亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        金剛石納米切削單晶GaN的刀具角度影響研究

        2025-07-18 00:00:00王永強(qiáng)夏昊胡志航張帥陽尹韶輝
        金剛石與磨料磨具工程 2025年3期

        第三代半導(dǎo)體材料氮化鎵(GaN)具有寬禁帶寬度、高擊穿電場、高熱導(dǎo)率以及高電子飽和速率[1-2],適用于制造高溫、高頻以及大功率器件,在發(fā)光二極管(LED)、高功率和高頻率電子器件中有著廣泛的應(yīng)用[2-5]。由于位錯(cuò)、相變等缺陷會(huì)嚴(yán)重影響器件工作性能,因此優(yōu)質(zhì)GaN器件必須具備極高的表面完整性。

        以金剛石顆粒為切削工具的納米切削技術(shù)可獲得優(yōu)質(zhì)低損的復(fù)雜表面,被廣泛應(yīng)用于自由曲面和高精度復(fù)雜曲面加工[6-10]。受尺寸效應(yīng)影響,納米切削的材料去除機(jī)制與傳統(tǒng)切削不同[11]。此外,刀具幾何形狀也會(huì)對加工性能造成重要影響[12-15]。因此,有必要對金剛石顆粒切削GaN材料的去除機(jī)制開展深人研究。

        然而,基于現(xiàn)有儀器條件對納米切削過程的材料變形機(jī)制開展研究依然具有挑戰(zhàn)。分子動(dòng)力學(xué)(MD)模擬可提供原子級分辨率的材料微觀結(jié)構(gòu)變化及相關(guān)信息,并獲得實(shí)驗(yàn)條件下難以觀測到的刀具和工件微納米級接觸細(xì)節(jié)[16-17],以此來揭示材料的微觀變形機(jī)制。因此,MD方法被廣泛應(yīng)用于納米切削研究。ZHAO等[18]使用MD方法研究了單晶硅納米切削過程中刃口半徑對變形行為的影響,指出刃口半徑增大會(huì)導(dǎo)致相變和切削力增大。DAI等[9研究了單晶硅納米切削過程中刀具幾何形狀的影響,通過分析不同刀具角度下相變區(qū)和法向力的變化,建立了預(yù)測亞表層損傷的理論模型。KALKHORAN等[20-21]研究了相對刀具鋒利度(RTS)與材料彈性恢復(fù)率的關(guān)系,指出RTS增大會(huì)導(dǎo)致切削過程亞表層損傷厚度增大,并確定了切屑形成的臨界RTS值,發(fā)現(xiàn)切削力隨RTS的增大而增大。ZHAO等[22]通過MD方法,探討了切削過程中溫度、切削深度等因素對GaN材料加工性能的影響。XU等[23]發(fā)現(xiàn)納米切削時(shí),刃口半徑小、正前角大的刀具可減少切屑側(cè)流,提高加工表面質(zhì)量。ABDULKADIR等[24指出,在碳化硅納米切削過程中,動(dòng)摩擦隨著刀具前/后角、刃口半徑的增大而減小,亞表面損傷層厚度隨刀具后角的增大而增大。上述研究表明,刀具幾何形狀對材料變形機(jī)理具有顯著影響。單晶GaN作為典型的硬脆性難加工材料,刀具前/后角對其變形及損傷行為的影響尤為顯著。目前,關(guān)于單晶GaN納米加工的研究主要集中于工藝參數(shù)對切削加工性能的影響,如WANG等[25-26]對單晶GaN納米磨粒加工開展MD模擬,研究了切削速度、切削深度、切削溫度及磨料粒徑等工藝參數(shù)對材料變形的影響規(guī)律。然而,有關(guān)刀具形狀對該材料變形及損傷行為的影響仍有待進(jìn)一步研究。

        根據(jù)晶體生長方向,單晶GaN可分為 a 面(-2110)、c 面(0001)和 ?m 面(0-110),其中 Ψc 面GaN因生長工藝成熟且應(yīng)用廣泛而成為研究重點(diǎn)[2]。本文以 c 面GaN為研究對象,利用MD模擬方法深入探討了金剛石刀具在切削單晶GaN時(shí)刀具角度對材料變形行為的影響,通過分析刀具前角和后角變化對變形層、原子應(yīng)變、應(yīng)力分布及切削力的影響規(guī)律,結(jié)合實(shí)驗(yàn)驗(yàn)證,揭示刀具幾何形狀對單晶GaN納米切削誘導(dǎo)材料變形和損傷行為的影響機(jī)制,從而深化對單晶GaN切削變形機(jī)理的理解。

        1MD模擬方法和實(shí)驗(yàn)設(shè)置

        1.1仿真模型

        使用LAMMPS[28]對單晶GaN納米切削過程進(jìn)行模擬,并使用OVITO軟件進(jìn)行結(jié)果的可視化和數(shù)據(jù)分析[29]。切削模型如圖1所示,金剛石刀具(晶格常數(shù)為3.567A)因硬度遠(yuǎn)大于GaN而被視為剛體。工件為具有纖鋅礦結(jié)構(gòu)的單晶GaN,晶格常數(shù) a=3.191AA b=5.510AA c=5.194AA[30] 。工件由牛頓層、恒溫層和邊界層組成:牛頓層和恒溫層原子遵循牛頓第二定律,使用Velocity-Verlet算法進(jìn)行積分[31],步長為1fs;切削時(shí),刀具和工件的相互作用會(huì)產(chǎn)生大量熱量,恒溫層原子通過調(diào)節(jié)原子運(yùn)動(dòng)速度控制溫度;邊界層原子固定以約束工件在切削過程中的運(yùn)動(dòng)。為減小邊界效應(yīng)和尺寸效應(yīng),在 X 軸方向和Y軸方向施加周期性邊界條件,Z 軸正方向?yàn)樽杂蛇吔?、?fù)方向?yàn)楣潭ㄟ吔?。模擬前,模型弛豫 30ps 達(dá)到 293K 的初始溫度后,在微正則系綜(NVE)下運(yùn)行。

