中圖分類(lèi)號(hào):TD74 文獻(xiàn)標(biāo)志碼:A
Abstract: Inresponse to the isues of simple monitoring methods,low efficiency,and the inability toreflect the overall surface deformation of waterproof sealed walls,a monitoring scheme for the deformation of Waterproof sealed walls in underground water reservoirs ofcoal mines is proposed.Based on the principle of binocular positioning,deformationcalculation formulas for single-point protrusion and depresson onthe surface of the sealed wall were provided,along with the calculation logic for three-dimensional cloud map imagingof surface deformation.The cubic spline interpolation method was chosen for interpolation fiting,forming a threedimensional deformation modelof the entire surfaceof the waterproof sealed wall.Anon-contact surface deformation monitoring devicewas designed,which generated structured light images through a light projection module and projected them onto the surface of the waterproof sealed wall.Two light-receiving modules formed a binocular system to receive thereflected structured light images from thesealed wallsurface.These images were thenanalyzed based onthedeformationcalculation logic.Simulation testresults indicated that single-point deformation monitoring and three-dimensional cloud map imaging performed well,efectively reflecting the overall deformation of themonitored objectand enabling timely monitoring of its safety status by management personnel.
Key Words: underground water reservoir; waterproof sealed wall; surface deformation monitoring; binoculai positioning; single-point deformation monitoring; cubic spline interpolation method
0引言
在煤炭生產(chǎn)過(guò)程中,平均每采1t煤需消耗將近2t的水,尤其在西北干旱半干旱的煤礦生產(chǎn)區(qū)域,煤炭開(kāi)采過(guò)程中的水資源保護(hù)及利用是亟需解決的問(wèn)題[1-3]。煤礦地下水庫(kù)作為一種新型煤礦水工構(gòu)筑物[4-7],為井工煤礦對(duì)地下水資源的重復(fù)利用帶來(lái)新的技術(shù)方向[8-11]。防水密閉墻作為地下水庫(kù)直接承壓的防護(hù)設(shè)施,其在井下復(fù)雜且特殊時(shí)空環(huán)境中的受力來(lái)源及因素眾多,最直接的影響為表面凸出和凹陷的變形情況。防水密閉墻變形狀態(tài)長(zhǎng)期依賴(lài)于工作人員巡檢,僅有少量煤礦擁有單點(diǎn)接觸式監(jiān)測(cè)設(shè)備,制約了煤礦信息智能化發(fā)展步伐,也破壞了承載墻體固有的安全狀態(tài)。因此,研究煤礦地下水庫(kù)防水密閉墻面域變形智能化監(jiān)測(cè)方案具有重要意義。
