

        (3)

        Thus,the equalities in (3) must hold.

        (a) Iff(x)-u(y)=‖f-p0‖,then,by (2),we haveu(y)=Lp0(y) andf(x)-p0(x)=‖f-p0‖.This meansx∈X+(p0) andy∈K-(p0).Hence,EX+(p0)∩LK-(p0)≠ ?,contradicting with (ⅴ).

        (b) Similarly,ifl(y)-f(x)=‖f-p0‖,then we haveEX-(p0)∩LK+(p0)≠ ?,contradicting with (ⅴ).The proof is complete.

        Definition5 Letf∈C[a,b] andp∈Un,theL*extremal setA*is said to be anL*extremal set with respect to (f,p) (denote byA*(f,p)),ifxi,yj,ci,djin (1) satisfy the following conditions:

        (ⅰ)xi∈X(p),yj∈K(p);

        (ⅱ) sgnci=σ1(f,p,xi),i=1,2,...,s;

        (ⅲ) sgndj=σ2(f,p,yj),j=1,2,...,r.

        Proposition2 Letf∈Ca[a,b],p0∈PUn(l,u)(f).IfUnis anL*Haar space,then there exists a nondegenerateL*extremal setA*(f,p0) forUn.

        ProofLetf∈Ca[a,b],p0∈PUn(l,u)(f).Then,by ref. [9,theorem 3.1],there exist points {x1,...,xs}?X(p0),{y1,...,yr}?K(p0)(s+r≤n+1) andc1,...,cs,d1,...,dr≠ 0 such that

        (4)

        3 Uniqueness of the Best Approximation

        Theorem1 LetUnbe anL*Haar space,then for everyf∈Ca[a,b] andl,u∈C(K) withl(t)

        (5)

        Below we show that

        (6)

        (7)

        In order to establish some results on the strong uniqueness of the best approximation fromUn(l,u),we first introduce the concept of the strong uniqueness of orderγ>0;see,for example,ref. [4,8].

        Definition6 Suppose thatf∈C[a,b],p0∈PUn(l,u)(f).It is said thatp0is strongly unique of orderγ>0 if there exists a constantα=α(f) such that ‖f-p‖γ≥‖f-p0‖γ+α‖p-p0‖γ,p∈Un(l,u).In the case whenγ=1 we simply say thatp0is strongly unique.

        Theorem2 LetUnbe anL*Haar space.Then for everyf∈Ca[a,b] andl,u∈C(K) withl(t)

        Letp1∈Un(l,u) be such that ‖f-p1‖=‖f-p0‖+with 1>>0.Since (f-p0)(xi)= (sgnci)‖f-p0‖,i=1,...,s,it follows that

        sgnci(p0-p1)(xi)= sgnci(f-p1)(xi)-sgnci(f-p0)(xi)≤

        ‖f-p1‖-‖f-p0‖=.

        (8)

        Furthermore,y1,...,yl∈K-(p0),yl+1,...,yr∈K+(p0) yield

        L(p0-p1)(yj)≥0(j=1,...,l),L(p0-p1)(yj)≤0 (j=l+1,...,r).

        (9)

        Letp*=p0-p1∈Un,by (8)

        (10)

        Moreover,(9) yields thatdjLp*(yj)≤0 (j=1,...,r).Taking also into account (10) we have

        |Lp*(yj)|≤M1j=1,...,r,

        (11)

        This together with (8) implies

        |p*(xi)|≤M2i=1,...,s,

        (12)

        By the equivalence of norms in finite dimensional spaces,there exists constantM3>0 such that

        ‖p0-p1‖=‖p*‖≤M3N(p*)≤c=c(‖f-p1‖-‖f-p0‖),

        [1] CHALMERS B L,TAYLOR G D.A Unified Theory of Strong Uniqueness in Uniform Approximation with Constraints[J].J. Approx.Theory,1983(37):29-43.

        [2] CULBERTSON J.On Approximation by Monotone Polynomials in the Chebyshev Norm Characterization and Uniqueness[D].Master’s Thesis University of Maryland,1968.