        模擬工件尺寸為 24nm×16nm×10nm. ,由324786個(gè)原子組成,刀具前角 γ 和后角 α 如圖1所示,切削距離為 12nm ,切削速度為 50m/s ,切削方向?yàn)檠毓ぜ?001)晶面[-2110]方向。為系統(tǒng)探究刀具幾何參數(shù)對GaN晶體切削過程材料去除機(jī)制的影響,設(shè)置前角 γ 和后角 a 在 -18°~18° 的范圍內(nèi)變化,如表1所示。其中,后角引入負(fù)值區(qū)間( α=-18°~0° )是基于以下考量:負(fù)后角可增大后刀面與工件的有效接觸面積,增強(qiáng)已加工表面的動(dòng)態(tài)擠壓效應(yīng),有助于觀測塑性域加工中亞表層位錯(cuò)網(wǎng)絡(luò)的演化。在參數(shù)研究策略上,采用控制變量法構(gòu)建雙變量耦合分析模型:當(dāng)考察前角y對切削行為的影響時(shí),固定后角 α=18° 以消除后刀面干涉效應(yīng);研究后角 a 作用機(jī)制時(shí),則保持前角 γ=18° 以確保切削刃幾何相似性。通過該設(shè)計(jì),有效解耦了前角與后角對切削力、切屑形態(tài)及亞表層損傷深度等指標(biāo)的獨(dú)立影響。

        圖1單晶GaN金剛石刀具納米切削MD模型 Fig.1 MD model of nanocutting for single crystal GaN
        表1單晶GaN納米切削仿真參數(shù)Tab.1 Simulation parameters of nanocutting for single crystal GaN

        1.2 勢函數(shù)

        切削模型中共存在6種相互作用力:單晶GaN工件原子間的相互作用力 FGa-Ga?FGa-N?FN-N, 金剛石刀具原子和單晶GaN工件原子間的相互作用力 FC-Ga,F(xiàn)c-N, (204號金剛石刀具原子間的相互作用力 Fc.c 。采用Stillinger-Weber(SW)勢函數(shù)描述Ga-Ga、Ga-N和N-N原子間的相互作用[32-34],刀具和工件原子間的C-Ga和C-N相互作用采用Lennard-Jones(L-J)勢函數(shù)[35描述,其表達(dá)式為:

        式中: r 為原子間距; σ 和 ε 分別為L-J勢函數(shù)的內(nèi)聚能和平衡距離(見表2),其值由長程范德華相互作用得到[3;為提高計(jì)算效率,取截?cái)喟霃?r0=7.5AA 。金剛石刀具視為剛體,不考慮C-C原子間作用[7]。

        表2C-Ga和C-N間相互作用的L-J勢函數(shù)參數(shù)Tab.2 Lennard-Jonespotential forC-Gaand C-Ninteractions

        1.3分析方法

        通過計(jì)算米塞斯應(yīng)力分析單晶GaN納米切削過程的應(yīng)力變化[38-39],計(jì)算公式為:

        式中: A=σxxyy , B=σxxzz , C=σyyzz , σxx 、 Oyy、=、Txy、Ty=、Ty=分別為原子應(yīng)力分量,從模擬結(jié)果 中得到。

        利用局部剪切應(yīng)變對納米切削加工引起的塑性變形進(jìn)行表征[40],計(jì)算公式為:

        式中: 、ηyy、ηzz、ηxy、ηyz、ηx= 分別為原子應(yīng)變分量。

        GaN通常以纖鋅礦結(jié)構(gòu)存在,其表面原子配位數(shù)(CN)為3,內(nèi)部原子配位數(shù)為 4[41] 。如果纖鋅礦結(jié)構(gòu)遭到破壞,則配位數(shù)將發(fā)生變化,因此可以通過配位數(shù)判斷相變[30]?;谝延醒芯縖3.2.42],取截?cái)喟霃?r0= 2.15A進(jìn)行配位數(shù)分析。利用位錯(cuò)提取算法(DXA)對切削過程產(chǎn)生的位錯(cuò)進(jìn)行識別[43-44],并采用金剛石結(jié)構(gòu)識別算法(IDS)對非晶結(jié)構(gòu)、六方金剛石(HD)結(jié)構(gòu)和立方金剛石(CD)結(jié)構(gòu)進(jìn)行識別,以觀察晶體結(jié)構(gòu)轉(zhuǎn)變[45]。

        1.4實(shí)驗(yàn)設(shè)置

        在超精密磨床(UPZ315Li,Okamoto)上開展金剛石單顆粒切削實(shí)驗(yàn),如圖2所示。實(shí)驗(yàn)樣品為MTI公司提供的單晶GaN( 5mm×5mm×0.35mm )。選取兩顆形貌不同的金剛石顆粒(粒徑約 350μm )釬焊于鋼錐尖端作為切削工具,如圖2所示。金剛石顆粒微觀形貌如圖3所示,其中一顆的前角為 -70° 、后角為10° ,另一顆的前角為 -43° 、后角為 20° ,以對比不同刀具前后角的切削效果。切削沿[-2110]晶向進(jìn)行,切削速度為 50m/s ,與MD模擬中使用的切削速度相同。受機(jī)床精度限制,最大切削深度設(shè)置為 100nm 。使用激光共聚焦顯微鏡(LEXT-OLS4100,Olympus)觀測劃痕的表面形貌,使用聚焦離子束(FIB,F(xiàn)EIScios)垂直于[-2110]晶向制備透射電鏡切片,并通過透射電子顯微鏡(TEM,JEOL2100)分析劃痕的亞表層變形特征。