目前已有眾多學(xué)者在針對(duì)防水密閉墻表面變形的相關(guān)理論研究中取得重要成果。顧大釗等[12]及池明波等[13研制了7個(gè)煤礦地下水庫(kù)壩體結(jié)構(gòu)試驗(yàn)平臺(tái),對(duì)國(guó)能神東煤炭集團(tuán)有限責(zé)任公司大柳塔煤礦2-2 煤層的防水密閉進(jìn)行抗震性能研究,發(fā)現(xiàn)巖體壓實(shí)沉降穩(wěn)固,垂向上應(yīng)力分布為底部gt;腹部gt;頂部[12-13]李鵬[14通過(guò)制備煤柱與防水密閉的復(fù)合試件,在自然養(yǎng)護(hù)條件下進(jìn)行力學(xué)性能實(shí)驗(yàn),得出其抗壓及抗拉強(qiáng)度均隨養(yǎng)護(hù)時(shí)間增加逐漸提升。樊帆等[15]利用FLACD數(shù)值模擬軟件對(duì)防水密閉墻正面施加梯度水壓,發(fā)現(xiàn)外表面最大位移與儲(chǔ)水深度表現(xiàn)出良好的正相關(guān)線(xiàn)性關(guān)系。針對(duì)巷道圍巖變形分析方面,已具有較成熟的理論研究和實(shí)踐應(yīng)用[16-18]。在防水密閉墻監(jiān)測(cè)技術(shù)方面,已具有單點(diǎn)和連續(xù)監(jiān)測(cè)設(shè)備,但僅初步實(shí)現(xiàn)了變形監(jiān)測(cè)功能。曹志國(guó)等[19]提出將連續(xù)光纖預(yù)先埋設(shè)于防水密閉墻內(nèi),利用連續(xù)光纖對(duì)人工壩體進(jìn)行覆蓋,實(shí)現(xiàn)了快速、全面積的監(jiān)測(cè),但無(wú)法全部覆蓋承載墻內(nèi)部,未能實(shí)現(xiàn)防水密閉墻表面全部變形監(jiān)測(cè),同時(shí)光纖易損壞。
針對(duì)上述問(wèn)題,本文提出一種煤礦地下水庫(kù)防水密閉墻面域變形監(jiān)測(cè)方案,基于雙目定位原理,給出密閉墻表面凸出及凹陷的計(jì)算方法,并設(shè)計(jì)無(wú)接觸式面域變形監(jiān)測(cè)裝置,為煤礦地下水庫(kù)安全穩(wěn)定運(yùn)行提供技術(shù)保障。
1變形計(jì)算邏輯
1.1單點(diǎn)變形監(jiān)測(cè)方法
假設(shè)防水密閉墻尺寸為 1m×1m ,在表面標(biāo)記數(shù)個(gè)點(diǎn),如圖1所示,點(diǎn)間距為 10cm Xi(i=1~9) 和Yi 為平面標(biāo)記點(diǎn)位置坐標(biāo)。
為實(shí)現(xiàn)全表面覆蓋,獲得較好的畫(huà)面數(shù)據(jù),面域變形監(jiān)測(cè)裝置一般布置在中軸線(xiàn)上。設(shè)監(jiān)測(cè)裝置正對(duì)目標(biāo)點(diǎn) A ,設(shè)計(jì)一個(gè)光投射器,向防水密閉墻表面A 點(diǎn)發(fā)射光,在光投射器兩邊等距設(shè)置光接收器,通過(guò)兩邊的光接收器捕捉 A 點(diǎn)反射的光,如圖2所示。
設(shè) A 點(diǎn)在左右光接收器中的成像分別為點(diǎn) F 和點(diǎn) G? 其到線(xiàn)段 AC 的距離分別為 lFK 和 lKG ,分別過(guò)B,D 作直線(xiàn) FG 的垂線(xiàn),垂足分別為 E,H, 則 A 點(diǎn)與C 點(diǎn)的距離為
式中: f 為預(yù)設(shè)的光接收器焦距; lBD 為2個(gè)光接收器的距離; lEF 為 E 點(diǎn)與 F 點(diǎn)的距離; lGH 為點(diǎn) G 與點(diǎn)H 的距離。
當(dāng)目標(biāo)點(diǎn)與右側(cè)光接收器夾角小于 90° 時(shí), A 點(diǎn)與 c 點(diǎn)的距離為
同理,當(dāng)目標(biāo)點(diǎn)與左側(cè)光接收器夾角小于90° 時(shí), A 點(diǎn)與 c 點(diǎn)的距離為
假設(shè)監(jiān)測(cè)點(diǎn) M( 圖3)發(fā)生變形,變形計(jì)算原理如
凸起變形(圖4(a))中, M 點(diǎn)變形為 M1 ,過(guò) M1 點(diǎn)作直線(xiàn) AC 的垂線(xiàn),垂足為 A1 ,則變形距離(記為正值)為
式中: lCM1 為 c 點(diǎn)與 M1 點(diǎn)的距離; lA1M1 為 A1 點(diǎn)與M1 點(diǎn)的距離。
M 點(diǎn)的微應(yīng)變?yōu)?/p>
同理,當(dāng) M 點(diǎn)為凹陷變形(圖4(b))時(shí), M 點(diǎn)變形為 M2 ,過(guò) M2 點(diǎn)作直線(xiàn) AC 的垂線(xiàn),垂足為 ?A2 ,則變形距離(記為負(fù)值)為
