中圖分類號(hào):S651 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2025)07-1557-11
Abstract: 【Objective】 Watermelon fusarium wilt, caused by Fusarium oxysporum f. sp. niveum (Fon1),is a serious disease that causes significant yield lossand threatens the development of watermelon industry.Effectivenessof chemical pesticides in control of watermelon fusariumwilt is currently not satisfactory.Thus,there is an urgent demand to explore other effective strategies.This study aimed to screen outeffective antagonistic strains for biocontrol of watermelon wilt disease.【Methods】Antagonistic bacterial strains were isolated from watermelon rhizosphere soil.The antagonistic effect of the isolated strains on Fon and other pathogenic fungi was detected using a plate confrontation test. Pot experiments were conducted to investigate the biocontrol capacity of the bacterial strains against watermelon wilt disease.Growth- promoting activity of the antagonistic strains was also explored in terms of plant height,leaf number,dry and fresh weights of both aboveground and underground parts of the plant. The obtained antagonistic bacterial strains were identified using molecular tools and biochemical assays. 【Results】The strain K5 had a significant impact on hyphae in dish,and the inhibition rate ofFon-1 was (204號(hào) 75.31% . K5 had a significant inhibitory effect on seven other watermelon and melon crop pathogens in dish.The poted experiments showed that the K5 had a good antagonistic effect on Fon, with a control effect of 78.95% . The pot experiment showed that K5 had a 78.95% control effect on Fon-1,and had a significant growth-promoting effect. The plant heights,leaf numbers,aboveground and underground dryweights,root lengths,and aboveground and underground fresh weights increased significantly, while there was no diference in stem thickness.Analysis of phylogenetic trees showed that the strain K5 was Pseudomonas aeruginosa based on the 16S rDNA and rpob gene sequences.Biological characteristics analysis revealed that K5 produced siderophores and hydrogen cyanide.It also had enzymatic activities such as cellulase, chitinase,and β. -1-3 glucanase. Moreover, the genes related to hydrogen cyanide,phenazine-1-carboxamide, and nitropyrrolin were amplified from the K5 genome. 【Conclusion】 In summary,K5 had a good control eect on watermelon wilt disease and promoted the growth of watermelon seedlings.It willbe a highly potential strain for developing a biocontrol agent.