        圖2單顆粒金剛石切削示意圖及實(shí)驗(yàn)裝置
        圖3刀具金剛石顆粒顯微形貌及截面輪廓Fig.3 Cutting tool diamond particle micro-morphology and cross-section profile

        2 結(jié)果與分析

        2.1原子位移

        圖4顯示了使用不同前角和后角刀具切削時(shí)的原子位移分布。在前刀面推擠作用下,大部分工件原子沿前刀面向上流動(dòng)并在刀具前方形成切屑,一部分原子則向加工表面兩側(cè)移動(dòng)形成切屑側(cè)流,還有一部分原子受后刀面擠壓向工件內(nèi)部遷移,造成亞表層晶體結(jié)構(gòu)變化,形成一定深度的損傷層。HAO等4通過MD模擬證實(shí),切削過程中,刃口前緣的幾何約束導(dǎo)致能量集中于第I變形區(qū)(即主剪切區(qū)),引發(fā)強(qiáng)烈原子滑移,與本研究觀察到的切屑和工件基材的不連續(xù)原子位移分布一致,共同驗(yàn)證了刀具角度對材料切削行為的影響。圖4a顯示,負(fù)前角刀具切削形成的滑移帶明顯多于正前角刀具,且隨前角減小,切屑側(cè)流原子逐漸增多,表明負(fù)前角切削的加工表面質(zhì)量相對較差。圖4b顯示,后角由 18° 減小至 6° 時(shí),滑移帶主要分布在刀具前方,切屑側(cè)流無明顯變化;而后角由 -6°} 減小至-18時(shí),后刀面的擠壓導(dǎo)致刀具下方滑移帶明顯增多,嚴(yán)重?fù)p傷已加工表面。

        圖4不同刀具角度下切削距離為16mm 時(shí)原子位移橫截面Fig.4Cross-sectional snapshots of atomic displacement with a cuttingdistance of 16nm atdifferent tool rake angleandflankangle

        不同刀具角度下切屑原子數(shù)隨切削距離的變化如圖5所示。當(dāng)前角由 -18°. 增大至18時(shí),切屑原子數(shù)由9524增至11895;而后角變化對切屑原子數(shù)量影響不大。結(jié)果表明,正前角切削可促進(jìn)材料去除。

        圖5不同刀具角度下切屑原子數(shù)隨切削距離變化對比 Fig.5 Number of chip atoms against cutting distance underdifferent tool angles

        2.2 切削力

        圖6顯示了使用不同前角和后角刀具切削時(shí)切削力隨切削距離的變化。如圖6a和圖6b所示,切削距離為 0~2nm 時(shí),切削處于初始階段,刀具與工件尚未充分接觸,切向切削力因刀具的剪切和擠壓作用而迅速增大;切削距離進(jìn)一步增大時(shí),刀具與工件接觸漸趨穩(wěn)定,切向切削力不再顯著增大。前角越小,切屑沿前刀面流出越困難,大量切屑堆積于刀具前方并阻礙切削,造成切向切削力增大。圖6a顯示,前角由 18° 減小至-18° 時(shí),平均切向切削力由 139.34nN 增至 252.02nN (取穩(wěn)定切削段平均值)。較大的切削力會(huì)促進(jìn)亞表層缺陷的生成和擴(kuò)展[47],結(jié)合圖4的原子位移分析可知,采用較大正前角刀具不僅有利于實(shí)現(xiàn)材料的有效去除,而且可顯著抑制原子滑移及亞表層缺陷的形成。

        450 y=18° y=-6°=12° 2= -12°y=6° -18°Nu / 30015000 3 6 9 12切削距離s/nm(a)不同刀具前角的切向力Tangential force of different tool rakeangleα=18° α=-6°450 α=12° α=-12°a=60 α= 18°30015000 3 6 9 12切削距離s/nm(b)不同刀具后角的切向力Tangential force of different tool flank angle750 γ=18° γ=-6°γ=12° y=-12°y=6° =-18°250-2500 3 6 9 12切削距離s/nm(c)不同刀具前角的法向力Normal force of different tool rake anglea=18° α=-6°750 a=12° α=-12°a=6° α= -18°2500-2500 3 6 9 12切削距離s/mm(d)不同刀具后角的法向力Normal force of different tool flank angle隨著后角減小,后刀面對切削的阻礙作用逐漸增強(qiáng),切向切削力也相應(yīng)增大。圖6b顯示,當(dāng)后角從 18° 減小至-18時(shí),平均切向切削力由 139.34nN 增至 300.78nN 表明后角與切向切削力呈負(fù)相關(guān)性。當(dāng)后角為正時(shí),切削力主要來自前刀面剪切作用,法向切削力變化不大。使用正前角刀具切削時(shí),切削力主要由前刀面剪切產(chǎn)生,而負(fù)前角刀具切削時(shí)切削力來自刀具對工件的擠壓,因此使用正前角刀具時(shí)的法向切削力相對更小,這一現(xiàn)象在圖6c中得到了直觀的驗(yàn)證。當(dāng)后角為負(fù)時(shí),切削力主要來自后刀面擠壓作用,故負(fù)后角越大,法向切削力越大,圖6d顯示平均法向切削力由 303.44nN 增至 419.83nN ,證實(shí)了負(fù)后角與法向切削力之間的正相關(guān)關(guān)系。