式中: lCM2 為 C 點(diǎn)與 M2 點(diǎn)的距離; lA2M2 為 ?A2 點(diǎn)與M2 點(diǎn)的距離。
M 點(diǎn)的微應(yīng)變?yōu)?/p>
1.2數(shù)據(jù)擬合方法
選擇三次樣條插值法對(duì)上述標(biāo)記點(diǎn)各橫坐標(biāo) Xi 和縱坐標(biāo) Yi 進(jìn)行插值擬合,求得各點(diǎn)之間的數(shù)值, 進(jìn)而形成防水密閉墻全表面變形三維圖形。
各縱向標(biāo)記點(diǎn)記為 (X1,Yi,Z1),(X2,Yi,Z2),…, (X9,Yi,Z9),Zi 為計(jì)算的深度。因 Yi 保持不變,為了
計(jì)算方便,各縱向標(biāo)記點(diǎn)記為 Yi(X1,Z1) , Yi(X2 Z2) Yi(X9,Z9) ,其中, Yi 不作為計(jì)算數(shù)據(jù)。
各縱向標(biāo)記點(diǎn)三次樣條函數(shù)擬合的表達(dá)式為
z(x)=ak+bk(x-xk)+ck(x-xk)2+dk(x-xk)3
式中: z(x) 為待求的 Yi 軸下的 Zi 值; ak,bk,ck,dk 為系數(shù), k 為節(jié)點(diǎn)數(shù); xk 為已知的 Xi 數(shù)據(jù), xkk+1 。
同理,各橫向標(biāo)記點(diǎn)記為 Xi(Y1,Z1) , Xi(Y2 Z2),…,Xi(Y9,Z9),Xi 不作為計(jì)算數(shù)據(jù)。各橫向標(biāo)記點(diǎn)三次樣條函數(shù)擬合的數(shù)學(xué)表達(dá)式為
z(y)=ak′+bk′(y-yk)+ck′(y-yk)2+dk′(y-yk)3
式中: z(y) 為待求的 Xi 軸下的 Zi 值; ak′,bk′,ck′,dk′ 為系數(shù); yk 為已知的 Yi 值, ykk+1 。
采用最小二乘法求解函數(shù) z(x) 和 z(y) ,光滑參數(shù) s采用默認(rèn)值[20-21]
2面域變形監(jiān)測(cè)裝置
面域變形監(jiān)測(cè)裝置包括光投射模塊、光接收模塊、數(shù)據(jù)計(jì)算模塊、圖像編輯模塊及數(shù)據(jù)傳輸模塊,如圖5所示。 ① 光投射模塊:產(chǎn)生結(jié)構(gòu)光圖像并投射到防水密閉墻表面,可自動(dòng)對(duì)物體表面進(jìn)行標(biāo)記,輔助光接收模塊計(jì)算深度數(shù)據(jù)。 ② 光接收模塊:2個(gè)光接收模塊構(gòu)成雙目系統(tǒng),接收防水密閉墻表面反射的結(jié)構(gòu)光圖像。 ③ 數(shù)據(jù)計(jì)算模塊:用于對(duì)監(jiān)測(cè)的原始數(shù)據(jù)進(jìn)行過(guò)濾及降噪等數(shù)據(jù)優(yōu)化處理,計(jì)算2個(gè)光接收模塊與目標(biāo)點(diǎn)的夾角,并執(zhí)行各項(xiàng)計(jì)算過(guò)程。 ④ 圖像編輯模塊:用于對(duì)計(jì)算結(jié)果進(jìn)行圖形繪制。 ⑤ 數(shù)據(jù)傳輸模塊:將數(shù)據(jù)和圖像傳輸至上位機(jī)。
面域變形監(jiān)測(cè)裝置硬件如圖6所示。光補(bǔ)償器主要用于在井下無(wú)光區(qū)域進(jìn)行亮度補(bǔ)償??烧{(diào)激光模塊用于對(duì)光投射器波長(zhǎng)進(jìn)行調(diào)節(jié),改變圖像透射強(qiáng)度。中央處理模塊包括數(shù)據(jù)計(jì)算模塊、圖像編輯模塊和數(shù)據(jù)傳輸模塊。
3模擬測(cè)試
為驗(yàn)證面域變形監(jiān)測(cè)裝置在煤礦井下應(yīng)用的可靠性,采用上述監(jiān)測(cè)方案、計(jì)算邏輯及簡(jiǎn)單監(jiān)測(cè)裝置,對(duì)尺寸為 1m×0.1m×1m 長(zhǎng) × 寬 × 高的模擬板進(jìn)行模擬測(cè)試,標(biāo)記各點(diǎn)并記錄100組數(shù)據(jù),見(jiàn)表1。
設(shè)計(jì)橫軸 X, 縱軸Y的計(jì)算步距為 10cm ,采用三次樣條插值法進(jìn)行插值計(jì)算,結(jié)果如圖7所示??煽闯觯M板表面變形監(jiān)測(cè)實(shí)現(xiàn)了全表面覆蓋,在給予模擬板一定壓力的條件下,其表面變形呈現(xiàn)波浪階梯式起伏,基本呈現(xiàn)為凸出變形過(guò)程。面域變形整體平滑、流暢,能夠較好地體現(xiàn)模擬板全表面微變形的實(shí)時(shí)監(jiān)測(cè)數(shù)據(jù),同時(shí)實(shí)時(shí)監(jiān)測(cè)數(shù)據(jù)、計(jì)算數(shù)據(jù)及三維云圖能夠?qū)崿F(xiàn)與上位機(jī)的快速連接,便于實(shí)時(shí)查看及掌握監(jiān)測(cè)對(duì)象的運(yùn)行狀態(tài)。