Key Words: Watermelon; Fusarium oxysporum f. sp. niveum (Fon-1); Pseudomonas aeruginosa; Biological control
西瓜是中國(guó)重要的經(jīng)濟(jì)作物之一,但連年種植易導(dǎo)致西瓜枯萎病危害加劇,發(fā)病率顯著升高,嚴(yán)重時(shí)超過(guò) 50%[1] 。西瓜枯萎病由尖孢鐮孢菌西瓜專化型(Fusarium oxysporum f.sp.niveum,F(xiàn)on)侵染引起,是典型的土傳病害2。西瓜整個(gè)生育期都能發(fā)病,其中伸蔓期到結(jié)瓜期發(fā)病最嚴(yán)重。發(fā)病時(shí),西瓜植株萎蔫,莖基部變褐,嚴(yán)重時(shí)整株枯死[3。目前化學(xué)藥劑防治效果不佳,因此開(kāi)發(fā)具有抗菌活性的生防菌株對(duì)西瓜枯萎病的防治具有重要意義。
拮抗菌對(duì)西瓜枯萎病的抗病研究近年來(lái)有不少報(bào)道??莶菅挎邨U菌IBFCBF-4盆栽條件下西瓜枯萎病的發(fā)病率下降 51.1%[4] ;枯草芽孢桿菌YZU-S149可產(chǎn)嗜鐵素、纖維素酶和蛋白酶,盆栽試驗(yàn)對(duì)西瓜枯萎病的防治效果達(dá) 75.87%[5] ;枯草芽孢桿菌HBKYB-5對(duì)西瓜枯萎病菌的抑菌率達(dá) 56.82% ,同時(shí)顯著提高幼苗株高、莖粗、地上部與地下部鮮(干)質(zhì)量、葉綠素含量及根系活力。此外,芽孢桿菌XY-13和熒光假單胞菌P4組合能夠提高西瓜枯萎病抗性,并促進(jìn)西瓜幼苗生長(zhǎng),提高土壤有效性養(yǎng)分。貝萊斯芽孢桿菌WB株系能夠誘導(dǎo)西瓜對(duì)枯萎病的系統(tǒng)抗性[8。解淀粉芽孢桿菌DHA6通過(guò)激發(fā)抗氧化酶活性從而產(chǎn)生對(duì)西瓜枯萎病的抗性,并且對(duì)西瓜幼苗具有明顯的促生作用。盡管銅綠假單胞菌作為生防菌已有不少研究報(bào)道[10-18],但其針對(duì)西瓜枯萎病的拮抗作用尚未見(jiàn)相關(guān)研究。
筆者從西瓜連作大棚根際土壤中篩選對(duì)西瓜枯萎病菌有優(yōu)異拮抗性能的菌株,分析其抑菌作用,明確其對(duì)西瓜枯萎病菌的防病作用及對(duì)西瓜的生長(zhǎng)促生效果,通過(guò)分子生物學(xué)鑒定其種類,并在此基礎(chǔ)上分析其生物學(xué)特性、探究其可能的抗菌作用,以期為西瓜枯萎病的生物防治提供理論依據(jù)和技術(shù)基礎(chǔ)。
1 材料和方法
1.1材料
土樣采集:從連作超過(guò)10a(年)的西瓜塑料大棚中采集西瓜枯萎病發(fā)病植株的根際土壤。
供試西瓜品種:早佳8424。
病原菌:尖孢鐮孢菌西瓜?;停‵usariumoxysporumf.sp.niveum)生理小種Fon-1。
1.2 方法
1.2.1病原菌的活化、根際土壤拮抗菌株分離及純化病原菌活化:取 ?-80°C 保存的Fon-1,置于馬鈴薯葡萄糖瓊脂平板培養(yǎng)基(PotatoDextroseAgar,PDA)上, 28°C 培養(yǎng)。
菌株分離:土樣過(guò)篩,用梯度稀釋涂布法分別稀 釋至 ψ.1×10-1,1×10-2,1×10-3,1×10-4,1×10-5,1×10-6,1×
10-7 ,分別取 100μL 的 1×10-3,1×10-4,1×10-5 的土壤稀釋液均勻涂布于含有 50μg?mL-1 重鉻酸鉀的高氏一號(hào)培養(yǎng)基平板、含 (50μg?mL-1, 利福平的PDA培養(yǎng)基平板;將 100μL1×10-5,1×10-6,1×10-7 的土壤稀釋液均勻涂布于NA培養(yǎng)基上, 28°C 培養(yǎng)箱中倒置培養(yǎng),隨時(shí)觀察挑出備用。
菌株的純化:采用劃線分離法純化菌株,挑取固體平板培養(yǎng)基上不同顏色、形態(tài)的單菌落劃線接種于NA培養(yǎng)基、高氏一號(hào)培養(yǎng)基、PDA培養(yǎng)基上重新培養(yǎng), 28°C 培養(yǎng)至長(zhǎng)出單菌落[19]。
1.2.2拮抗菌株的篩選拮抗菌株篩選:采用平Ⅲ對(duì)崎法,以Fon-1為靶標(biāo)菌,將Fon-1菌餅 (D=5mm )接種在PDA平板中心,純化后培養(yǎng)的菌液接種于靶標(biāo)菌中心上下左右 2.5cm 處,以接種菌株Fon-1菌餅為對(duì)照,每個(gè)處理3次重復(fù)。倒置培養(yǎng)在 28°C 培養(yǎng)箱中,待對(duì)照菌株生長(zhǎng)至滿皿時(shí),挑選對(duì)Fon-1有顯著抑菌效果菌株。
菌絲生長(zhǎng)抑制率 1%=1 (對(duì)照菌落半徑一處理菌落半徑)/(對(duì)照菌落半徑 -2.5mm)×100[20] 。
1.2.3菌株K5對(duì)西瓜枯萎病菌菌絲抑制作用及抑菌譜測(cè)定菌株K5對(duì)西瓜枯萎病菌菌絲皿內(nèi)抑制效果:將Fon-1置于PDA平皿中心,在距靶標(biāo)菌2.5cm 處按照“十\"字形接種拮抗菌,以單獨(dú)接種Fon-1為空白對(duì)照。在 28°C 培養(yǎng)箱中倒置培養(yǎng),然后置于超深景顯微鏡下觀察,記錄菌絲特征。