        2.3 切削誘導(dǎo)變形

        圖7顯示了納米切削后的位錯(cuò)分布和晶體結(jié)構(gòu)變化(該圖未顯示原始纖鋅礦結(jié)構(gòu)的原子;圖中淺灰色原子已失去長程有序結(jié)構(gòu),表示非晶原子)。大部分非晶原子出現(xiàn)在切屑和已加工表面兩側(cè)。在刀具剪切和擠壓作用下,GaN晶體表現(xiàn)出獨(dú)特的結(jié)構(gòu)響應(yīng)特征。在變形層區(qū)域,高剪切應(yīng)力和局部溫升的協(xié)同作用,誘導(dǎo)了wurtzite-to-cubic相變,形成平均尺寸為 1~2nm 的 CD 結(jié)構(gòu)納米晶[48]。該相變過程與配位數(shù)從 CN=4 向CN=5 的轉(zhuǎn)變密切相關(guān),證實(shí)了高壓誘導(dǎo)的結(jié)構(gòu)重組機(jī)制。在切屑形成區(qū)域,劇烈的塑性流動(dòng)和動(dòng)態(tài)再結(jié)晶導(dǎo)致納米晶擇優(yōu)取向生長,這種織構(gòu)特征與局部應(yīng)變速率和溫度梯度分布直接相關(guān)。此外,后刀面的擠壓和摩擦使加工表面下方原子不斷積累能量,當(dāng)達(dá)到臨界值時(shí),能量以位錯(cuò)傳播方式釋放,形成位錯(cuò)缺陷。

        圖8為不同刀具角度切削后各晶體結(jié)構(gòu)原子數(shù)的對比圖。結(jié)果表明,當(dāng)?shù)毒咔啊⒑蠼菑?18° 減小至-18° 時(shí),非晶原子比例顯著增加,揭示了負(fù)角度切削對材料非晶化行為的顯著影響:(1)負(fù)角度切削導(dǎo)致最大剪切應(yīng)力位置向亞表層遷移,在表層以下 2~3nm 區(qū)域形成顯著的應(yīng)力集中帶,這是誘發(fā)非晶化的主要力學(xué)因素;(2)負(fù)角度切削顯著提高了塑性變形能密度,切削能量以晶格畸變能形式存儲(chǔ)在非晶相中,導(dǎo)致非晶層厚度增加、晶格畸變區(qū)擴(kuò)展和位錯(cuò)密度顯著升高。非晶化加劇將導(dǎo)致加工表面粗糙,造成較差的亞表層質(zhì)量。進(jìn)一步分析表明,前、后角絕對值的減小使刀具和工件的接觸面積增加,引起應(yīng)變和應(yīng)力增加,在一定程度上促進(jìn)纖鋅礦結(jié)構(gòu)向閃鋅礦結(jié)構(gòu)的局部轉(zhuǎn)變。刀具前角為 12° 、 -12° 和后角為 12° 、 -18° 時(shí),CD結(jié)構(gòu)的原子數(shù)量更多(分別為1734、1731個(gè)和835、1480個(gè)),這是由于刀具和工件的接觸應(yīng)力增大,加劇了GaN由HD結(jié)構(gòu)向CD結(jié)構(gòu)轉(zhuǎn)化的相變過程。

        Fig.8Numberofcrystal structuresatomsunderdifferent angles

        圖9為不同刀具角度切削后亞表層的損傷厚度。如圖9a所示,正前角的變化對亞表層損傷影響并不明顯,但較大的負(fù)前角會(huì)增大亞表層的損傷厚度。如圖9b所示,較大的負(fù)后角切削會(huì)嚴(yán)重?fù)p傷亞表層,隨負(fù)后角增大,亞表層損傷厚度從 0.95nm 增至 2.96nm 。

        圖10為不同刀具角度下亞表層的位錯(cuò)分布。工件內(nèi)部以柏氏矢量為 1/3lt;1-210gt; 的位錯(cuò)和其他位錯(cuò)為主。圖10a顯示,當(dāng)前角由 18°1 減小至-18時(shí),柏氏矢量 1/3lt;1-210gt; 和其他未識別的數(shù)量位錯(cuò)增多。具體而言,前角為 18° 時(shí),可觀察到柏氏矢量為 lt;1-100gt; 的位錯(cuò);前角為12時(shí),可觀察到柏氏矢量為 1/3lt;1-100gt; 的肖克利不全位錯(cuò),該位錯(cuò)將導(dǎo)致晶格層間距變化,從而影響材料的結(jié)構(gòu)穩(wěn)定性;前角為 -6°~-18° 時(shí),還觀察到柏氏矢量為 lt;0001gt; 的位錯(cuò)。相較于后角的變化,較大的負(fù)前角切削會(huì)促進(jìn)位錯(cuò)形核和發(fā)育,且位錯(cuò)線主要沿切削方向延伸,對未加工亞表層造成損傷。同時(shí),負(fù)后角切削會(huì)引導(dǎo)位錯(cuò)向亞表層深處發(fā)展,如圖10b所示。圖10的位錯(cuò)分布說明負(fù)前角和負(fù)后角切削會(huì)嚴(yán)重?fù)p傷亞表層,與圖9的分析結(jié)果一致。

        圖9不同刀具角度下亞表層損傷厚度

        圖11顯示了位錯(cuò)線長度統(tǒng)計(jì)結(jié)果。當(dāng)前角從 18° 減小至 -18° 時(shí),平均位錯(cuò)線長度從 5.49nm 增至 98.58nm 如圖11a所示。后角增大會(huì)導(dǎo)致壓應(yīng)力增加,同樣會(huì)促進(jìn)位錯(cuò)發(fā)育,當(dāng)后角從 18° 減小至 -18° 時(shí),平均位錯(cuò)線長度從 4.52nm 增至 82.84nm ,如圖11b所示。結(jié)合原子位移結(jié)果(圖4)可知,采用較大的刀具正前、后角可改善表面加工質(zhì)量,并抑制位錯(cuò)發(fā)展。

