亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        Uniqueness of the Best Approximation in a New Haar Type Space*1

        2014-09-06 03:08:50方東輝
        關(guān)鍵詞:吉首向陽廣義

        UniquenessoftheBestApproximationinaNewHaarTypeSpace*1

        The problem of the best approximation with generalized restrictions is considered in this paper.By introducing a new Haar type space,the uniqueness and strong uniqueness of the best approximation on this Haar type space are given.

        best approximation;Haar type space;uniqueness;strong uniqueness

        1 Introduction

        The uniqueness and strong uniqueness of the best approximation have received much attention (ref. [1-9]).In ref. [1],Chalmers and Taylor introduced a general method of investigating uniqueness of best approximations with constraints,which provided a unified approach to the problem.However,this approach essentially provided only sufficient conditions for uniqueness of best constrained approximation.In ref. [4],the authors introduced a new Haar space,namely,LHaar space,and established a Haar type theory for constrained approximation,and gave some necessary and sufficient conditions for uniqueness and strong uniqueness.Note thatIHaar is not Haar as shown in ref. [9].Thus,the authors in ref. [9] introduced another Haar type space and studied the characterization for this Haar type space.

        Inspired by those works mentioned above,we continue to study the problem of the best approximation with generalized restrictions.By introducing a new Haar type space defined in ref. [9],we establish the uniqueness and strong uniqueness of the best approximation.

        2 L* Haar Spaces

        (1)

        Definition2 It is said thatp∈Unvanishes onAorA*ifp(xi)=0(1≤i≤s) and (Lp)(yj)=0(1≤j≤r).

        Definition3UnisL(resp.L*) Haar if nop∈Un{0} vanishes on a nondegenerateL(resp.L*) extremal set forUn.

        Letf∈C[a,b] andp∈Un(l,u), we denote

        The following definition was introduced in ref. [1].

        Definition4 A functionf∈C[a,b]Un(l,u) is said to be admissible if inf{‖f-q‖:q∈Un(l,u)}>max{l(y)-f(x),f(x)-u(y)} holds for eachx∈[a,b] andy∈Kwithex=Ly.

        LetCa[a,b] denote the set of all admissible functions.In particular,ifl(y)≤f(x)≤u(y) for allx∈[a,b] andy∈K,thenf∈Ca[a,b].Letf∈C[a,b],p∈Un(l,u),denoteΓ(f,p)=(EX+ (p)∩LK- (p))∪ (EX-(p)∩LK+ (p)).Then we have the following proposition.

        Proposition1 The following statements are equivalent:

        (ⅰ)f∈Ca[a,b];

        (ⅱ) For everyp∈Un(l,u),ifx∈X(p) andy∈K(p) withex=Ly,thenσ1(f,p,x)=σ2(f,p,y);

        (ⅲ) For eachp∈Un(l,u),we haveΓ(f,p)=?;

        (ⅳ) There existsp0∈Un(l,u) such thatΓ(f,p0)=?;

        (ⅴ) There existsp0∈PUn(l,u)(f) such thatΓ(f,p0)=?.

        Proof(ⅰ)?(ⅱ).Suppose that (ⅰ) holds and that there existp∈Un(l,u),x∈X(p) andy∈K(p) withex=Ly,butσ1(f,p,x) ≠σ2(f,p,y).Without loss of generality,we assume thatσ1(f,p,x)=-1,σ2(f,p,y)=1,that is,f(x)-p(x)=-‖f-p‖ andLp(y)=l(y).Sincefis admissible,it follows that

        max{l(y)-f(x),f(x)-u(y)}<‖f-p‖=ex(p)-f(x)=Ly(p)-f(x)=l(y)-f(x),

        which is a contradiction.

        (ⅱ)?(ⅲ).Suppose that (ⅱ) holds and that there existsp∈Un(l,u) such thatΓ(f,p)≠ ?.Without loss of generality,we assume thatEX+(p)∩LK-(p)≠ ?,then there existx∈X+(p) andy∈K-(p) such thatex=Ly.But this implies thatσ1(f,p,x)=1 andσ2(f,p,y)=-1 ,which contradicts with (ⅱ).

        (ⅲ)?(ⅳ)?(ⅴ) are trivial.