        [3] FANG Donghui,LI Chong,YANG Wenshan.Strong CHIP and Characterization of the Best Approximation with Generalized Restrictions[J].Acta Mathematica Sinica,2004,47(6):1 115-1 123.(in Chinese)

        [5] SHI Yingguang.The Limits of a Chebyshev Type Theory of Restricted Range Approximation[J].J. Approx. Theory,1988,53:41-53.

        [6] SINGER I.Best Approximation by Elements of Linear Subspaces in Linear Spaces[M].New York:Spring Verleg,1974.

        [7] RICE J R.The Approximation Functions[M].London:Addison Wesley,1964.

        [8] XU Shiying,LI Chong,YANG Wenshan.The Theory of Nonlinear Approximation in Banach Spaces[M].Beijing:Science Press,1997.(in Chinese)

        [9] WANG Xianyun,FANG Donghui.Characterizations forLHaar Space[J].Journal of Jishou University:Natural Sciences Edition,2005(1):12-14.(in Chinese)

        (責(zé)任編輯 向陽潔)

        FANG Donghui

        (College of Mathematics and Statistics,Jishou University,Jishou 416000,Hunan China)

        一類新的Haar子空間中最佳逼近的唯一性

        方東輝

        (吉首大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,湖南 吉首 416000)

        研究了廣義限制域最佳逼近問題.引入一個(gè)L*Haar子空間的概念,建立了該Haar子空間中最佳逼近的唯一性和強(qiáng)唯一性.

        最佳逼近;L*Haar子空間;唯一性;強(qiáng)唯一性

        O174.41

        A

        1007-2985(2014)04-0008-05

        date:2014-05-01

        Supported by National Natural Science Foundation of China (11101186);Scientific Research Fund of Hunan Provincial Education Department (13B095)

        Biography:FANG Donghui(1979-),male,was born in Dongkou County,Hunan Province,doctor,associate professor at Jishou University,research area are nonsmooth analysis and nonlinear optimization.

        O174.41DocumentcodeA

        10.3969/j.issn.1007-2985.2014.04.002

        猜你喜歡
        吉首向陽廣義
        吉首大學(xué)美術(shù)學(xué)院作品精選
        聲屏世界(2022年15期)2022-11-08 10:58:04
        Rn中的廣義逆Bonnesen型不等式
        閱讀(低年級)(2021年2期)2021-04-08 02:16:27
        湘粵專家學(xué)者相聚吉首研討聲樂套曲《四季如歌》
        字海拾“貝”
        吉首美術(shù)館
        從廣義心腎不交論治慢性心力衰竭
        Sunny Side Up 向陽而生
        紅向陽
        有限群的廣義交換度
        亚洲大尺度无码无码专区| 日本一区二区三区在线| 手机免费在线观看日韩av| 亚洲精一区二区三av| 日韩人妻无码精品久久久不卡| 亚洲AV色无码乱码在线观看| 日韩乱码人妻无码中文字幕视频| 99久久国语露脸精品国产| 国产精品成人无码久久久久久| 国产二区中文字幕在线观看| 欧洲熟妇色xxxx欧美老妇软件| 九色九九九老阿姨| 亚洲日本天堂| 丰满少妇一区二区三区专区| 亚洲精品第一页在线观看| 最新亚洲人成网站在线观看| 国产午夜福利精品| 一区二区三区视频免费观看在线 | 久久久婷婷综合五月天| 亚洲熟女少妇一区二区三区青久久 | 精品久久久久久久久午夜福利| 国产小车还是日产的好 | 亚洲av成人无码久久精品老人| 日韩在线一区二区三区免费视频| 91精品91| 青青青爽在线视频免费播放| 亚洲精品白浆高清久久久久久| 国产精品99久久免费| 日本人妻av在线观看| 看国产亚洲美女黄色一级片| 欲香欲色天天综合和网| 国产黄a三级三级三级av在线看| 国产免费三级三级三级| 国产日产久久高清ww| 亚洲精品suv精品一区二区| 亚洲 欧美 激情 小说 另类| 亚洲一区二区三区精品久久av | 中年熟妇的大黑p| 精品少妇人妻成人一区二区| 久久精品免费视频亚洲| 帮老师解开蕾丝奶罩吸乳网站|