        圖11不同刀具角度下位錯(cuò)線長度隨切削距離變化對比圖 Fig.11 Comparison of dislocation line length with cutting distanceunderdifferenttoolangles

        圖12顯示了前、后角為 18° 時(shí)刀具切削區(qū)原子的配位數(shù)分布??梢钥吹剑蟛糠肿冃螌釉樱▓D4所示)仍保持與原始晶格原子相同的配位數(shù)( CN=3 、4),表明該區(qū)域主要發(fā)生塑性變形。圖13為不同刀具角度下各配位數(shù)原子數(shù)量對比。刀具前、后角從 18° 減小至-18時(shí), CN=1~3 的原子數(shù)量逐漸增加,表明納米切削過程中剪切作用減弱而擠壓作用增強(qiáng),這種擠壓變形致使原子排列呈現(xiàn)出更為無序的狀態(tài),進(jìn)而導(dǎo)致低配位數(shù)原子數(shù)量顯著增加,加劇了非晶化現(xiàn)象(與圖8結(jié)果一致)。此外,當(dāng)采用負(fù)前角和負(fù)后角切削時(shí),切削刃對材料的擠壓效應(yīng)在局部區(qū)域產(chǎn)生了極高壓力,促使原始纖鋅礦結(jié)構(gòu)向五配位結(jié)構(gòu)轉(zhuǎn)變[49-50],導(dǎo)致圖13中 CN=5 原子數(shù)隨刀具角度減小而略微增加。

        2.4切削應(yīng)變、應(yīng)力和溫度

        圖14顯示了前、后角為18時(shí)工件的剪切應(yīng)變和應(yīng)力分布。如圖14a所示,最大應(yīng)變主要分布在切屑和已加工表面。如圖14b所示,在刀具剪切和擠壓作用下,高應(yīng)力主要集中分布在刀具下方和前方,使得GaN失去原始的長程有序原子排列,發(fā)生局部塑性變形形成切屑,并在已加工表面產(chǎn)生亞表層損傷和殘余應(yīng)力[51]。

        圖14剪切應(yīng)變與米塞斯應(yīng)力分布示意圖Fig.14 Distribution of shearstrainand vonMisesstress隨切削距離的變化對比Fig.15Comparison of average shear strain and vonMisesstress with cutting distance under different tool angles

        圖15顯示了不同刀具角度切削時(shí)平均剪切應(yīng)變和應(yīng)力的變化。如圖15a和圖15b所示,前角變化對應(yīng)變影響較小,而后角變化對應(yīng)變有顯著影響,剪切應(yīng)變隨后角的減小而增大。前角和后角減小均導(dǎo)致應(yīng)力增大,但后角變化的影響更加明顯:前角由18減小至-18時(shí),平均應(yīng)力由 15.77GPa 略微增加至 18.57GPa (圖15c);而后角由18減小至-18時(shí),平均應(yīng)力由15.77GPa 顯著增加至 21.22GPa (圖15d)。此外,從圖15c和圖15d可以看到,在切削初始階段,由于刀具與工件接觸不充分,接觸面積隨切削距離增大而增大,應(yīng)力急劇上升;而切削距離超過 2nm 后,切削進(jìn)入穩(wěn)定階段,應(yīng)力變化趨于平緩。

        圖16對比了不同刀具角度對切削過程中平均溫度分布的影響規(guī)律。由圖16a可知,前角從 18°1 減小至-18時(shí),平均溫度由337K顯著升至357K(計(jì)算區(qū)間為穩(wěn)定切削階段的 2~12nm 行程),二者呈顯著正相關(guān)。該現(xiàn)象源于負(fù)前角工況下增強(qiáng)的“楔形效應(yīng)”,即刀具前刀面與切屑接觸面積增大導(dǎo)致摩擦熱積累加劇[52]。值得注意的是,后角對溫度場的影響呈現(xiàn)明顯非對稱性(圖16b):當(dāng)后角為正值時(shí),溫度波動(dòng)范圍僅為3K( 337~340K ),這與其后刀面與已加工表面

        10 y=18°8 =12°3質(zhì)本 11 y= -6°-o 2 -12° 1.211.9126 =-18° 切削距離s42850 3 6 9 12切削距離s/nm(a)不同刀具前角的平均剪切應(yīng)變Average shear strain of different tool rake angle10a=18°→α=12°8 ←a=6°3本 6 -α=-18°4200 3 6 9 12切削距離s/nm(b)不同刀具后角的平均剪切應(yīng)變Average shear strain of different tool flank angle22 y=18°=12°=6°10 -6°-12°18°8o88A限0 3 6 9 12切削距離s/nm(c)不同刀具前角的米塞斯應(yīng)力Von Mises stress of different tool rake angle22 +α=18°a=12° AAA20 α=6° α=-6° AAα=-12° 8888888888-△-a=-18°18 800 8888686B1440 3 6 9 12切削距離s/nm(d)不同刀具后角的米塞斯應(yīng)力Von Mises stress of different tool flank angle圖15不同刀具角度下平均剪切應(yīng)變和米塞斯應(yīng)力間的間隙效應(yīng)密切相關(guān);而當(dāng)后角為負(fù)值時(shí),溫度迅速升至 358K 。通過原子尺度分析發(fā)現(xiàn),負(fù)后角刀具因幾何約束作用產(chǎn)生獨(dú)特的“二次擠壓”效應(yīng)[53],具體表現(xiàn)為:(1)亞表層材料在刀具后刀面推擠作用下發(fā)生重復(fù)塑性變形;(2)位錯(cuò)密度校正后角工況大幅提升。上述差異表明,前角通過直接改變剪切區(qū)能量耗散主導(dǎo)全局溫升,而負(fù)后角則通過加劇亞表層變形影響局部高溫區(qū)形成,二者協(xié)同增強(qiáng)加工區(qū)域的熱力耦合效應(yīng)。

