亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        白化菠蘿蜜幼苗光合作用相關(guān)基因表達(dá)分析

        2025-08-18 00:00:00郭雨彤董俊娜張西瞿倩于旭東羅佳佳蔡澤坪
        熱帶作物學(xué)報(bào) 2025年7期
        關(guān)鍵詞:白化突變體胡蘿卜素

        摘" 要:光合色素缺失的白化植株是研究光合作用的理想材料。本研究在前期考察時(shí)發(fā)現(xiàn)白化菠蘿蜜幼苗(albino Artocarpus heterophyllus seedlings, AAS)。AAS的葉片較大,存活時(shí)間較長(zhǎng),且表型性狀穩(wěn)定,是不可多得的木本白化植物。通過轉(zhuǎn)錄組測(cè)序分析AAS光合作用相關(guān)基因的表達(dá),發(fā)現(xiàn)AAS葉光合色素合成、光合作用-天線蛋白、光反應(yīng)和碳固定反應(yīng)通路中諸多基因的發(fā)生下調(diào)表達(dá),質(zhì)體-核信號(hào)通路中關(guān)鍵調(diào)控因子heat shock protein 70(HSP70)、heat shock protein 90(HSP90)和HSP70–HSP90-organizing protein 3(HOP3)的編碼基因發(fā)生上調(diào)表達(dá)。本研究從光合色素合成途徑討論了AAS的成因,以及從質(zhì)體-核信號(hào)方面探討了其光合作用相關(guān)基因的表達(dá),為該逆行信號(hào)通路的探索提供參考。

        關(guān)鍵詞:菠蘿蜜;白化苗;光合色素;光合作用;基因表達(dá)中圖分類號(hào):S667.8 """""文獻(xiàn)標(biāo)志碼:A

        Expression Analysis of Genes Related to Photosynthesis in Albino Artocarpus heterophyllus Seedlings

        GUO Yutong1, DONG Junna1*, ZHANG Xi1, QU Qian1, YU Xudong1, LUO Jiajia2, CAI Zeping1**

        1. School of Tropical Agriculture and Forestry, Hainan University / Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, Haikou, Hainan 570228, China; 2. Institute of Tropical Crops Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Danzhou, Hainan 571737, China

        Abstract: Albino plants lacking photosynthetic pigments are ideal materials for studying photosynthesis. In this study, albino Artocarpus heterophyllus seedlings (AAS) were found during the preliminary investigation. AAS have larger leaves, longer survival time and stable phenotypic traits, so it is a rare woody plant albino material. The expression of photosynthesis-related genes were analyzed through transcriptome sequencing technology and found that the expression of many genes in photosynthetic pigment synthesis, photosynthesis-antenna protein, photoreaction and carbon fixation reaction pathways were down-regulated in AAS leaf, also the expression of genes encoding heat shock protein 70 (HSP70), heat shock protein 90 (HSP90) and HSP70-HSP90-organizing protein 3 (HOP3), which are considered to be key regulators in the plastid-nuclear signaling pathway, were up-regulated. This study discussed the cause of AAS from the synthesis pathway of photosynthetic pigment, and also discussed the expression of photosynthesis-related genes from the aspect of plastid-nuclear signal, which can provide reference for the research of this retrograde signaling pathway.

        Keywords: Artocarpus heterophyllus; albino seedlings; photosynthetic pigments; photosynthesis; gene expression

        DOI: 10.3969/j.issn.1000-2561.2025.07.001

        光合作用是綠色植物生長(zhǎng)發(fā)育的基礎(chǔ),為地球上幾乎所有生物提供必需的能量;對(duì)維持大氣中氧氣和二氧化碳的相對(duì)穩(wěn)定起重要作用[1-3]。光能的捕獲和吸收主要由光合色素承擔(dān)[4]。在高等植物中,光合色素分為葉綠素和類胡蘿卜素兩大類。缺乏光合色素會(huì)導(dǎo)致植物葉色發(fā)生變異,產(chǎn)生白化、黃化等現(xiàn)象[5]

        光合色素缺失的白化植物,是研究光合作用的理想材料[6-7]。目前白化植物的研究大多在草本植物中開展,如擬南芥(Arabidopsis thaliana[8]、水稻(Oryza sativa[9-10]、番茄(Solanum lycopersicum[11]等。這些植物的生長(zhǎng)周期較短,白化突變體較易得到,然而其種子體積普遍較小,白化幼苗的壽命較短。相比而言,木本植物具有較長(zhǎng)的生長(zhǎng)周期,但相關(guān)的突變體較難得到,所開展的研究較少[12]。

        菠蘿蜜(Artocarpus heterophyllus)為多年生常綠喬木[13-14]。在前期考察時(shí)發(fā)現(xiàn)白化菠蘿蜜幼苗(AAS),其母株具有隱性白化遺傳病[12]。付影等[12]和周丹等[15]研究得出AAS葉片內(nèi)的葉綠素a、葉綠素b和總?cè)~綠素含量接近0,顯著低于正常菠蘿蜜幼苗葉片的結(jié)果(Plt;0.05)。此外,張水仙等[16]對(duì)AAS的葉片長(zhǎng)度、寬度和面積進(jìn)行觀測(cè)發(fā)現(xiàn)AAS葉片發(fā)育至17 d時(shí)達(dá)到最大,分別是CK的43.13%、36.06%和20.81%。董俊娜等[17]研究發(fā)現(xiàn)AAS生長(zhǎng)發(fā)育先在1~15 d快速生長(zhǎng),后在16~40 d緩慢生長(zhǎng)的趨勢(shì)。說明AAS葉較大,存活時(shí)間較長(zhǎng),是不可多得的研究材料。本研究通過轉(zhuǎn)錄組測(cè)序?qū)AS葉光合作用相關(guān)基因的表達(dá)進(jìn)行了分析,從光合色素合成途徑討論AAS的成因,從質(zhì)體-核信號(hào)方面探討光合作用相關(guān)基因的表達(dá),為該逆行信號(hào)通路的探索提供參考。