抑菌譜測(cè)定:選取瓜類作物上常見(jiàn)的病原菌,按照上述方法進(jìn)行K5的抑菌譜測(cè)定,每種病原菌5次重復(fù),置于 28°C 培養(yǎng)箱中倒置培養(yǎng),待對(duì)照長(zhǎng)滿培養(yǎng)血后計(jì)算抑菌帶寬。供試病原菌為瓜類腐皮鐮孢菌(Fusarium.solani)、多主棒孢病菌(Corynespora.cassiicola)、輪枝鐮孢菌(Fusariumverticillioides)、尖孢鐮孢菌甜瓜專化型(Fusarium oxysporum f.sp.melonis,F(xiàn)om)、甜瓜疫霉(Phytophthoramelonis)、菜豆殼球孢(Macrophominaphaseolina)及瓜類炭疽病菌(Colletotrichumorbiculare)。
1.2.4菌株K5對(duì)西瓜幼苗的溫室防病、促生效果培育西瓜幼苗,待長(zhǎng)到兩葉一心時(shí),選擇長(zhǎng)勢(shì)一致的西瓜幼苗采用蘸根法處理。每個(gè)處理30棵西瓜苗,3次重復(fù)。設(shè)置4個(gè)處理分別為(1)清水對(duì)照;(2)菌株K5懸浮液 (OD600=1.0) ;(3)Fon-1培養(yǎng)液對(duì)照(濃度為 1.0× 107CFU?mL-1) ;(4)菌株K5懸浮液 (OD600=1.0)+ Fon-1培養(yǎng)液對(duì)照(濃度為 1.0×107CFU?mL-1) 0
接種處理后第7天開(kāi)始記錄發(fā)病情況,當(dāng)只接種Fon-1培養(yǎng)液的植株發(fā)病率 550% 時(shí)開(kāi)始調(diào)查各個(gè)處理植株的發(fā)病情況、生物量,計(jì)算病情指數(shù)、發(fā)病率和相對(duì)防效等。病害分級(jí)參照文獻(xiàn)[19]相關(guān)標(biāo)準(zhǔn),共6個(gè)等級(jí),分別為:0級(jí),西瓜植株無(wú)任何發(fā)病癥狀;1級(jí),西瓜植株整體生長(zhǎng)良好,子葉邊緣黃化、皺縮,莖基部輕微變黃;2級(jí),西瓜植株子葉萎蔫,莖基部變黃褐,莖部良好,能直立生長(zhǎng);3級(jí),西瓜植株子葉明顯萎蔫,莖中度變褐萎蔫;4級(jí),西瓜植株嚴(yán)重萎蔫,子葉、莖明顯萎蔫,莖部出現(xiàn)明顯變褐癥狀;5級(jí),西瓜植株整株萎蔫、枯死或出苗晚,出苗后病死或長(zhǎng)出菌絲。
病情指數(shù) [各發(fā)病等級(jí) × 各個(gè)級(jí)別發(fā)病株 數(shù))/(植株總數(shù) .× 最高病級(jí)數(shù))
0
防治效果 1%=1 (對(duì)照病情指數(shù)一處理病情指數(shù))/對(duì)照病情指數(shù) ×100 0
1.2.5菌株K5在不同培養(yǎng)基上的形態(tài)特征及生物學(xué)特性參照東秀珠等[2的方法對(duì)菌株K5進(jìn)行生物學(xué)特性鑒定,主要指標(biāo)有:固氮能力、產(chǎn)蛋白酶能力、產(chǎn)纖維素酶能力、產(chǎn)氫氰酸(HCN)能力、產(chǎn)嗜鐵素能力、分解有機(jī)磷能力、分解無(wú)機(jī)磷能力及產(chǎn)IAA能力。
1.2.6菌株K5分子生物學(xué)檢測(cè)使用天根生化科技(北京)有限公司生產(chǎn)的細(xì)菌基因組DNA提取試劑盒提取菌株K5的基因組DNA,選用16SrDNA基因通用引物(27F:5'-AGAGTTTGATCMTGGCT-CAG-3/1492R:5'-GGTTACCTTGTTACGACTT-3')和rpob基因(rpob-F:5'-TGGCCGAGAACCAGTTCC-GC-3/rpob-R:5'-CGGCTTCGTCCAGCTTGTTC-3')進(jìn)行PCR擴(kuò)增。PCR反應(yīng)體系:DNA模板 2.0μL 2× TaqPCRMasterMix(諾唯贊P222-02) 12.5μL , 正反向引物各 1.0μL ,加
至 25μL 。PCR反應(yīng)條件: 95°C 3min C3min;95°C30s;56°C30s 72°C30s(35 個(gè)循環(huán)); 72°C5min 。 1% 瓊脂糖電泳檢測(cè),送生工生物工程(上海)股份有限公司測(cè)序。將測(cè)序結(jié)果與NCBI中GenBank數(shù)據(jù)庫(kù)進(jìn)行Blast比對(duì)分析,用MEGA11軟件的N-J法構(gòu)建16SrDNA與rpob基因序列的系統(tǒng)發(fā)育樹(shù)。
1.2.7菌株K5抗生素合成基因分析、鑒定(1)引物設(shè)計(jì)。從菌株K5基因組中擴(kuò)增抗生素2,4-DAPG合成基因、PCA相關(guān)的phzCD基因、吩嗪-1-甲酰胺(PCN)相關(guān)基因、硝吡咯菌素PRN相關(guān)基因及氫氰酸HCN相關(guān)基因,參照已發(fā)表的相關(guān)引物序列[21](表1),并在生工生物工程(上海)股份有限公司合成。(2)抗生素合成基因的擴(kuò)增與檢測(cè)。以菌株K5基因組為模板,利用表1引物擴(kuò)增相關(guān)基因。PCR擴(kuò)增體系 (25.0μL) 為: 2× TaqPCRMasterMix 12.5μL 10μmol ·L正反向引物各 1.0μL ,DNA模板 2.0μL 補(bǔ) 至 25μL 。PCR反應(yīng)條件: 95°C 預(yù)變性3min 95°C 變性
退火
延伸40s( 95°C 變性、 58°C 退火、 72°C 延伸共35個(gè)循環(huán));72°C 延伸 8min[22] 。隨后用 1% 瓊脂糖水平電泳檢測(cè),送公司測(cè)序。
1.2.8 數(shù)據(jù)處理 用Excel 和Graphpad prism進(jìn)行數(shù)據(jù)處理,進(jìn)行t-test檢測(cè)分析差異顯著性。