        圖16不同刀具角度下平均溫度隨切削距離變化對比圖 Fig.16 Average temperature against cutting distance underdifferenttoolangles

        2.5實(shí)驗(yàn)驗(yàn)證

        為驗(yàn)證MD模擬結(jié)果的可靠性,使用GaN樣品沿[-2110]晶向開展單顆粒金剛石切削實(shí)驗(yàn)。實(shí)驗(yàn)結(jié)果如圖17所示,證實(shí)刀具幾何參數(shù)對GaN的切削損傷機(jī)制具有顯著調(diào)控作用。圖17a、圖17b的光學(xué)顯微照片分別對應(yīng)前角 -70° (后角 10° )與前角- ?43° (后角 20° )的切削劃痕形貌。分析顯示,采用大負(fù)前角( -70° )與小后角( 10° )組合時(shí),劃痕表面出現(xiàn)密集的脆性斷裂碎片;而采用小負(fù)前角( -43° )與大后角( 20° )組合時(shí),表面完整性顯著改善,劃痕邊緣粗糙度降低且延性劃痕明顯延長,表明后者更有利于實(shí)現(xiàn)塑性域加工。

        為深入揭示亞表層損傷機(jī)制,通過高分辨透射電子顯微鏡(HR-TEM)對切削溝槽進(jìn)行截面分析,結(jié)果如圖17c和圖17d所示。在大負(fù)前角條件下(圖17c),亞表層裂紋沿(0001)晶面擴(kuò)展至約 250nm 深度,并伴隨位錯(cuò)塞積和微孔洞形核,符合脆性斷裂的應(yīng)力集中效應(yīng)。而優(yōu)化刀具參數(shù)后(圖17d),則誘導(dǎo)位錯(cuò)滑移主導(dǎo)的塑性變形,形成寬約 300nm 的層錯(cuò)帶(stack-ingfaults),且未觀測到裂紋擴(kuò)展現(xiàn)象。值得注意的是,圖17d左下角的MD模擬原子位移場顯示,劃痕底部存在(0001)晶面的滑移帶(滑移矢量 b=1/3lt;11. 20gt; ),與實(shí)驗(yàn)觀測的層錯(cuò)結(jié)構(gòu)(柏氏矢量分析證實(shí)為1/3lt;11-20gt; )高度一致,從而驗(yàn)證了MD模型在原子尺度再現(xiàn)位錯(cuò)演化過程的準(zhǔn)確性。

        模擬與實(shí)驗(yàn)的多尺度耦合分析揭示了刀具幾何參數(shù)對單晶GaN切削損傷的調(diào)控規(guī)律:大負(fù)前角通過增強(qiáng)局部應(yīng)力集中促進(jìn)脆性斷裂,而增大后角可降低刀具-工件接觸區(qū)的剪切應(yīng)力梯度,從而抑制裂紋萌生并激活位錯(cuò)滑移主導(dǎo)的塑性變形。

        3結(jié)論

        對金剛石刀具納米切削單晶GaN開展MD模擬,探討了不同刀具角度對單晶GaN納米切削變形行為的影響,并在單晶GaN上開展了金剛石單顆粒切削實(shí)驗(yàn)。通過實(shí)驗(yàn)-模擬對比分析,驗(yàn)證了MD模擬在預(yù)測單晶GaN納米切削行為中的可靠性,揭示了材料去除機(jī)理及加工損傷演化規(guī)律,為優(yōu)化單晶GaN超精密加工工藝參數(shù)提供理論指導(dǎo)。主要結(jié)論如下:

        (1)較大的刀具正前角會(huì)產(chǎn)生更多的切屑原子和側(cè)流原子,而刀具后角變化對這兩者的影響相對較小,但對已加工表面影響較大。刀具前角變化引起的滑移主要分布在刀具前方和已加工表面兩側(cè),而后角引起的滑移則主要分布在刀具前方和下方;當(dāng)負(fù)后角較大時(shí),已加工表面兩側(cè)的滑移明顯增多。

        (2)切削力的主導(dǎo)機(jī)制表現(xiàn)出顯著的角度依賴性。在正前角與正后角組合工況下,切削過程主要由刃口剪切作用控制;當(dāng)后角為負(fù)而前角為正時(shí),刀具后刀面與工件的接觸面積顯著增大,切削力轉(zhuǎn)為擠壓效應(yīng)主導(dǎo);當(dāng)前角為負(fù)而后角為正時(shí),負(fù)前角導(dǎo)致的刃口鈍化效應(yīng)使得切削力呈現(xiàn)剪切與擠壓的復(fù)合作用特征。

        圖17實(shí)驗(yàn)獲得的切削溝槽局部顯微形貌及其截面TEM圖像

        (3)采用正前角和正后角刀具切削可緩解亞表層損傷,使損傷層厚度減小。隨著前角或后角減小,應(yīng)力、應(yīng)變和溫度升高,導(dǎo)致位錯(cuò)數(shù)量增加,且相變更加劇烈、非晶化更加嚴(yán)重。

        參考文獻(xiàn):

        [1] FUJIKANEM,YOKOGAWAT,NAGAOS,etal.Nanoindentation study on insight of plasticity related to dislocation density and crystal orientation in GaN[J].Applied PhysicsLetters,2012,101(20):201901.

        [2] PUSTP,SCHMIDTPJ,SCHNICKW.Arevolutionin lighting[J]. Nature Materials,2015,14(5):454-458.