        1" 材料與方法

        1.1" 材料

        采用張水仙等[16]的方法選擇帶有隱性白化遺傳病的雜合體菠蘿蜜植株作為母株,從母株的成熟果實(shí)中剝離出種子,挑選飽滿的種粒,栽種于含有營(yíng)養(yǎng)土(V腐殖質(zhì)土V蛭石 =3∶1,攪拌均勻后,于121"℃下處理20 min)的花盆中,并培養(yǎng)于日照環(huán)境下。待種子萌發(fā)后,從子代幼苗中分離出白化菠蘿蜜幼苗(albino Artocarpus heterophyllus seedlings, AAS)和正常菠蘿蜜幼苗,繼續(xù)進(jìn)行培養(yǎng)。當(dāng)萌發(fā)至25 d時(shí),選擇3株不同的AAS作為試驗(yàn)材料,編號(hào)為AAS1、AAS2和AAS3;同時(shí)在子代幼苗中選擇3株不同的正常菠蘿蜜幼苗作為對(duì)照(CK),編號(hào)為CK1、CK2和CK3(圖1)。

        1.2" 方法

        1.2.1" RNA提取、文庫(kù)構(gòu)建和轉(zhuǎn)錄組測(cè)序" 采用CTAB法[18]提取成熟葉片的total RNA,用帶有Oligo(dT)的磁珠富集mRNA。將富集到的mRNA片段化,以片段化的mRNA為模板進(jìn)行反轉(zhuǎn)錄,合成cDNA并構(gòu)建文庫(kù)。使用BGISEQ-500平臺(tái)進(jìn)行轉(zhuǎn)錄組測(cè)序。文庫(kù)構(gòu)建和測(cè)序均委托深圳華大基因股份有限公司進(jìn)行。

        1.2.2" 數(shù)據(jù)過濾、KEGG注釋與分析" 將原始數(shù)據(jù)去除低質(zhì)量、接頭污染以及未知堿基N含量大于5%的reads后得到clean reads,進(jìn)行de novo組裝,并得到最終的unigenes。將長(zhǎng)度超過200 nt的unigenes比對(duì)到KEGG數(shù)據(jù)庫(kù)中進(jìn)行注釋。序列相似度大于70%的unigenes被歸為同一cluster并且以CL開頭進(jìn)行命名。選取光合作用相關(guān)通路的clusters,并將其中各unigenes的表達(dá)量進(jìn)行加和得到clusters表達(dá)量,去除低豐度的clusters(AAS和CK中平均表達(dá)量均小于0.5),然后使用t值檢驗(yàn)法挑選具有顯著差異(Plt;0.05)的clusters繪制熱圖。

        1.2.3" qRT-PCR分析" 挑選15個(gè)基因進(jìn)行qRT-PCR驗(yàn)證[19]。引物由ABI公司的Primer Express Software v2.0設(shè)計(jì)。反應(yīng)在ABI ViiA 7 PCR儀上進(jìn)行,每個(gè)樣品做3次平行試驗(yàn)。以CL11555AhUBIQUITIN)作為內(nèi)參基因,采用2-ΔΔCt法,ΔΔCt=[Ct(P210)-Ct(CL11555)]sample- [Ct(P210)-Ct(CL11555)]K562進(jìn)行相對(duì)定量[20]。

        2" 結(jié)果與分析

        2.1" 轉(zhuǎn)錄組測(cè)序質(zhì)量評(píng)估

        為了探究AAS光合作用相關(guān)基因的表達(dá)情況,對(duì)AAS和CK的葉片進(jìn)行轉(zhuǎn)錄組測(cè)序。測(cè)序共產(chǎn)生437×106個(gè)raw reads,過濾后得到414.63×106個(gè)clean reads,經(jīng)組裝、聚類去冗余最后得到148 440個(gè)unigenes。unigenes長(zhǎng)度范圍從200 nt到大于3000 nt,總長(zhǎng)、平均長(zhǎng)度和N50長(zhǎng)度分別為241 624 864、1627、2429 nt,GC含量為41.25%(表1)。

        根據(jù)unigenes表達(dá)量數(shù)據(jù),對(duì)樣品進(jìn)行聚類和相關(guān)性分析。結(jié)果表明AAS與CK的3個(gè)生物學(xué)重復(fù)各聚為1支(圖2)。各組內(nèi)樣品間的Pearson相關(guān)系數(shù)均大于0.86(圖3A)。主成分分析結(jié)果顯示:AAS與CK在第一主成分(principal component analysis 1, PCA1)上分離(圖3B)。綜上,測(cè)序樣品質(zhì)量高、測(cè)序數(shù)據(jù)可靠,可進(jìn)行后續(xù)分析。

        2.2 "葉綠素和類胡蘿卜素合成酶基因表達(dá)分析

        從谷氨酰-tRNA(glutamyl-tRNA)到葉綠素a和葉綠素b的合成共涉及18個(gè)步驟,其中關(guān)鍵酶有g(shù)lutamyl tRNA reductase(HemA)和8-vinyl reductase(DVR)2種[21-22],這2種關(guān)鍵酶在AAS中均呈下調(diào)表達(dá)。此外,AAS中下調(diào)表達(dá)的基因還有g(shù)lutamate-1-semialdehyde-2,1-aminomutase(HemL)、porphobilinogen synthase(HemB)、porphobilinogen deaminase(HemC)、uroporphyrinogen Ⅲ decarboxylase(HemE)、magnesium protoporphyrin Ⅸ methyltransferase(CHLM)和protochlorophyllide oxidoreductase(POR)??梢姡谌~綠素合成的18個(gè)步驟中,有10個(gè)步驟的酶在AAS中下調(diào)表達(dá)(圖4)。