2 結(jié)果與分析
2.1土壤樣品拮抗菌株的分離、篩選
利用梯度稀釋法從連作10多年的西瓜土壤中
分離篩選菌株,通過(guò)平Ⅲ對(duì)峙獲得部分對(duì)西瓜枯萎病菌抑制效果好的菌株(圖1),筆者選取菌株K5深入研究。
2.2 菌株K5的抑菌作用
2.2.1 菌株K5對(duì)西瓜枯萎病菌的抑制作用菌株
K5對(duì)西瓜枯萎病菌的抑制作用明顯(圖2)。當(dāng)Fon-1對(duì)照組平均半徑為 27.33mm 時(shí)(圖2-A),K5對(duì)西瓜枯萎病菌的抑制平均半徑僅約 8.63mm (圖2-B),Ⅲ內(nèi)抑制率達(dá) 75.31% 。
2.2.2菌株K5對(duì)西瓜枯萎病菌菌絲的影響通過(guò)超景深三維立體顯微鏡觀察菌絲形態(tài),發(fā)現(xiàn)經(jīng)K5拮抗處理的菌絲出現(xiàn)菌絲扭曲變形、某些部位菌絲會(huì)斷裂或集結(jié)成團(tuán)(圖3-A),局部可見(jiàn)菌絲出現(xiàn)膨大、縊縮、變粗等畸形形態(tài)(圖3-B)。對(duì)照組菌絲光滑、平直、整齊、有序、發(fā)散狀生長(zhǎng)、粗細(xì)均勻(圖3-C~D)。對(duì)照菌絲直徑平均值約 3.57μm ,拮抗處理后菌絲直徑平均值約 5.49μm 。分析菌絲直徑的差異發(fā)現(xiàn)K5處理后的菌絲直徑與對(duì)照組菌絲在 plt; 0.0001水平上差異顯著(圖3-E)。
2.2.3菌株K5抑菌譜菌株K5對(duì)多種瓜類病原菌 孢菌 (F. solani)皿內(nèi)抑制率為 99.99% 、對(duì)多主棒孢有明顯的抑制作用(圖4)。菌株K5對(duì)瓜類腐皮鐮 病菌(C.cassiicola)皿內(nèi)抑制率為 85.88% 、對(duì)輪枝鐮
孢菌( ?F. verticillioide)Ⅲ內(nèi)抑制率為 83.41% 、對(duì)尖孢鐮孢菌甜瓜?;脱獌?nèi)抑制率為 70.46% 、對(duì)甜瓜疫霉(P.melonis)的皿內(nèi)抑制率為 96.63% 、對(duì)菜豆殼球孢(M.phaseolina)Ⅲ內(nèi)抑制率為 64.43% 、對(duì)瓜類炭疽病菌(C.orbiculare)Ⅲ內(nèi)抑制率為 89.26% (表2)。
2.3菌株K5對(duì)西瓜幼苗的防病與促生效果
2.3.1菌株K5對(duì)西瓜幼苗的防病效果以枯萎病感病品種早佳8424為試驗(yàn)品種,測(cè)定了菌株K5對(duì)西瓜枯萎病的防病效果(圖5)。Fon處理的植株病情指數(shù)為38,而菌株 K5+Fon 處理的西瓜幼苗的病情指數(shù)僅為8,防治效果達(dá) 78.95% 。2.3.2菌株K5對(duì)西瓜植株的促生效果 菌株K5#u的0e 福
對(duì)西瓜幼苗的促生試驗(yàn)的結(jié)果顯示K5處理植株的高度明顯高于對(duì)照植株(圖6)。菌株K5處理的西瓜幼苗的根長(zhǎng)、地上部鮮質(zhì)量、地下部鮮質(zhì)量與對(duì)照相比在 plt;0.05 水平上差異顯著,地上部干質(zhì)量和地下部干質(zhì)量與對(duì)照相比在 plt;0.01 水平上差異顯著;差異最為顯著的是株高、葉片數(shù),在 plt;0.0001 水平上差異顯著;而莖粗的比較發(fā)現(xiàn)K5處理和對(duì)照間差異不顯著(表3)。株高、莖粗、葉片數(shù)、根長(zhǎng)、地上部鮮質(zhì)量、地下部鮮質(zhì)量、地上部干質(zhì)量、地下部干質(zhì)量各項(xiàng)指標(biāo)與對(duì)照相比分別增加 71.77% 、5.68%?36.21%?41.42%?26.47%?97.22%?23.40% 132.78% ,表明菌株K5對(duì)西瓜幼苗促生作用明顯。
2.4菌株K5分子生物學(xué)檢測(cè)
將16SrDNA和rpob基因的測(cè)序結(jié)果與GenBank中已登錄的核苷酸序列進(jìn)行同源性比較,菌株K516SrDNA與銅綠假單胞菌 (P? aeruginosa)(HQ537785.1、AB680318.1、AF094713.1、LC069033.1的同源相似度均為 100% ;rpob基因與( (P? aeruginosa,CP092846.1)的同源相似度為 100% 。利用MEGA11軟件構(gòu)建菌株K5的16SrDNA(圖7-A)和rpob基因(圖7-B)的系統(tǒng)發(fā)育樹(shù)分析表明,菌株K5與 P. ae-ruginosa聚為一個(gè)分支(圖7),所以K5被確定為Pseudomonasaeruginosa。
2.5菌株K5的生物學(xué)特征
菌株K5在嗜鐵素試驗(yàn)、固氮試驗(yàn)、解無(wú)機(jī)磷試驗(yàn)、幾丁質(zhì)利用試驗(yàn)、纖維素酶試驗(yàn)、β-1-3葡聚糖酶試驗(yàn)、HCN試驗(yàn)中呈現(xiàn)陽(yáng)性(圖8)。該菌株可產(chǎn)生嗜鐵素,有固氮、解無(wú)機(jī)磷的作用,具有纖維素酶、幾丁質(zhì)酶和 β -1-3葡聚糖酶的活性,不產(chǎn)生生長(zhǎng)素、不具備解鉀和解有機(jī)磷的能力(表4)。
2.6菌株K5抗菌物質(zhì)合成相關(guān)基因的擴(kuò)增
以菌株K5的基因組為模板,可擴(kuò)增出氫氰酸A.β-1-3葡聚糖酶檢測(cè)培養(yǎng)基;B.嗜鐵素檢測(cè)培養(yǎng)基;C.HCN驗(yàn)證培養(yǎng)基;D.纖維素酶檢測(cè)培養(yǎng)基;E.解無(wú)機(jī)磷鑒定培養(yǎng)基;F.幾丁質(zhì)酶鑒定培養(yǎng)基;G.解有機(jī)磷鑒定培養(yǎng)基;H.固氮鑒定培養(yǎng)基。