        (ⅴ)?(ⅰ).Suppose that (ⅴ) holds and thatfis not admissible.Then for everyp∈PUn(l,u)(f),x∈[a,b] andy∈Kwithex=Ly,one has ‖f-p0‖≤max{l(y)-f(x),f(x)-u(y)}.Note that

        f(x)-u(y)≤f(x)-Lp0(y)=f(x)-p0(x)≤‖f-p0‖

        (2)

        and

        l(y)-f(x) ≤Lp0(y)-f(x)=p0(x)-f(x) ≤‖f-p0‖.

        Then

        ‖f-p0‖≤max{l(y)-f(x),f(x)-u(y)}≤‖f-p0‖.

        (3)

        Thus,the equalities in (3) must hold.

        (a) Iff(x)-u(y)=‖f-p0‖,then,by (2),we haveu(y)=Lp0(y) andf(x)-p0(x)=‖f-p0‖.This meansx∈X+(p0) andy∈K-(p0).Hence,EX+(p0)∩LK-(p0)≠ ?,contradicting with (ⅴ).

        (b) Similarly,ifl(y)-f(x)=‖f-p0‖,then we haveEX-(p0)∩LK+(p0)≠ ?,contradicting with (ⅴ).The proof is complete.

        Definition5 Letf∈C[a,b] andp∈Un,theL*extremal setA*is said to be anL*extremal set with respect to (f,p) (denote byA*(f,p)),ifxi,yj,ci,djin (1) satisfy the following conditions:

        (ⅰ)xi∈X(p),yj∈K(p);

        (ⅱ) sgnci=σ1(f,p,xi),i=1,2,...,s;

        (ⅲ) sgndj=σ2(f,p,yj),j=1,2,...,r.

        Proposition2 Letf∈Ca[a,b],p0∈PUn(l,u)(f).IfUnis anL*Haar space,then there exists a nondegenerateL*extremal setA*(f,p0) forUn.

        ProofLetf∈Ca[a,b],p0∈PUn(l,u)(f).Then,by ref. [9,theorem 3.1],there exist points {x1,...,xs}?X(p0),{y1,...,yr}?K(p0)(s+r≤n+1) andc1,...,cs,d1,...,dr≠ 0 such that

        (4)

        3 Uniqueness of the Best Approximation

        Theorem1 LetUnbe anL*Haar space,then for everyf∈Ca[a,b] andl,u∈C(K) withl(t)

        (5)

        Below we show that

        (6)

        (7)

        In order to establish some results on the strong uniqueness of the best approximation fromUn(l,u),we first introduce the concept of the strong uniqueness of orderγ>0;see,for example,ref. [4,8].

        Definition6 Suppose thatf∈C[a,b],p0∈PUn(l,u)(f).It is said thatp0is strongly unique of orderγ>0 if there exists a constantα=α(f) such that ‖f-p‖γ≥‖f-p0‖γ+α‖p-p0‖γ,p∈Un(l,u).In the case whenγ=1 we simply say thatp0is strongly unique.

        Theorem2 LetUnbe anL*Haar space.Then for everyf∈Ca[a,b] andl,u∈C(K) withl(t)

        Letp1∈Un(l,u) be such that ‖f-p1‖=‖f-p0‖+with 1>>0.Since (f-p0)(xi)= (sgnci)‖f-p0‖,i=1,...,s,it follows that

        sgnci(p0-p1)(xi)= sgnci(f-p1)(xi)-sgnci(f-p0)(xi)≤

        ‖f-p1‖-‖f-p0‖=.

        (8)

        Furthermore,y1,...,yl∈K-(p0),yl+1,...,yr∈K+(p0) yield

        L(p0-p1)(yj)≥0(j=1,...,l),L(p0-p1)(yj)≤0 (j=l+1,...,r).

        (9)

        Letp*=p0-p1∈Un,by (8)

        (10)

        Moreover,(9) yields thatdjLp*(yj)≤0 (j=1,...,r).Taking also into account (10) we have

        |Lp*(yj)|≤M1j=1,...,r,

        (11)

        This together with (8) implies

        |p*(xi)|≤M2i=1,...,s,

        (12)

        By the equivalence of norms in finite dimensional spaces,there exists constantM3>0 such that

        ‖p0-p1‖=‖p*‖≤M3N(p*)≤c=c(‖f-p1‖-‖f-p0‖),

        [1] CHALMERS B L,TAYLOR G D.A Unified Theory of Strong Uniqueness in Uniform Approximation with Constraints[J].J. Approx.Theory,1983(37):29-43.