        除了葉綠素,類胡蘿卜素在光合作用中也發(fā)揮著重要的作用[23]。以geranylgeranyl diphosphate(GGPP)為起點(diǎn)合成類胡蘿卜素(carotene)、葉黃素(lutein)、玉米黃素(zeaxanthin)和堇菜黃素(violaxanthin)的過程涉及16個(gè)步驟。前3紅、綠和黑色方框分別表示基因在AAS葉片中表達(dá)上調(diào)、下調(diào)和無顯著差異。繪制熱圖的基因均為表達(dá)量具有顯著差異(Plt;0.05)的cluster,使用Z-score進(jìn)行數(shù)據(jù)歸一化處理。

        個(gè)步驟中,GGPP依次經(jīng)過phytoene synthase(PSY)、phytoene desaturase(PDS)和ζ-carotene des-aturase(ZDS)的作用合成番茄紅素(lycopene)[24]。這3種酶的編碼基因均為關(guān)鍵基因[23, 25-26],并且其在AAS中均呈下調(diào)表達(dá)。番茄紅素在lycopene β-cyclase(LCYb)和lycopene ε-cyclase(LCYe)的作用下,分別生成γ-胡蘿卜素(γ-carotene)、δ-胡蘿卜素(δ-carotene)、α-胡蘿卜素(α-carotene)、β-胡蘿卜素(β-carotene)和ε-胡蘿卜素(ε-carotene)。而后在carotenoid ε-cyclohydroxylase(LUT1)、β-carotene 3-hydroxylase(crtZ)和violaxanthin de-epoxidase(VDE)等酶的作用下分別生成葉黃素、玉米黃素和堇菜黃素等。在AAS中LUT1的表達(dá)上調(diào),LCYb、LCYe和VDE的表達(dá)下調(diào)。可見,類胡蘿卜素生物合成的16個(gè)步驟中,有9個(gè)步驟的酶基因在AAS中出現(xiàn)下調(diào)表達(dá)(圖5)。

        紅、綠和黑色方框分別表示基因在AAS葉片中表達(dá)上調(diào)、下調(diào)和無顯著差異。繪制熱圖的基因均為表達(dá)量具有顯著差異(Plt;0.05)的cluster,使用Z-score進(jìn)行數(shù)據(jù)歸一化處理。

        2.3" 捕光復(fù)合物和光反應(yīng)相關(guān)基因表達(dá)分析

        高等植物光合作用中,參與光能捕獲的色素主要是葉綠素和各種類胡蘿卜素[27]。這些色素結(jié)合在捕光復(fù)合體(light-harvesting complexes, LHCs)上,而LHCs附著在光系統(tǒng)核心上,分別形成PSⅠ~LHCⅠ超復(fù)合體和PSⅡ~LHCⅡ超復(fù)合體,以增強(qiáng)其色素捕獲光能的能力。色素在捕獲光能后,由LHCs將能量轉(zhuǎn)移到光系統(tǒng)核心,從而引發(fā)光化學(xué)反應(yīng)[28]。LHCⅠ由lhca1~lhca5共5種亞基構(gòu)成,LHCⅡ由lhcb1~lhcb7共7種亞基構(gòu)成。在這些亞基的編碼基因中,除了編碼Lhcb1、Lhcb7外,其余基因與CK相比在AAS中表達(dá)均發(fā)生下調(diào)(圖6)。

        由光驅(qū)動(dòng)的光合電子傳遞鏈(photosynthetic electron transport chain)反應(yīng)在類囊體膜中的光系統(tǒng)Ⅰ(photosystemⅠ, PSⅠ)和光系統(tǒng)Ⅱ(photosystemⅡ, PSⅡ)進(jìn)行。首先,光系統(tǒng)Ⅱ利用光將H2O氧化,產(chǎn)生的電子通過質(zhì)體醌和細(xì)胞色素b6/f復(fù)合體(cytochrome b6/f complex, Cyt

        b6/f)運(yùn)輸?shù)焦庀到y(tǒng)Ⅰ[28]。AAS中參與編碼光系統(tǒng)Ⅱ中相關(guān)亞基PsbC、PsbO、PsbP、PsbQ、PsbR、PsbS、PsbW、PsbY和Psb27的基因出現(xiàn)下調(diào)表達(dá),Cyt b6/f中PetC亞基的編碼基因在AAS中也表現(xiàn)出下調(diào)表達(dá)。隨后,接收到電子的光系統(tǒng)Ⅰ將鐵氧化還原蛋白還原[29]。AAS中參與光系統(tǒng)Ⅰ相關(guān)亞基PsaA、PsaB、PsaD、PsaE、PsaF、PsaG、PsaH、PsaK、PsaL、PsaN和PsaO的編碼基因都下調(diào)表達(dá)。然后,三磷酸腺苷(ATP)合成酶(adenosine triphosphate synthetase complex, ATP synthetase complex)利用Cyt b6/f形成的質(zhì)子動(dòng)力勢(shì)驅(qū)動(dòng)ADP和Pi合成ATP[30]。ATP合成酶的構(gòu)成亞基中β、α、γ、δ和c的編碼基因在AAS中也顯示出顯著下調(diào)表達(dá)。最后,由光系統(tǒng)Ⅰ還原的鐵氧化還原蛋白在鐵氧化還原蛋白-NADP+還原酶(ferredoxin-NADP+reductase, FNR)上將NADP+還原為NADPH[31],此過程中相關(guān)亞基PetE、PetH、PetJ的編碼基因在AAS中均出現(xiàn)下調(diào)表達(dá)(圖7)。

        紅、綠和黑色方框分別表示基因在AAS葉片中表達(dá)上調(diào)、下調(diào)和無顯著差異。繪制熱圖的基因均為表達(dá)量具有顯著差異(Plt;0.05)的cluster,使用Z-score進(jìn)行數(shù)據(jù)歸一化處理。

        紅、綠和黑色方框分別表示基因在AAS葉片中表達(dá)上調(diào)、下調(diào)和無顯著差異。繪制熱圖的基因均為表達(dá)量具有顯著差異(Plt;0.05)的cluster,使用Z-score進(jìn)行數(shù)據(jù)歸一化處理。

        The red, green, black boxes indicated that the enzyme gene expression was up-regulated, down-regulated, no significant difference. The genes for drawing the heatmaps are all clusters with significant difference in expression (Plt;0.05), Z-score was used to normalize data.