HCN(587bp)、吩嗪-1-甲酰胺(PCN) 2000bp 和硝吡咯菌素基因PRN(786bp),但未擴(kuò)增出吩嗪-1-羧酸 1100bp )和2,4-二乙?;g苯三酚(2,4-DAPG)中 745bp )相關(guān)基因(圖9)。將擴(kuò)增出的片段送樣測(cè)序、比對(duì)測(cè)序結(jié)果與原始設(shè)計(jì)引物的模板基因一致性均在 98% 以上,表明擴(kuò)增的基因片段為目的基因片段,說(shuō)明該引物可以作為檢測(cè)銅綠假單胞菌K5中4種抗生素相關(guān)基因的特異引物。該結(jié)果說(shuō)明K5菌株可產(chǎn)生氫氰酸、吩嗪-1-甲酰胺和硝吡咯菌素。
3討論
西瓜一般在主產(chǎn)區(qū)連續(xù)多年栽培,所以普遍存在連作障礙現(xiàn)象[23]。連作后土壤中有益微生物種群數(shù)量減少,導(dǎo)致作物病害加重[24]。研究表明,土壤中有益微生物種群豐富且穩(wěn)定是保障植物正常生長(zhǎng)的重要條件[25]。自然界中生防微生物資源豐富且分布廣泛,許多功能多樣的有益微生物既可以抑制病原菌的生長(zhǎng)和繁殖2,還能產(chǎn)生多種次級(jí)代謝產(chǎn)物促進(jìn)植物的生長(zhǎng)。生防微生物及代謝產(chǎn)物防病、促生長(zhǎng)、對(duì)環(huán)境友好且可以減弱病原菌抗性[2。本研究從西瓜連作土壤里篩選到一株對(duì)西瓜枯萎病菌抑制作用明顯的菌株(K5),基于16SrDNA和rpob基因序列系統(tǒng)進(jìn)化分析發(fā)現(xiàn)該菌是銅綠假單胞菌菌株。
假單胞菌屬的許多菌株不僅促生作用明顯,且具有較好的防病效果[28]。菌株K5與其他假單胞菌一樣,也具有固氮、解無(wú)機(jī)磷的作用[29],其固氮能力可提高植物對(duì)氮源的吸收利用能力,促進(jìn)植物生長(zhǎng)[30。菌株K5明顯的促生作用可能與產(chǎn)生這些物質(zhì)相關(guān)。此外,K5的抗病作用也很好,從其基因組中擴(kuò)增出氫氰酸、吩嗪-1-甲酰胺和硝吡咯菌素三類抗菌物質(zhì)基因,且從生物學(xué)特性發(fā)現(xiàn)該菌可產(chǎn)生氫氰酸物質(zhì)。此外,假單胞菌主要產(chǎn)生酚嗪-1-羧酸、硝吡咯菌素、藤黃綠膿菌素和2,4-二乙?;g苯三酚等[29],K5和其他的假單胞菌相同,可能存在吩嗪-1-甲酰胺和硝吡咯菌素等抗菌物質(zhì)的合成途徑。假單胞菌產(chǎn)生嗜鐵素、纖維素酶和蛋白酶等物質(zhì)抑制病原菌的生長(zhǎng)繁殖[3,K5亦可產(chǎn)生嗜鐵素,具有纖維素酶、幾丁質(zhì)酶和 β -1-3葡聚糖酶的活性;蛋白酶、纖維素酶、嗜鐵素和HCN可單獨(dú)或復(fù)合抑制病原菌的擴(kuò)展[32],誘導(dǎo)植物激活免疫應(yīng)答反應(yīng)[33]。推測(cè)這些酶或許可破壞菌絲的結(jié)構(gòu),使菌絲不能更好地侵染,從而起到防治病害的作用。這種基于酶解作用的抗真菌機(jī)制,在分子水平上揭示了K5菌株通過(guò)干擾病原菌形態(tài)建成過(guò)程實(shí)現(xiàn)生物防治。
生防菌成為潛在菌肥資源的重要前提是具有較好的拮抗效果。銅綠假單胞菌M18可抑制甜瓜蔓枯病菌生長(zhǎng)[34],且該菌浸泡黃瓜種子以及灌根試驗(yàn)中,使黃瓜枯萎病的病害發(fā)生率降低 70%~80%135] 。銅綠假單胞菌Bc1-20促進(jìn)甜瓜生長(zhǎng),且對(duì)甜瓜幼苗枯萎病的相對(duì)防治效果為 52.34%[11] 。相較之下,K5對(duì)西瓜幼苗枯萎病的盆栽防治效果可達(dá) 78.95% 。此外,菌株K5對(duì)西瓜幼苗的促生效果顯著,其處理使株高、莖粗、葉片數(shù)、根長(zhǎng)、地上部鮮(干)質(zhì)量及地下部鮮(干)質(zhì)量等各指標(biāo)顯著升高,尤其在地下部生物量積累方面表現(xiàn)突出。結(jié)合K5對(duì)多種瓜類病原菌的廣譜抑菌活性,其展現(xiàn)出開(kāi)發(fā)為復(fù)合生物菌劑的潛力。后續(xù)需進(jìn)一步驗(yàn)證其田間防效,并深入解析其對(duì)枯萎病菌的分子防控機(jī)制,以推動(dòng)西瓜枯萎病的精準(zhǔn)防控策略構(gòu)建。
4結(jié)論
本研究篩選出1株對(duì)西瓜枯萎病菌具有顯著拮抗作用的銅綠假單胞菌菌株(K5)。該菌株可導(dǎo)致病原菌菌絲畸形膨大、扭曲,具有明顯的促生和防病作用,且具有多種生物學(xué)特性,是一株極具開(kāi)發(fā)潛力的生防菌劑候選菌株,為構(gòu)建基于拮抗微生物的植物病害生物防治技術(shù)體系提供了理論依據(jù)。
參考文獻(xiàn)References:
[1]陳燕萍,劉欣,肖榮鳳,朱育菁,劉波.西瓜枯萎病田間調(diào)查及 其病原菌鑒定[J].福建農(nóng)業(yè)科技,2020,51(8):32-37. CHEN Yanping,LIU Xin,XIAO Rongfeng,ZHU Yujing,LIU Bo.Field investigation and pathogen identification of watermelon Fusarium wilt[J].Fujian Agricultural Science and Technology,2020,51(8):32-37.