        [3] TSAOJY,CRAWFORDMH,COLTRINME,etal.Towardsmartand ultra-efficient solid-statelighting[J].Advanced Optical Materials,2014, 2(9):809-836.

        [4] MISHRAUK,SHENLK,KAZIORTE,etal.GaN-basedRFpower devices and amplifiers [J].Proceedings of the IEEE,2008,96(2):287- 305.

        [5] GAUDENZIOM,MATTEOM,ENRICOZ.Gallium nitride-enabled high frequency and high efficiency power conversion [M].Springer International Publishing,2018.

        [6] LAIM,ZHANGXD,F(xiàn)ANGFZ,etal.Study on nanometric cuttingof germanium by molecular dynamics simulation [J].Nanoscale Research Letters,2013,8(1):13.

        [7] WANGQL,BAIQS,CHENJX,etal.Subsurface defects structural evolution in nano-cutting of single crystal copper[J].Applied Surface Science,2015,344:38-46.

        [8] WANGJS,ZHANGXD,F(xiàn)ANGFZ,etal.Study on nano-cutting of brittlematerial by molecular dynamics using dynamic modeling [J]. Computational Materials Science,2020,183:109851.

        [9] WANGPC,YUJG,ZHANGQX.Nano-cuttingmechanical properties and microstructure evolution mechanism of amorphous/single crystal alloyinterface[J].ComputationalMaterialsScience,2020,184:109915.

        [10] ZHANGCY,DONG ZG,YUAN S,et al. Study on subsurface damage mechanism of gallium nitride in nano-grinding[J].Materials Science in Semiconductor Processing,2021,128:105760.

        [11]ZHAOL,ZHANGJJ,ZHANGJG,et al.Atomistic investigation of machinabilityof monocrystalline3C-SiCinelliptical vibration-assisted diamond cutting[J].Ceramics Intermational,221,47(2): 2358-266.

        [12]YANG Z C, ZHU L D, ZHANG G X, et al. Review of ultrasonic vibration-assisted machining in advanced materials [J].International Journal of Machine Tools and Manufacture,2020,156:103594.

        [13]LI C,PIAO Y C,MENG BB,et al.Phase transition and plastic deformation mechanisms induced by self-rotating grinding of GaN single crystals [J]. International Journal of Machine Tools and Manufacture, 2022,172: 103827.

        [14]SHUAI Z, HOUFU D. Effect of diamond grain shape on gallium nitride nano-grindingprocess[J].MaterialsScience in Semiconductor Processing,2024,171:108034.

        [15]LIU Q, LIAO Z R,AXINTE D. Temperature effect on the material removal mechanism of soft-brittlecrystals at nano/micron scale[J]. International Journal of Machine Tools and Manufacture,2020,159: 103620.

        [16] WANG B, KANG G Z, YU C, et al. Molecular dynamics simulations on one-way shape memory effect of nanocrystalline NiTi shape memory alloy and its cyclic degeneration[J]. International Journal of Mechanical Sciences,2021,211: 106777.

        [17]HUANG H,LIX L,MU D K, etal.Science and art ofductile grinding of brittle solids[J]. International Journal ofMachine Toolsand Manufacture, 2021,161: 103675.

        [18]ZHAO H W, SHI C L, ZHANG P, et al. Research on the effects of machining-induced subsurface damages on mono-crystaline silicon via molecular dynamics simulation [J].Applied Surface Science,2012,259: 66-71.

        [19]DAI HF,LI SB,CHEN G Y.Molecular dynamics simulation of subsurface damage mechanism during nanoscratching of single crystal silicon[J].Proceedings of the InstitutionofMechanical Engineers,PartJ: JournalofEngineeringTribology,2019,233(1):61-73.

        [20]KALKHORAN S NA,VAHDATI M,YANJW.Effect of relative tool sharpness on subsurface damage and material recovery in nanometric cutting of mono-crystaline silicon: A molecular dynamics approach [J]. Materials Science in Semiconductor Processing,2020,108:104868.

        [21]KALKHORAN S N A, VAHDATI M, YAN J W. Molecular dynamics investigation of nanometric cuting of single-crystal silicon using ablunt tool[J]. JOM,2019,71(12): 4296-4304.

        [22]ZHAO PY, GAO X F, ZHAO B, et al. Investigation on nano-griding process of GaN using molecular dynamics simulation: Nano-grinding parameterseffect[J].JournalofManufacturingProcesses,2023,102:429- 442.

        [23]XU FF,F(xiàn)ANG F Z, ZHANG X D.Side flow efect on surface generation in nano cutting [J]. Nanoscale Research Letters,2o17,12(1): 359.

        [24]ABDULKADIR L N,BELLO AA,BAWA M A, et al.Nanometric behaviour of monocrystalline silicon when singlepoint diamond turned: A molecular dynamicsand responsesurface methodology analysis [J]. Engineering Research Express,2020,2(3):035038.

        [25] WANG Y Q,TANG S,GUO J. Molecular dynamics studyon deformation behaviour of monocrystalline GaN during nano abrasive machining [J]. Applied Surface Science,2020,510: 145492.

        [26]WANG Y Q, GUO J. Efct of abrasive size on nano abrasive machining forWurtzite GaN single crystal via molecular dynamicsstudy [J]. Materials Science in Semiconductor Processing,2021,121:105439.

        [27]LIUL,EDGAR J. Substrates for gallium nitride epitaxy[J].Materials Scienceamp; Engineering R,2002,37(3): 61-127.

        [28]PLIMPTON S.Fast parallel algorithms forshort-range molecular dynamics [J]. Journal ofComputational Physics,1995,117(1): 1-19.

        [29]STUKOWsKI A.Visualization and analysis of atomistic simulation data with OVITO:The open visualization tool[J]. Modelling Simulation in Material Science Engineering,2010,18(1): 015012.