模擬面域變形計(jì)算二維等高線(xiàn)如圖8所示??煽闯?,在4個(gè)直角區(qū)域 30~40cm 范圍變形幅度較大。進(jìn)一步觀(guān)察可發(fā)現(xiàn),從 X=50cm 向右,即從模擬測(cè)試板中部到底部,變形范圍及幅度相較于中上部區(qū)域更為明顯。
為驗(yàn)證面域變形監(jiān)測(cè)裝置的性能,采用礦用高精度單點(diǎn)接觸式應(yīng)變監(jiān)測(cè)計(jì)進(jìn)行對(duì)比測(cè)試。通過(guò)漸進(jìn)增大壓力 (1~5kPa) 的方式,在模擬板 (50,50)cm 位置施加壓力,5種壓力狀態(tài)下的變形監(jiān)測(cè)數(shù)據(jù)如圖9所示??煽闯雒嬗蜃冃伪O(jiān)測(cè)裝置測(cè)量結(jié)果相對(duì)高精度單點(diǎn)接觸式應(yīng)變監(jiān)測(cè)計(jì)的最大絕對(duì)誤差為-7.25 ,最小絕對(duì)誤差為-3.71,相對(duì)誤差率為 [3.55% 4.98%] ,變形計(jì)算精度較高。
4結(jié)論
1)提出了一種煤礦地下水庫(kù)防水密閉墻面域變形監(jiān)測(cè)方案,給出了防水密閉墻單點(diǎn)變形凸出及凹陷計(jì)算公式,以及形成面域三維變形云圖的三次樣條函數(shù)數(shù)據(jù)擬合及函數(shù)求解方法。
2)基于變形計(jì)算邏輯,設(shè)計(jì)了面域變形監(jiān)測(cè)裝置。通過(guò)非接觸式監(jiān)測(cè)保證防水密閉墻的安全穩(wěn)定性,提升了監(jiān)測(cè)裝置的可靠性。
3)模擬測(cè)試結(jié)果表明,單點(diǎn)變形監(jiān)測(cè)及三維云圖成像效果較優(yōu),能夠較好地反映監(jiān)測(cè)對(duì)象的整體變形程度,便于管理人員及時(shí)掌握其安全狀態(tài)。
參考文獻(xiàn)(References):
[1]張保,曹志國(guó),池明波,等.煤礦地下水庫(kù)建設(shè)適應(yīng)性條件及其設(shè)計(jì)體系[J].煤礦安全,2022,53(2):93-98.ZHANG Bao,CAO Zhiguo,CHI Mingbo,et al.Adaptive condition of construction and design system ofcoal mine underground reservoir[J]. Safety in CoalMines,2022,53(2):93-98.
[2]張東升,李文平,來(lái)興平,等.我國(guó)西北煤炭開(kāi)采中的水資源保護(hù)基礎(chǔ)理論研究進(jìn)展[J].煤炭學(xué)報(bào),2017,42(1):36-43.ZHANG Dongsheng,LI Wenping,LAI Xingping,et al.Development on basic theory of water protection duringcoal mining in northwest of China[J]. Journal of ChinaCoal Society, 2017, 42(1): 36-43.
[3]王行軍.我國(guó)2014年以來(lái)煤礦礦井水資源研究[J].中國(guó)煤炭地質(zhì),2019,31(12):85-88,114.WANG Xingjun. Coalmine mine water resources studyin China since 2014[J]. Coal Geology of China,2019,31(12): 85-88,114.
[4]陳蘇社,黃慶享,薛剛,等.大柳塔煤礦地下水庫(kù)建設(shè)與水資源利用技術(shù)[J].煤炭科學(xué)技術(shù),2016,44(8):21-28.CHEN Sushe,HUANG Qingxiang,XUE Gang,et al.Technology of underground reservoir construction andwater resource utilization in Daliuta Coal Mine[J]. CoalScience and Technology,2016,44(8):21-28.