[2] LVHF,LUJY,HUANGY,WANGMX,YANCS,BIEZL. Priming watermelon resistance by activating physiological response and defense gene expression to alleviate Fusarium wilt inwheat-watermelon intercropping[J].Horticulturae,2023,9 (1):27.
[3] 甄銀偉.西瓜枯萎病的發(fā)病特征、發(fā)病原因及綜合防治措 施[J].鄉(xiāng)村科技,2021,12(22):64-66. ZHEN Yinwei.Characteristics,causes,and integrated control measures of watermelon fusarium wilt[J].Rural Science and Technology,2021,12(22):64-66.
[4] ZHUJX,TANTM,SHENAR,YANGXB,YUYT,GAO C S,LIZM,CHENGY,CHENJ,GUOLT,SUNXP,YANZ, LI JL,ZENGLB.Biocontrol potential of Bacillus subtilis IBFCBF-4against Fusariumwiltofwatermelon[J].Journal ofPlant Pathology,2020,102(2):433-441.
[5]孫正祥,龍欣鈺,孟祥佳,曹帥,毛國(guó)慶,周燚.枯草芽孢桿菌 YZU-S149 的分離鑒定及對(duì)西瓜枯萎病的生防作用[J].長(zhǎng)江 大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,18(4):114-120. SUN Zhengxiang,LONG Xinyu,MENG Xiangjia,CAO Shuai, MAO Guoqing,ZHOU Yi.Isolationand identificationof Bacillus subtilis YZU-S149 and its biocontrol effect on watermelon Fusarium wilt[J]. Journal of YangtzeUniversity (Natural Science Edition),2021,18(4):114-120.
[6] 崔夢(mèng)嬌,楊洋,李敬蕊,吳曉蕾,宮彬彬,高洪波,呂桂云.生防 菌復(fù)合基質(zhì)對(duì)西瓜幼苗的促生作用及枯萎病的防治效果[J]. 河北農(nóng)業(yè)大學(xué)學(xué)報(bào),2022,45(6):88-93. CUI Mengjiao,YANG Yang,LI Jingrui,WU Xiaolei,GONG Binbin,GAO Hongbo,LU Guiyun. Effects of compound substratewithbiocontrol bacteria on watermelon seedling growth andFusarium wilt control[J]. Journal of Hebei Agricultural University,2022,45(6):88-93.
[7] YANGDY,ZHANGXQ,LIZX,CHUR,SHAHS,WANGX Z,ZHANG XY.Antagonistic effect of Bacillusand Pseudomonascombinationsagainst Fusariumoxysporum and their effect on disease resistance and growth promotion in watermelon[J] Journal of Applied Microbiology,2024,135(5):lxae074.
[8] CHENZN,WANGZG,XUWH.BacillusvelezensisWB inducessystemic resistance inwatermelon againstFusariumwilt[J]. Pest Management Science,2024,80(3):1423-1434.
[9] AL-MUTARDMK,NOMANM,ALZAWARNSA,AZIZULLAH,LI D Y,SONG F M. Cyclic lipopeptides of Bacillus amyloliquefaciens DHA6are the determinants to suppress watermelon Fusarium wilt by direct antifungal activity and host defense modulation[J]. Journal ofFungi,2023,9(6):687.
[10]許煜泉,祝新德,王燦華,張雁,鄭有麗.具有促進(jìn)生長(zhǎng)和抗病 原真菌的根際假單胞菌株M18[C]//中國(guó)科學(xué)技術(shù)協(xié)會(huì),浙江 省人民政府.面向21世紀(jì)的科技進(jìn)步與社會(huì)經(jīng)濟(jì)發(fā)展(下 冊(cè)).上海:上海交通大學(xué)生命科學(xué)技術(shù)學(xué)院,1999:50. XU Yuquan, ZHU Xinde,WANG Canhua, ZHANG Yan, ZHENG Youli.Rhizospheric Pseudomonas Strain M18 with Growth-Promoting and Antifungal Activities Against Pathogenic Fungi[C]//China Association for Science and Technology,Zhejiang Provincial People’s Government. Science and Technology Progress and Social Economic Development Towards the 21st Century(Volume II).Shanghai:Shanghai Jiao TongUniversity College ofLife Science and Technology,1999:50.
[11]郝曉娟,劉波,謝關(guān)林,肖榮鳳,陳璐.銅綠假單胞菌FJAT-346 對(duì)番茄枯萎病的生防作用[J].山西農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué) 版),2011,31(1):39-43. HAO Xiaojuan,LIU Bo,XIE Guanlin,XIAO Rongfeng,CHEN Lu.Biocontrol effect against tomato Fusarium wilt of Pseudomonas aeruginosa strain FJAT-346[J]. Journal of Shanxi Agricultural University (Natural Science Edition),2011,31(1):39-43.