        2.4 "碳固定反應(yīng)相關(guān)基因表達(dá)分析

        卡爾文循環(huán)(Calvin cycle)是最普遍的碳固定反應(yīng),分為羧化(carboxylation)、還原(reduction)和再生(regeneration)3個(gè)階段[32]。首先,羧化階段中1,5-二磷酸核酮糖(ribulose-1,5-bis-phosphate, RuBP)在核酮糖-1,5-二磷酸羧化酶(ribulose-1,5-biphosphate carboxylase, Rubisco/ RBCL)的催化下,與CO2反應(yīng)生成3-磷酸甘油酸(glycerate 3-phosphate, 3-PGA)[33],其中RBCL表達(dá)情況與CK相比無顯著差異。在還原階段,ATP和NADPH推動(dòng)3-PGA經(jīng)過phosphoglycerate kinase(PGK)的激活和glyceraldehyde 3-phosphate dehydrogenase(GAPDH/GAPA)的催化,生成甘油醛-3-磷酸(glyceraldehyde-3P, GAP)[34]。此過程中GAPDH/GAPA上調(diào)表達(dá)。再生階段中,其中fructose 1,6-bisphosphatase(FBP)、transketolase A,B(TKTA、TKTB)和phos-phoribulokinase(PRK)等均下調(diào)表達(dá)??梢?,此過程的14個(gè)步驟中,有5個(gè)步驟的酶在AAS中下調(diào)表達(dá)(圖8)。

        紅、綠和黑色方框分別表示基因在AAS葉片中表達(dá)上調(diào)、下調(diào)和無顯著差異。繪制熱圖的基因均為表達(dá)量具有顯著差異(Plt;0.05)的cluster,使用Z-score進(jìn)行數(shù)據(jù)歸一化處理。

        2.5" AAS逆行信號(hào)關(guān)鍵蛋白編碼基因表達(dá)分析

        heat shock protein 70(HSP70)、heat shock protein 90(HSP90)及HSP70–HSP90-organizing protein 3 (HOP3)在結(jié)構(gòu)上高度保守,應(yīng)激條件下發(fā)揮作用?;贏AS葉光合色素合成酶基因與其他光合作用相關(guān)基因協(xié)同性下調(diào)(圖4,圖5),本研究測(cè)定了質(zhì)體-核信號(hào)通路中的關(guān)鍵調(diào)控因子HSP70、HSP90和HOP3的編碼基因。結(jié)果顯示,AAS中HSP70、HSP90及HOP3的編碼基因相較于CK有明顯上調(diào)表達(dá)(圖9)。

        2.6" qRT-PCR分析

        為了驗(yàn)證RNA-seq數(shù)據(jù)的準(zhǔn)確性,選取15個(gè)基因進(jìn)行qRT-PCR驗(yàn)證。這15個(gè)選定的基因包括5個(gè)參與光合作用-天線蛋白的基因、3個(gè)參與光系統(tǒng)Ⅱ的基因、2個(gè)參與光系統(tǒng)Ⅰ的基因、1個(gè)參與細(xì)胞色素b6/f復(fù)合體的基因、2個(gè)參與光合電子傳遞鏈的基因和2個(gè)參與ATP合成酶的基因。結(jié)果顯示:上述15個(gè)基因的表達(dá)量變化趨勢(shì)與RNA-seq數(shù)據(jù)相同(圖10),表明本研究中RNA-seq測(cè)序數(shù)據(jù)可靠。

        3 "討論

        目前,擬南芥、水稻、玉米(Zea mays)和煙草(Nicotiana tabacum)等的白化植株已被用于研究光合色素合成、葉綠體發(fā)育及核-質(zhì)不相容原理等[35-38]。此外,番茄和水稻等草本白化植株已被用作育種材料培育新品種[11, 39]。木本白化植株安吉白茶(Camellia sinensis)葉片的氨基酸含量較高,茶葉的風(fēng)味和品質(zhì)更佳[40]。因此,白化植株在科研、育種及品質(zhì)改良等方面具有重要研究意義。

        付影等[12]對(duì)39棵子代幼苗進(jìn)行統(tǒng)計(jì)表明AAS(占比約1/4)極可能為單基因隱性突變所致。然而AAS葉綠素和類胡蘿卜素合成途徑中均有多數(shù)基因表達(dá)發(fā)生下調(diào),確切導(dǎo)致出現(xiàn)白化的突變基因還不明確。對(duì)于類胡蘿卜素合成缺失的植株,葉綠素的合成也會(huì)受到抑制,這種抑制作用表現(xiàn)在兩個(gè)方面:一方面葉綠素合成酶基因的表達(dá)發(fā)生下調(diào)。例如在擬南芥類胡蘿卜素合成缺失突變體pds3中,葉綠素合成酶基因PPOX、PORCAO等表達(dá)均發(fā)生下調(diào)[41]。另一方面,缺乏類胡蘿卜素的光保護(hù)作用,作為葉綠素合成場(chǎng)所的葉綠體將發(fā)生光損傷而破壞,導(dǎo)致葉綠素不能合成[42]。例如水稻類胡蘿卜素合成突變體pdszds中,葉綠體形態(tài)異常,植株發(fā)生白化[26]。此外,使用乙腈中氟草敏溶液(norflurazon)非競(jìng)爭(zhēng)性地抑制類胡蘿卜素合成過程中PDS的活性,導(dǎo)致類囊體膜發(fā)生光損傷,植株呈現(xiàn)光漂白的表型[43]。通過透射電鏡對(duì)AAS的葉綠體進(jìn)行觀察,發(fā)現(xiàn)其數(shù)量減少,類囊體形態(tài)嚴(yán)重異常;而將AAS從室外日光環(huán)境移入室內(nèi)弱光環(huán)境后可轉(zhuǎn)綠,葉綠體形態(tài)也有所恢復(fù)[15]。結(jié)合AAS中PSY、PDS、ZDS、LCYe、LCYb和VDE編碼基因的表達(dá)均顯著下調(diào),本研究進(jìn)一步推測(cè)是由于AAS中類胡蘿卜素合成缺失導(dǎo)致葉綠體發(fā)生光損傷,造成類囊體膜結(jié)構(gòu)的破壞,導(dǎo)致葉綠素合成受到抑制,從而發(fā)生白化。