[5]龐義輝,李鵬,周保精. 8.0m 大采高工作面煤礦地下水庫(kù)建設(shè)技術(shù)可行性研究[J].煤炭工程,2018,50(2):6-9,15.PANG Yihui, LI Peng, ZHOU Baojing. Undergroundreservoir construction technical feasibility analysis in(204 8.0m large mining height working face[J].CoalEngineering,2018,50(2): 6-9,15.
[6]李文平,李濤,陳偉,等.采空區(qū)儲(chǔ)水- 干旱區(qū)保水采煤新途徑[J].工程地質(zhì)學(xué)報(bào),2014,22(5):1003-1007.LI Wenping,LI Tao,CHEN Wei, et al. Goaf waterstorage—a new way for water preserved mining in aridareas[J].Journal of Engineering Geology,2014,22(5):1003-1007.
[7]李雨萌,王文才.礦井水庫(kù)煤柱壩體力學(xué)性能分析[J].煤礦安全,2020,51(1):233-237.LI Yumeng,WANG Wencai. Analysis of mechanicalproperties of coal pillar dam in mine goaf[J]. Safety inCoal Mines,2020,51(1):233-237.
[8]顧大釗,張勇,曹志國(guó).我國(guó)煤炭開(kāi)采水資源保護(hù)利用技術(shù)研究進(jìn)展[J].煤炭科學(xué)技術(shù),2016,44(1):1-7.GU Dazhao,ZHANG Yong,CAO Zhiguo. Technicalprogress of water resource protection and utilization bycoal mining in China[J]. Coal Science and Technology,2016,44(1): 1-7.
[9]顧大釗.煤礦地下水庫(kù)理論框架和技術(shù)體系[J].煤炭學(xué)報(bào),2015,40(2):239-246.GU Dazhao. Theory framework and technologicalsystem of coal mine underground reservoir[J]. Journalof China Coal Society,2015, 40(2): 239-246.
[10]楊濤,張一銘,張杰,等.王洼煤礦水庫(kù)壩體下工作面安全開(kāi)采高度研究[J].西安科技大學(xué)學(xué)報(bào),2024,44(1): 43-53.YANG Tao, ZHANG Yiming, ZHANG Jie, et al. Studyon safety mining height beneath the reservoir anddam inWangwa Coal Mine[J]. Journal of Xi'an University ofScience and Technology, 2024, 44(1): 43-53.
[11]顧大釗,李井峰,曹志國(guó),等.我國(guó)煤礦礦井水保護(hù)利用發(fā)展戰(zhàn)略與工程科技[J].煤炭學(xué)報(bào),2021,46(10):3079-3089.GUDazhao,LI Jingfeng,CAO Zhiguo,et al.Technology and engineering development strategy ofwater protectionand utilization of coal mine inChina[J]. Jourmal of China Coal Society,2021,46(10): 3079-3089.
[12]顧大釗,曹志國(guó),李井峰,等.煤礦地下水庫(kù)技術(shù)原創(chuàng)試驗(yàn)平臺(tái)體系研制及應(yīng)用[J].煤炭學(xué)報(bào),2024,49(1): 100-113.GU Dazhao, CAO Zhiguo,LI Jingfeng, et al. Originalexperimental platform system and applicationofunderground coal mine reservoirs[J].Journal of ChinaCoal Society, 2024,49(1):100-113.
[13]池明波,李鵬,曹志國(guó),等.煤礦地下水庫(kù)平板型人工壩體抗震性能分析[J].煤炭學(xué)報(bào),2023,48(3):1179-1191.CHI Mingbo,LI Peng,CAO Zhiguo,et al.Seismicperformanceanalysisofflatartificialdamofunderground reservoirin coal mine[J]. Journal of ChinaCoalSociety,2023,48(3):1179-1191.
[14]李鵬.地下儲(chǔ)水空間復(fù)合壩體力學(xué)性能實(shí)驗(yàn)研究[J].煤礦安全,2023,54(10):182-188.LI Peng. Experimental study on mechanical properties ofcomposite dam in underground water storage space[J].Safety in Coal Mines,2023,54(10): 182-188.