[12]張曉宇.黃金梨采后病害生防菌的分離篩選及抗菌蛋白研 究[D].太谷:山西農(nóng)業(yè)大學(xué),2014. ZHANG Xiaoyu. Study on isolating,screening and actibiotic protein of biological controlling bacteria against gold pear for postharvest disease[D]. Taigu: Shanxi Agricultural University, 2014.
[13]舒芳玲,李鳳芳,黎起秦,袁高慶,林緯.番茄立枯病生防菌株 B11-64 的鑒定及其生防特性[J].湖南農(nóng)業(yè)科學(xué),2022(11):55- 59. SHUFangling,LIFengfang,LIQiqin,YUANGaoqing,LIN Wei. Identification of strain B11-64 and its biocontrol characteristics against tomato Rhizoctonia rot[J]. Hunan Agricultural Sciences,2022(11):55-59.
[14]魏靖宇,韓雨桐,翟文旭,衛(wèi)勇,李寶通,劉慧芹.黃瓜土傳病害 拮抗細(xì)菌的篩選、鑒定及生防特性研究[J].中國(guó)生物防治學(xué) 報(bào),2022,38(6):1582-1591. WEI Jingyu,HAN Yutong,ZHAI Wenxu,WEI Yong,LI Baotong,LIU Huiqin. Screening,identification and biocontrol characteristics of antagonistic bacteria against cucumber soil- borne diseases[J].Chinese Journal of Biological Control,2022,38(6): 1582-1591.
[15]郝芳敏,董文杰,臧全宇,馬二磊,丁偉紅,王毓洪.一株甜瓜枯 萎病拮抗菌的篩選、鑒定及生防效果[J].中國(guó)瓜菜,2023,36 (12):26-32. HAO Fangmin,DONG Wenjie,ZANG Quanyu,MA Erlei, DING Weihong,WANG Yuhong. Screening,identification and biocontrol effect of antagonistic bacteria against melon Fusariumwilt[J].China Cucurbitsand Vegetables,2023,36(12):26-32.
[16]楊德偉,施春蘭,解紫薇,秦小萍,秦得強(qiáng),高熹,顧小飛,謝永 輝,吳國(guó)星.銅綠假單胞菌HZ15的生物活性[J/OL].微生物 學(xué)通報(bào),2025:1-23.(2024-08-30).https://doi.0rg/10.13344/j.microbiol.china.240612. YANG Dewei, SHI Chunlan,XIE Ziwei, QIN Xiaoping,QIN Deqiang,GAO Xi, GU Xiaofei, XIE Yonghui, WU Guoxing. Bioactivities of Pseudomonas aeruginosa HZ15[J/OL].Microbiology China,2025:1-23.(2024-08-30).https://doi.org/10.13344/ j.microbiol.china.240612.
[17]程亮亮,葉磊,王文凱,唐建林,檀根甲.小麥紋枯病拮抗菌 HB-10的篩選及其發(fā)酵條件優(yōu)化[J].中國(guó)生物防治學(xué)報(bào), 2024,40(2):435-447. CHENGLiangliang,YELei,WANGWenkai,TANGJianlin, TAN Genjia. Screening of antagonistic bacterium HB-10 against wheat sheath blight and optimization of fermentation conditions[J]. Chinese Journal of Biological Control,2024,40 (2):435-447.
[18]李慧,鄭肖蘭,侯會(huì)霞,吳偉懷,譚施北,羅磊,吳昊,易克賢. 銅綠假單胞菌PaHNHK01的鑒定及其對(duì)劍麻煙草疫霉的生 防效果研究[J].熱帶作物學(xué)報(bào),2024,45(10):2171-2182. LIHui,ZHENGXiaolan,HOUHuixia,WUWeihuai,TANShibei,LUO Lei,WU Hao,YI Kexian.Identification and biocontrol of Pseudomonas aeruginosa Pa HNHKo1 against sisal Zebra disease[J]. Chinese Journal of Tropical Crops,2024,45(10): 2171-2182.
[19]牛紅杰.黃瓜枯萎病生防放線菌的分離篩選及其發(fā)酵工藝研 究[D].北京:中國(guó)農(nóng)業(yè)科學(xué)院,2019. NIU Hongjie.Isolation,screening,and fermentation of antagonistic actinomycetes to suppress cucumber Fusarium wilt[D]. Beijing:Chinese Academy of Agricultural Sciences,2019.
[20]東秀珠,蔡妙英.常見(jiàn)細(xì)菌系統(tǒng)鑒定手冊(cè)[M].北京:科學(xué)出版 社,2001. DONG Xiuzhu,CAI Miaoying. Manual of Systematic Identification ofCommon Bacteria [M].Beijing:Science Press,2001.
[21]王超男.拮抗細(xì)菌的篩選鑒定及其環(huán)脂肽合成相關(guān)基因檢 測(cè)[D].北京:北京農(nóng)學(xué)院,2016. WANG Chaonan. Screening and identification of antagonistic bacteria and detecting the genes related to cyclie lipopeptides biosynthesis[D].Beijing:Beijing University of Agriculture, 2016.
[22] 徐偉慧,王恒煦,趙井明,王志剛,王可昕.西瓜枯萎病拮抗菌 篩選及其拮抗性能研究[J].農(nóng)業(yè)生物技術(shù)學(xué)報(bào),2019,27(12): 2238-2247. XU Weihui,WANG HengXu, ZHAO Jingming,WANG Zhigang,WANG Kexin.Screening of antagonistic bacteria against Fusarium wilt of watermelon (Citrullus lanatus) and its antagonisticproperties[J].Journal ofAgricultural Biotechnology, 2019,27(12):2238-2247.