        WU等[44]在水稻葉綠素缺失突變體中發(fā)現(xiàn)OsCHLG突變,導(dǎo)致葉綠素合成受阻,同時(shí)發(fā)現(xiàn)編碼光系統(tǒng)Ⅱ中光捕獲Chl a/b結(jié)合蛋白基因的表達(dá)也受到嚴(yán)重抑制;WANG等[38]通過轉(zhuǎn)錄組分析發(fā)現(xiàn),在alb1突變體,一個(gè)由玉米ZDS編碼基因ALB1的敲除產(chǎn)生的白化植株中,許多編碼光系統(tǒng)Ⅰ和光系統(tǒng)Ⅱ核心蛋白的光合作用相關(guān)基因(9個(gè)PSA、7個(gè)PSB和5個(gè)LHCB基因)受到明顯抑制。結(jié)合本研究中AAS光合色素合成酶基因和光合作用相關(guān)基因均出現(xiàn)下調(diào)表達(dá),進(jìn)而提出一種可能的途徑:光合色素合成酶基因與其他光合作用相關(guān)基因協(xié)同性的下調(diào)是通過葉綠體與細(xì)胞核之間的逆行信號(hào)通路實(shí)現(xiàn)的。葉綠體是植物細(xì)胞中一種特殊的細(xì)胞器,它自身攜帶遺傳物質(zhì),并且它的生命活動(dòng)離不開核基因組與葉綠體基因組的協(xié)調(diào)配合。非常有趣的是,在同樣作為半自主性細(xì)胞器的線粒體中,這樣的核質(zhì)互作方式早已被發(fā)現(xiàn)[45]。這表明在細(xì)胞生命活動(dòng)的過程中,核-質(zhì)互作很可能是一種關(guān)鍵性、普遍性的調(diào)節(jié)途徑。在對(duì)擬南芥gun突變體的研究中發(fā)現(xiàn),當(dāng)葉綠素合成途徑的下游受到阻礙時(shí),其合成的中間產(chǎn)物能夠作為葉綠體-核信號(hào)通路間的信號(hào)分子抑制一些核基因的表達(dá)[43, 46-47]。進(jìn)一步的研究發(fā)現(xiàn),HSP70、HSP90及HOP3是逆行信號(hào)通路的關(guān)鍵因子。在擬南芥gun1突變體中,當(dāng)前體蛋白(例如葉綠體定位蛋白)在細(xì)胞質(zhì)中過度積累時(shí),會(huì)引起細(xì)胞質(zhì)中的HSP70、HSP90及HOP3這些關(guān)鍵因子的積累,從而抑制光合作用相關(guān)核基因(photosynthesis-associated nuclear gene, PhANG)的表達(dá),增強(qiáng)gun表現(xiàn)型[48]。上述研究中,均是來自質(zhì)體的信號(hào)調(diào)控了核基因的表達(dá),且在與擬南芥葉綠體基因組進(jìn)行對(duì)比后發(fā)現(xiàn),AAS葉綠素合成通路、類胡蘿卜素合成通路、光合作用-天線蛋白通路以及碳固定反應(yīng)中涉及到的下調(diào)基因在擬南芥中均由細(xì)胞核編碼[49]。此外,AAS光系統(tǒng)Ⅱ、光系統(tǒng)Ⅰ、細(xì)胞色素b6/f復(fù)合體和ATP合成酶相關(guān)亞基的編碼基因中分別共有10、11、1、5個(gè)下調(diào)表達(dá),其中有2個(gè)(AhPsbBAhPsbC)、2個(gè)(AhPsaAAhPsaB)和3個(gè)(Ahalpha、AhdeltaAhc)基因在擬南芥中是葉綠體基因,其余均為細(xì)胞核基因。這些結(jié)果表明,AAS在白化過程中,相比葉綠體光合基因,核光合基因的表達(dá)和調(diào)控可能受到較大的影響。

        因此本研究認(rèn)為逆行信號(hào)通路是導(dǎo)致光合色素合成酶基因(葉綠素和類胡蘿卜素合成酶基因)與其他光合作用相關(guān)基因(捕光復(fù)合物、光系統(tǒng)Ⅱ、光系統(tǒng)Ⅰ、細(xì)胞色素b6/f復(fù)合體和ATP合成酶相關(guān)亞基的編碼基因以及碳固定反應(yīng)相關(guān)酶基因)協(xié)同性下調(diào)的可能原因。轉(zhuǎn)錄組數(shù)據(jù)中HSP70、HSP90及HOP3的編碼基因相較于CK有明顯上調(diào)表達(dá),這為提出的猜想提供了有力的支撐。而有關(guān)逆行信號(hào)通路的進(jìn)一步探索有待后續(xù)的研究。

        參考文獻(xiàn)