        [2] CULBERTSON J.On Approximation by Monotone Polynomials in the Chebyshev Norm Characterization and Uniqueness[D].Master’s Thesis University of Maryland,1968.

        [3] FANG Donghui,LI Chong,YANG Wenshan.Strong CHIP and Characterization of the Best Approximation with Generalized Restrictions[J].Acta Mathematica Sinica,2004,47(6):1 115-1 123.(in Chinese)

        [5] SHI Yingguang.The Limits of a Chebyshev Type Theory of Restricted Range Approximation[J].J. Approx. Theory,1988,53:41-53.

        [6] SINGER I.Best Approximation by Elements of Linear Subspaces in Linear Spaces[M].New York:Spring Verleg,1974.

        [7] RICE J R.The Approximation Functions[M].London:Addison Wesley,1964.

        [8] XU Shiying,LI Chong,YANG Wenshan.The Theory of Nonlinear Approximation in Banach Spaces[M].Beijing:Science Press,1997.(in Chinese)

        [9] WANG Xianyun,FANG Donghui.Characterizations forLHaar Space[J].Journal of Jishou University:Natural Sciences Edition,2005(1):12-14.(in Chinese)

        (責(zé)任編輯 向陽潔)

        FANG Donghui

        (College of Mathematics and Statistics,Jishou University,Jishou 416000,Hunan China)

        一類新的Haar子空間中最佳逼近的唯一性

        方東輝

        (吉首大學(xué)數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,湖南 吉首 416000)

        研究了廣義限制域最佳逼近問題.引入一個(gè)L*Haar子空間的概念,建立了該Haar子空間中最佳逼近的唯一性和強(qiáng)唯一性.

        最佳逼近;L*Haar子空間;唯一性;強(qiáng)唯一性

        O174.41

        A

        1007-2985(2014)04-0008-05

        date:2014-05-01

        Supported by National Natural Science Foundation of China (11101186);Scientific Research Fund of Hunan Provincial Education Department (13B095)

        Biography:FANG Donghui(1979-),male,was born in Dongkou County,Hunan Province,doctor,associate professor at Jishou University,research area are nonsmooth analysis and nonlinear optimization.

        O174.41DocumentcodeA

        10.3969/j.issn.1007-2985.2014.04.002

        猜你喜歡
        吉首向陽廣義
        吉首大學(xué)美術(shù)學(xué)院作品精選
        聲屏世界(2022年15期)2022-11-08 10:58:04
        Rn中的廣義逆Bonnesen型不等式
        閱讀(低年級)(2021年2期)2021-04-08 02:16:27
        湘粵專家學(xué)者相聚吉首研討聲樂套曲《四季如歌》
        字海拾“貝”
        吉首美術(shù)館
        從廣義心腎不交論治慢性心力衰竭
        Sunny Side Up 向陽而生
        紅向陽
        有限群的廣義交換度
        99精品国产在热久久无毒不卡 | 熟女人妻丰满熟妇啪啪| 日本高清长片一区二区| 就爱射视频在线视频在线| 开心五月激情五月天天五月五月天| 人妻少妇精品中文字幕专区| 色综合久久88色综合天天| 首页动漫亚洲欧美日韩| 日韩精品视频在线一二三| 草逼视频污的网站免费| 国产放荡对白视频在线观看| 亚洲综合色成在线播放| 国产成人综合亚洲av| 91精品人妻一区二区三区水蜜桃 | 91精品国产九色综合久久香蕉| 日本天堂免费观看| 久久婷婷国产剧情内射白浆| 国产丰满乱子伦无码专| av在线高清观看亚洲| 国产免费拔擦拔擦8x高清在线人| 自拍偷自拍亚洲精品播放| 国产人妖在线免费观看| 国产精品一区二区av麻豆日韩| 无遮无挡爽爽免费毛片| 337p日本欧洲亚洲大胆色噜噜 | 性导航app精品视频| 国产一区二区av在线观看| 中国娇小与黑人巨大交| 猫咪免费人成网站在线观看| 国产精品女丝袜白丝袜| 在线观看国产激情视频| 国产又色又爽又刺激在线播放| 亚洲综合免费| 国产精品久久国产精麻豆| 国产精品女同久久久久电影院| 男女野外做爰电影免费| 强d漂亮少妇高潮在线观看| 日韩人妻中文字幕专区| 乱人伦人妻中文字幕无码| 视频国产精品| 日韩不卡一区二区三区色图|