[23]張曼,郝科星,張煥,侯東穎,侯富恩,張濤.設(shè)施西瓜連作障 礙治理措施對(duì)比[J].山西農(nóng)業(yè)科學(xué),2022,50(9):1353-1358. ZHANG Man,HAO Kexing,ZHANG Huan,HOU Dongying, HOU Fuen,ZHANG Tao.Comparison of management measures of continuous cropping obstacle of facility watermelons[J].Journal of Shanxi Agricultural Sciences,2022,50(9):1353-1358.
[24]朱紹坤,趙文東,孫凌俊,高圣華,馬麗,趙海亮.連作障礙及 緩解措施研究進(jìn)展[J].北方果樹(shù),2018(4):1-3. ZHU Shaokun,ZHAO Wendong,SUN Lingjun,GAO Shenghua,MALi,ZHAO Hailiang.Advances in alleviating the replant problem[J].Northern Fruits,2018(4):1-3.
[25]ZHANG H,HUA ZW,LIANG W Z,NIUQH,WANG X. The prevention of bio-organic fertilizer fermented from cow manure compost by Bacillus sp. XG-1 on watermelon continuous croppIg vaei[J]. meauonai Jounal 0l EHvHumenal Keseaicn and Public Health,2020,17(16):5714.
[26] 張紹麗,黃磊,王友平,張祿祺,常培培,李華,韓梅梅,張自坤, 西瓜枯萎病生防菌研究進(jìn)展[J].長(zhǎng)江蔬菜,2022(16):27-31. ZHANG Shaoli,HUANG Lei,WANG Youping,ZHANG Luqi, CHANG Peipei,LI Hua,HAN Meimei, ZHANG Zikun. Research progresses on biocontrol bacteria of watermelon Fusarium wilt[J]. Journal of Changjiang Vegetables,2022(16):7-31.
[27]任遷琪.西瓜枯萎病拮抗菌分離純化鑒定及生物防治[D].南 京:南京信息工程大學(xué),2016. REN Qianqi. Isolation purification and identification of antagonistic microbes and biological control against fusarium wilt of watermelon[D].Nanjing:NanjingUniversity of Information Scienceamp; Technology,2016.
[28]李芮.解淀粉芽孢桿菌41B-1、銅綠假單胞菌 841P-3 對(duì)棉花 根圍土壤微生物群落結(jié)構(gòu)的影響[D].南京:南京農(nóng)業(yè)大學(xué), 2013. LIRui.Effect of Bacillusamyloliquefaciens 41B-1 and Pseudomonas aeruginosa 841P-3 on soil microbial community in cottonrhizosphere[D]. Nanjing:Nanjing Agricultural University, 2013.
[29]KHAN M S,GAO JL,ZHANG MF,XUE J,ZHANG X H. PseudomonasaeruginosaLd-O8isolated fromLiliumdavidiiexhibits antifungal and growth- promoting properties[J].PLoS One,2022,17(6):e0269640.
[30]趙燁.西瓜根際促生菌株的篩選及抗病促生效果的研究[D]. 合肥:安徽農(nóng)業(yè)大學(xué),2013. ZHAO Ye.Isolation and characterization of watermelon-associated PGPRsand their potential for growth promotion and disease suppression[D]. Hefei: Anhui Agricultural University,2013.
[31]高蕓.生防芽孢桿菌及假單胞菌拮抗植物微生物病害研究進(jìn) 展[J].北方園藝,2021(2):131-136. GAO Yun.Research progress in biocontrol of plant microbial diseases by Bacillus and Pseudomonas[J].Northern Horticulture,2021(2):131-136.
[32]魏雪.根際銅綠假單胞菌M18中GacA對(duì)次級(jí)代謝、初級(jí)代 謝、分泌系統(tǒng)及運(yùn)動(dòng)性的全局性調(diào)控[D].上海:上海交通大 學(xué),2013. WEI Xue. Global regulation of GacA on secondary metabolism, primary metabolism,secretion systems and motility in rhizospheric Pseudomonas aeruginosa M18[D]. Shanghai: Shanghai Jiao Tong University,2013.
[33]左靜,廖曉蘭.應(yīng)用假單胞菌防治植物真菌性病害研究進(jìn)展[J]. 現(xiàn)代農(nóng)業(yè)科技,2011(22):164-165. ZUO Jing,LIAO Xiaolan. Study progress on plant fungal diseases prevention by Pseudomonas spp.[J]. Modern Agricultural Science and Technology,2011(22):164-165.
[34] 許煜泉,唐瑋寧,鄭有麗,鐘仲賢,徐悌惟.篩選假單胞菌株 M18 防治大棚黃瓜枯萎病害[J].上海交通大學(xué)學(xué)報(bào),1999,33 (2):210-213. XU Yuquan,TANG Weining,ZHENG Youli,ZHONG Zhongxian, XU Tiwei.Screening of Pseudomonas M18 and its biological control of cucumber wilt disease under commercial greenhouse[J]. JournalofShanghai Jiao TongUniversity,1999,33(2):210-213.
[35] WU D Q,LI Y Q,XU Y Q. Comparative analysis of temperature- dependent transcriptome of Pseudomonas aeruginosa strains from rhizosphere and human habitats[J].Applied Microbiology and Biotechnology,2012,96(4):1007-1019.