        1. FRICK G, SU Q X, APEL K, ARMSTRONG G A. An Arabidopsis porB porC double mutant lacking light-de-pendent NADPH: protochlorophyllide oxidoreductases B and C is highly chlorophyll-deficient and developmentally arrested[J]. The Plant Journal, 2003, 35(2): 141-153.
        2. OUARGHI H E, PRAET E, JUPSIN H, VASEL J L. Comparison of oxygen and carbon dioxide balances in HRAP (high-rate algal ponds)[J]. Water Science and Technology, 2003, 48(2): 277-281.
        3. FLOOD P J. Using natural variation to understand the evolutionary pressures on plant photosynthesis[J]. Current Opinion in Plant Biology, 2019, 49: 68-73.
        4. MIRKOVIC T, OSTROUMOV E E, ANNA J M, GRONDELLE R V, GOVINDJEE, SCHOLES G D. Light absorption and energy transfer in the antenna complexes of photosynthetic organisms[J]. Chemical Reviews, 2017, 117(2): 249-293.
        5. LIU X G, XU H, ZHANG J Y, LIANG G W, LIU Y T, GUO A G. Effect of low temperature on chlorophyll biosynthesis in albinism line of wheat (Triticum aestivum) FA85[J]. Physiologia Plantarum, 2012, 145(3): 384-394.
        6. LIU R Y, DONG X C, GU W T, YU L X, JIN W J, QU Y, ZHANG F, LI W J. Variation in the phenotypic features and transcripts of thermo-sensitive leaf-color mutant induced by carbon ion beam in green wandering jew (Tradescantia fluminensis)[J]. Scientia Horticulturae, 2016, 213: 303-313.
        7. 周夏雯, 石從廣, 周芳偉, 徐梁, 楊少宗,何秋伶. 植物葉色突變體分類、變異機(jī)制與應(yīng)用的研究進(jìn)展[J]. 浙江農(nóng)林大學(xué)學(xué)報(bào), 2025, 42(2): 422-433.ZHOU X W, SHI C G, ZHOU F W, XU L, YANG S Z, HE Q L. Research progress on classification, variation mechanism and application value of plant leaf color mutants[J]. Journal of Zhejiang Aamp;F University, 2025, 42(2): 422-433. (in Chinese)
        8. OZFIDAN-KONAKCI C, YILDIZTUGAY E, BAHTIYAR M, KUCUKODUK M. The humic acid-induced changes in the water status, chlorophyll fluorescence and antioxidant defense systems of wheat leaves with cadmium stress[J]. Ecotoxicology and Environmental Safety, 2018, 155: 66-75.
        9. ZHENG H, WANG Z R, TIAN Y L, LIU L L, LYU F, KONG W Y, BAI W T, WANG P R, WANG C L, YU X W, LIU X, JIANG L, ZHAO Z G, WAN J M. Rice albino 1, encoding a glycyl-tRNA synthetase, is involved in chloroplast development and establishment of the plastidic ribosome system in rice[J]. Plant Physiology and Biochemistry, 2019, 139: 495-503.
        10. NGUYEN M K, SHIH T H, LIN S H, HUANG W D, YANG C M. Transcription analysis of chlorophyll biosynthesis in wildtype and chlorophyll b-lacking rice (Oryza sativa L.)[J]. Photosynthetica, 2020, 58(3): 702-711.
        11. GARCI?A-ALCA?ZAR M, GIMENEZ E, PINEDA B, CAPEL C, GARCI?A-SOGO B, SA?NCHEZ S, YUSTE- LISBONA F J, ANGOSTO T, CAPEL J, MORENO V, LOZANO R. Albino T-DNA tomato mutant reveals a key function of 1-deoxy-D-xylulose-5-phosphate synthase (DXS1) in plant development and survival[J]. Scientific Reports, 2017, 7(1/4): 45333.
        12. 付影, 于旭東, 蔡澤坪, 吳繁花, 羅佳佳. 菠蘿蜜白化突變體的性狀研究[J]. 熱帶作物學(xué)報(bào), 2018, 39(6): 1081-1086.FU Y, YU X D, CAI Z P, WU F H, LUO J J. Characters of albino mutant of Artocarpus heterophyllus Lam[J]. Chinese Journal of Tropical Crops, 2018, 39(6): 1081-1086. (in Chinese)
        13. DAUD M N H, FATANAH D N, ABDULLAH N, AHMAD R. Evaluation of antioxidant potential of Artocarpus heterophyllus L. J33 variety fruit waste from different extraction methods and identification of phenolic constituents by LCMS[J]. Food Chemistry, 2017, 232: 621-632.
        14. LIN X G, FENG C, LIN T, HARRIS A J, LI Y Z, KANG M. Jackfruit genome and population genomics provide insights into fruit evolution and domestication history in China[J]. Horticulture Research, 2022, 9: uhac173.
        15. 周丹, 羅燦, 于旭東, 蔡澤坪, 吳繁花. 波羅蜜葉片突變體葉綠素含量測(cè)定和超微結(jié)構(gòu)觀察[J]. 熱帶作物學(xué)報(bào), 2021, 42(10): 2935-2941.ZHOU D, LUO C, YU X D, CAI Z P, WU F H. Determination of chlorophyll content and observation of ultrastructure in leaves of mutants of Artocarpus heterophyllus[J]. Chinese Journal of Tropical Crops, 2021, 42(10): 2935-2941. (in Chinese)
        16. 張水仙, 董俊娜, 王月, 曹璐, 張西, 蔡澤坪, 李世東, 羅佳佳, 于旭東. 白化對(duì)菠蘿蜜葉片生長(zhǎng)及光合、呼吸特性的影響[J]. 福建農(nóng)林大學(xué)學(xué)報(bào)(自然科學(xué)版), 2023, 52(2): 160-165.ZHANG S X, DONG J N, WANG Y, CAO L, ZHANG X, CAI Z P, LI S D, LUO J J, YU X D. Effect of albinism on growth, photosynthetic and respiratory characteristics of Artocarpus heterophyllus leaves[J]. Journal of Fujian Agriculture and Forestry University (Natural Science Edition), 2023, 52(2): 160-165. (in Chinese)
        17. 董俊娜, 謝柳青, 楚文清, 于旭東, 蔡澤坪, 羅佳佳, 瞿倩. 菠蘿蜜葉綠素缺失突變體幼苗莖的解剖結(jié)構(gòu)[J]. 熱帶作物學(xué)報(bào), 2021, 42(6): 1654-1660.DONG J N, XIE L Q, CHU W Q, YU X D, CAI Z P, LUO J J, QU Q. Structural analysis of the stem of the chlorophyll deficient mutant from Artocarpus heterophyllus seedlings[J]. Chinese Journal of Tropical Crops, 2021, 42(6): 1654-1660. (in Chinese)
        18. ZHAO L, DING Q, ZENG J, WANG F R, ZHANG J, FAN S J, HE X Q. An improved CTAB-ammonium acetate method for total RNA isolation from cotton[J]. Phytochemical Analysis, 2012, 23(6): 647-650.
        19. ZHOU Y H, RAJ V R, SIEGEL E, YU L P. Standardization of gene expression quantification by absolute real-time qRT-PCR system using a single standard for marker and reference genes[J]. Biomarker Insights, 2010, 5: 79-85.
        20. 庾蕾, 劉建平, 莊志雄, 楊淋清, 張仁利, 葉小明, 程錦泉. 實(shí)時(shí)RT-PCR基因表達(dá)相對(duì)定量REST(C)軟件分析與2(-ΔΔCT)法比較[J]. 熱帶醫(yī)學(xué)雜志, 2007(10): 956-958.YU L, LIU J P, ZHUANG Z X, YANG L Q, ZHANG R L, YE X M, CHENG J Q. Quantitative analysis of real-time PCR expression production by REST(C) and 2(-ΔΔCT)[J]. Journal of Tropical Medicine, 2007(10): 956-958. (in Chinese)
        21. KUMAR A M, S?LL D. Antisense HEMA1 RNA expression inhibits heme and chlorophyll biosynthesis in Arabidopsis[J]. Plant Physiology, 2000, 122(1): 49-56.
        22. NAGATA N, TANAKA R, SATOH S, TANAKA A. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of prochlorococcus species[J]. The Plant Cell, 2005, 17(1): 233-240.
        23. MEIER S, TZFADIA O, VALLABHANENI R, GEHRING C, WURTZEL E T. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana[J]. BMC Systems Biology, 2011, 5(1): 77.