[15] 樊帆,劉臣毅,徐建生.煤礦地下水庫(kù)人工壩體穩(wěn)定性分析[J].煤炭工程,2020,52(11):120-125.FANFan,LIU Chenyi,XU Jiansheng.Stability analysisofartificial dam body in coal mine groundwaterreservoir[J]. Coal Engineering,2020,52(11): 120-125.
[16] 劉光偉,郭直清,劉威.基于GJO-MLP的露天礦邊坡變形預(yù)測(cè)模型[J].工礦自動(dòng)化,2023,49(9):155-166.LIU Guangwei,GUO Zhiqing,LIU Wei. Predictionmodel of slope deformation in open pit mines based onGJO-MLP[J]. Journal of Mine Automation,2023,49(9): 155-166.
[17] 楊洪濤,于印,許吉禪,等.基于線(xiàn)掃描原理的煤礦巷道變形測(cè)量系統(tǒng)[J].工礦自動(dòng)化,2022,48(7):113-117, 148.YANG Hongtao,YU Yin,XU Jichan,etal. Coal mineroadwaydeformationmeasurementsystembased onlinescanning principle[J]. Journal of Mine Automation,2022,48(7):113-117,148.
[18]趙濤,謝艷文,王濤,等.重復(fù)采動(dòng)影響下近距離巷道群圍巖協(xié)同變形與控制技術(shù)研究[J].金屬礦山,2025(2): 1-12.ZHAO Tao, XIE Yanwen, WANG Tao, et al.Surrounding rock collaborative deformation and stabilitycontrol technology of roadway group influenced byrepeated mining[J].Metal Mine,2025(2): 1-12.
[19]曹志國(guó),王曉振,郭永斌,等.一種人工壩體變形監(jiān)測(cè)方法、計(jì)算機(jī)設(shè)備及存儲(chǔ)介質(zhì):CN115127469A[P].2022-09-30.CAO Zhiguo, WANG Xiaozhen, GUO Yongbin, et al.A method for monitoring deformation of artificial dambody, computer equipment and storage medium:CN115127469A[P].2022-09-30.
[20]曾四清,鄧惠,段金花,等.采用三次樣條函數(shù)擬合蚊媒密度概率分布及其風(fēng)險(xiǎn)評(píng)估[J].中國(guó)衛(wèi)生統(tǒng)計(jì),2024,41(3):414-418.ZENG Siqing, DENG Hui, DUAN Jinhua, et al. Fittingprobability distribution of aedes vector density withcubic spline function and its risk assessment[J]. ChineseJourmal of Health Statistics, 2024,41(3): 414-418.
[21]李諄,金鼎沸.基于三次樣條插值和GM(1,1)模型的高速公路路基沉降預(yù)測(cè)[J].公路工程,2015,40(2):221-225.LI Zhun, JIN Dingfei. Prediction of highway subgradesettlement based on cubic spline interpolation andGM(1,1)model[J].Highway Engineering,2015,40(2): 221-225.136-144.
[19]FENG Feng,WANG Wang,LU Naiji, et al. Log-transformation and its implications for data analysis[J].Shanghai Archives of Psychiatry,2014,26(2): 105-109.
[20]王媛彬,李媛媛,韓騫,等.基于 PCA-BO-XGBoost的礦井回采工作面瓦斯涌出量預(yù)測(cè)[J].西安科技大學(xué)學(xué)報(bào),2022,42(2):371-379.WANG Yuanbin, LI Yuanyuan, HAN Qian, et al. Gasemission prediction of the stope in coal mine based onPCA-BO-XGBoost[J]. Jourmal of Xi'an University ofScience and Technology,2022,42(2):371-379.
[21]李俊峰,張小瓊,馬滔,等.基于 XGBoost 和 SHAP 的可解釋性滑坡位移預(yù)測(cè)模型[J/OL].工程地質(zhì)學(xué)報(bào),2023:1-16[2025-04-16]. htp:/kns.cnki.net/KCMS/detail/detail.aspx?filename = GCDZ20231026001amp;dbname=CJFDamp;dbcode=CJFQ.LI Junfeng, ZHANG Xiaoqiong, MA Tao, et al.Interpretable landslide displacement prediction modelbased on XGBoost and SHAP[J/OL]. China IndustrialEconomics,2023:1-16[2025-04-16]. http://kns.cnki.net/KCMS/detail/detail.aspx?filename O= GCDZ20231026001amp;dbname=CJFDamp;dbcode=CJFQ.