        24. 董書琦, 陳達(dá), 秦巧平, 吳國(guó)平, 張志國(guó), 倪迪安. 高等植物葉綠素和類胡蘿卜素代謝研究進(jìn)展[J]. 植物生理學(xué)報(bào), 2023, 59(5): 793-802.DONG S Q, CHEN D, QIN Q P, WU G P, ZHANG Z G, NI D A. Advances in metabolism of chlorophylls and carotenoids in higher plants[J]. Plant Physiology Journal, 2023, 59(5): 793-802. (in Chinese)
        25. DONG H L, DENG Y, MU J Y, LU Q T, WANG Y Q, XU Y Y, CHU C C, CHONG K, LU C M, ZUO J R. The Arabidopsis Spontaneous Cell Death1 gene, encoding a ζ-carotene desaturase essential for carotenoid biosynthesis, is involved in chloroplast development, photoprotection and retrograde signalling[J]. Cell Research, 2007, 17(5): 458-470.
        26. FANG J, CHAI C L, QIAN Q, LI C L, TANG J Y, SUN L, HUANG Z J, GUO X L, SUN C H, LIU M, ZHANG Y, LU Q T, WANG Y Q, LU C M, HAN B, CHEN F, ZHENG Z K, CHU C C. Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice[J]. The Plant Journal, 2008, 54(2): 177-189.
        27. KENNIS J T M, GOBETS B, STOKKUM I H M V, DEKKER J P, GRONDELLE R V, FLEMING G R. Light harvesting by chlorophylls and carotenoids in the photosystem Ⅰ core complex of Synechococcus elongatus: a fluorescence upconversion study[J]. The Journal of Physical Chemistry B, 2001, 105(19): 4485-4494.
        28. WANG W D, ZhAO S H, PI X, KUANG T Y, SUI S F, SHEN J R. Structural features of the diatom photosystem Ⅱ-light-harvesting antenna complex[J]. The FEBS Journal, 2020, 287(11): 2191-2200.
        29. HE L, LI M, QIU Z N, CHEN D D, ZHANG G H, WANG X Q, CHEN G, HU J, GAO Z Y, DONG G J, REN D Y, SHEN L, ZHANG Q, GUO L B, QIAN Q, ZENG D L, ZHU L. Primary leaf-type ferredoxin 1 participates in photosynthetic electron transport and carbon assimilation in rice[J]. The Plant Journal, 2020, 104(1): 44-58.
        30. JUNGE W, SIELAFF H, ENGELBRECHT S. Torque generation and elastic power transmission in the rotary F0F1-ATPase[J]. Nature, 2009, 459(7245): 364-370.
        31. MUSUMECI M A, CECCARELLI E A, CATALANO- DUPUY D L. The plant-type ferredoxin-NADP+reductases [A]. NAJAFPOUR M M. Advances in photosynthesis - fundamental aspects[C]. Iran: Iran Basic Sciences, 2012: 539- 562.
        32. 張洪淵. 生物化學(xué)原理[M]. 北京: 科學(xué)出版社, 2006.ZHANG H Y. Principle of biochemistry[M]. Beijing: Science Press, 2006. (in Chinese)
        33. FONG F K, BUTCHER K A. Non-cyclic photobrductive carbon fixation in photosynthesis. Light and dark transiemts of the glycbrate-3-P spbcial pair[J]. Biochemical and Biophysical Research Communications, 1988, 150(1): 399-404.
        34. TAKAGI D, INOUE H, ODAWARA M, SHIMAKAWA G, MIYAKE C. The calvin cycle inevitably produces sugar-derived reactive carbonyl methylglyoxal during photosynthesis: a potential cause of plant diabetes[J]. Plant and Cell Physiology, 2014, 55(2): 333-340.
        35. SCHMITZ-LINNEWEBER C, KUSHNIR S, BABIYCHUK E, POLTNIGG P, HERRMANN R G, MAIER R M. Pigment deficiency in nightshade/tobacco cybrids is caused by the failure to edit the plastid ATPase alpha-subunit mRNA[J]. The Plant Cell, 2005, 17(6): 1815-1828.
        36. SATOU M, ENOKI H, OIKAWA A, OHTA D, SAITO K, HACHIYA T, SAKAKIBARA H, KUSANO M, FUKUSHIMA A, SAITO K, KOBAYASHI M, NAGATA N, MYOUGA F, SHINOZAKI K, MOTOHASHI R. Integrated analysis of transcriptome and metabolome of Arabidopsis albino or pale green mutants with disrupted nuclear-encoded chloroplast proteins[J]. Plant Molecular Biology, 2014, 85(4/5): 411-428.
        37. FANG Y X, HOU L L, ZHANG X Q, PAN J J, REN D Y, ZENG D L, GUO L B, QIAN Q, HU J, XUE D W. Disruption of ζ-carotene desaturase protein ALE1 leads to chloroplast developmental defects and seedling lethality[J]. Journal of Agriculture and Food Chemistry, 2019, 67(42): 11607- 11615.
        38. WANG M P, ZHU X F, LI Y, XIA Z L. Transcriptome analysis of a new maize albino mutant reveals that zeta-carotene desaturase is involved in chloroplast development and retrograde signaling[J]. Plant Physiology and Biochemistry, 2020, 156: 407-419.
        39. ABE T, MATSUYAMA T, SEKIDO S, YAMAGUCHI I, YOSHIDA S, KAMEYA T. Chlorophyll-deficient mutants of rice demonstrated the deletion of a DNA fragment by heavy-ion irradiation[J]. Journal of Radiation Research, 2002, 43(Suppl.): S157-S161.
        40. MA C L, CHEN L, WANG X C, JIN J Q, MA J Q, YAO M Z, WANG Z L. Differential expression analysis of different albescent stages of ‘Anji Baicha’ (Camellia sinensis (L.) O. Kuntze) using cDNA microarray[J]. Scientia Horticulturae, 2012, 148: 246-254.
        41. QIN G J, GU H Y, MA L G, PENG Y B, DENG X W, CHEN Z L, QU L J. Disruption of phytoene desaturase gene results in albino and dwarf phenotypes in Arabidopsis by impairing chlorophyll, carotenoid, and gibberellin biosynthesis[J]. Cell Research, 2007, 17(5): 471-482.
        42. MAOKA T. Carotenoids as natural functional pigments[J]. Journal of Natural Medicines, 2020, 74(1): 1-16.
        43. STRAND A, ASAMI T, ALONSO J, ECKER J R, CHORY J. Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrin IX[J]. Nature, 2003, 421(6918): 79-83.
        44. WU Z M, ZHANG X, HE B, DIAO L P, SHENG S L, WANG J L, GUO X P, SU N, WANG L F, JIANG L, WANG C M, ZHAI H Q, WAN J M. A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis[J]. Plant Physiology, 2007, 145(1): 29-40.
        45. FORSBURG S L, GUARENTE L. Communication between mitochondria and the nucleus in regulation of cytochrome genes in the yeast Saccharomyces cerevisiae[J]. Annual Review of Cell And Developmental Biology, 1989, 5: 153-180.
        46. RODERMEL S. Pathways of plastid-to-nucleus signaling[J]. Trends in Plant Science, 2001, 6(10): 471-478.
        47. SURPIN M, LARKIN R M, CHORY J. Signal transduction between the chloroplast and the nucleus[J]. The Plant Cell, 2002, 14(Suppl.): S327-S338.
        48. WU G Z, MEYER E H, RICHTER A S, SCHUSTER M, LING Q H, SCH?TTLER M A, WALTHER D, ZOSCHKE R, GRIMM B, JARVIS R P. Control of retrograde signalling by protein import and cytosolic folding stress[J]. Nature Plants, 2019, 5(5): 525-538.
        49. SATO S, NAKAMURA Y, KANEKO T, ASAMIZU E, TABATA S. Complete structure of the chloroplast genome of Arabidopsis thaliana[J]. DNA Research, 1999, 6(5): 283- 290.

        猜你喜歡
        白化突變體胡蘿卜素
        如何應(yīng)對(duì)珊瑚白化危機(jī)
        果實(shí)套袋對(duì)甜櫻桃品種營(yíng)養(yǎng)成分的影響
        辣椒果實(shí)SGR基因的克隆與功能分析
        植物根向水性研究進(jìn)展
        棘椒不同果色突變材料中 β -胡蘿卜素羥化酶基因克隆及表達(dá)分析
        中文字幕在线观看乱码一区| 久久网站在线免费观看| 亚洲国产欧美久久香综合| 一区二区三区精品偷拍av| 美女射精视频在线观看| 国产天堂av在线播放资源| 完整版免费av片| 国产免费久久精品99久久| 熟女熟妇伦av网站| 精品久久久久久无码不卡| 免青青草免费观看视频在线| 女同性恋看女女av吗| 亚洲大尺度无码无码专区| 亚洲色欲久久久综合网| 丝袜美女污污免费观看的网站| 丰满人妻一区二区三区精品高清| 久久精品一区午夜视频| 大学生高潮无套内谢视频| 国产嫖妓一区二区三区无码| 国产精品色内内在线播放| 国产乱人伦偷精品视频还看的| 风情韵味人妻hd| 免费无码成人av在线播放不卡| 国产一区二区a毛片色欲 | 不卡高清av手机在线观看| 亚洲综合无码一区二区| 亚洲AV小说在线观看| 极品美女调教喷水网站| 亚洲大尺度无码无码专区| 人禽伦免费交视频播放| 国产精品一区2区三区| 国产亚洲青春草在线视频| 中文字幕亚洲乱码熟女1区2区| 五月激情在线视频观看| 国产无遮挡又爽又刺激的视频老师 | 无套熟女av呻吟在线观看| 成人看片黄a免费看那个网址| 亚洲精品日本| 久久精品熟女亚洲av麻豆永永| 777精品久无码人妻蜜桃| 日日摸夜夜欧美一区二区|