        [30]QIAN Y, DENG S Z, SHANG F L,et al. Dependence of tribological behavior of GaN crystal on loading direction: A molecular dynamics study [J].Journal of Applied Physics,2019,126(7): 075108.

        [31]VERLET L. Computer \"experiments” on classical fluids. I. thermodynamical properties oflennard-Jones molecules[J].Physical Review,1967, 159(1): 98-103.

        [32]XIANG HG, LI H T,F(xiàn)U T, et al. Formation of prismatic loops in AIN and GaNunder nanoindentation[J].Acta Materialia,2017,138:131-139.

        [33]BERE A, SERRA A. On the atomic structures, mobility and interactions of extended defects in GaN: Dislocations,tilt and twin boundaries [J]. Philosophical Magazine,2006,86(15): 2159-2192.

        [34]STILLINGER FH, WEBER TA. Computer simulation of local order in condensed phases of silicon [J].Physical Review B,1985,31(8): 5262- 5271.

        [35]TERSOFF J. Modeling solid-state chemistry: Interatomic potentials for multicomponent systems[J].Physical ReviewB,1989,39(8): 5566.

        [36]MAYO S L, OLAFSON B D, GODDARD W A. DREIDING: A generic forcefield formolecular simulations[J].The Journal of Physical Chemistry,1990,94(26): 8897-8909.

        [37] ISONO Y, TANAKA T. Thre-dimensional molecular dynamics simulation of atomic scale precision processing using apin tool [J]. JSME International Jounal Series A,1997,40(3): 211-218.

        [38]GOEL S,LUO X C,REUBEN R L. Shear instability of nanociystallie silicon carbide during nanometric cutting [J]. Applied Physics Letters, 2012,100(23): 231902.

        [39]CROSS G L W. Isolation leads to change[J]. Nature Nanotechnology, 2011, 6(8): 467-468.

        [40]SHIMIZU F,OGATA S,LI J. Theory of shear banding in metallic glasses and molecular dynamics calculations[J].Materials Transactions, 2007,48(11):2923-2927.

        [41]SARASAMAK K,KULKARNI A J, ZHOU M,et al. Stability of Wurtzite,unbuckled wurtzite,and rocksalt phases of SiC,GaN,In,ZnO, and CdSe under loading of different triaxialities[J].Physical Review B, 2008, 77(2): 024104.

        [42] QIANY,SHANGFL,WANQ,etal.Amolecular dynamics studyon

        indentation response of single crystalline wurtzite GaN[J]. Journal of Applied Physics,2018,124(11):115102.

        [43]STUKOWSKI A,BULATOV V V,ARSENLIS A.Automated identification and indexing of dislocations in crystal interfaces[J]. Modelling and Simulation in Materials Science and Engineering,2012, 20(8): 085007.

        [44]STUKOWSKI A, ALBE K. Extracting dislocations and non-dislocation crystal defects from atomistic simulation data [J].Modellingand Simulation inMaterials Science and Engineering,201o,18(8):085001.

        [45]WILLIAMSBE,GLASSJT.Characterization of diamond thin films: Diamond phase identification,surface morphology,and defect structures[J].JournalofMaterialsResearch,1989,4(2):373-384.

        [46]WANGH,DONG ZG,YUAN S,etal.Effects of tool geometry on tungsten removal behavior during nano-cutting [J].International Journal ofMechanical Sciences,2022,225:107384.

        [47]WU Y, RAO Q, QIN Z, et al. A distinctive material removal mechanism inthediamond grindingof(ooo1)-oriented singlecrystal gallium nitride and its implications in substrate manufacturing of brittle materials[J]. International Journal ofMachine Toolsand Manufacture,2024,203: 104222.

        [48]LIC,PIAOY C,MENGBB, etal.Anisotropy dependence of material removal and deformation mechanisms during nanoscratch of gallium nitride single crystals on (Oool) plane [J]. Applied Surface Science,2022, 578:152028.

        [49]AHN Y, FARRIS TN, CHANDRASEKAR S. Sliding micro indentation fracture of brittlematerials:Role of elastic stress fields[J].Mechanics of Materials,1998,29(3/4):143-152.

        [50]ZHANGL,ZHAOHW,MAZC,etal.A study on phase transformation ofmonocrystalline silicon due to ultra-precision polishing by molecular dynamicssimulation[J].AIP Advances,2012,2(4): 042116.

        [51]GAOTH,MAO SY,LIL X,et al.Effectof graphene on the surface nanomechanical behavior and subsurface layer of GaN damage during nanogrinding using molecular dynamics simulation [J].Micro and Nanostructures,2023,184:207694.

        [52]BERENDD,BENJAMINB,TOBIASP,etal.Modeling of stresses at thecuttingwedgeinthe interruptedcutforthedesignof thecuttingedge microgeometry[J].ProcediaCIRP,2023,117:299-304.

        [53]TIANCJ,WENGJ,ZHUANGKJ, etal. The role of tool edge geometry onmaterialremoval and surfaceintegrityin cutting metal matrix composites[J].Journal ofManufacturingProcesses,2025,137:135-149.

        作者簡介

        通信作者:王永強(qiáng),男,1979年生,博士,副教授,碩士生導(dǎo)師。主要研究方向:半導(dǎo)體材料超精密磨拋加工、納米加工、分子動(dòng)力學(xué)模擬。

        E-mail:rancher_wong@126.com

        通信作者:尹韶輝,男,1967年生,博士,教授,博士研究生導(dǎo)師。主要研究方向:納米制造、超精密加工。

        E-mail:yinshaohui@hnu.edu.cn

        (編輯:趙興昊)

        Effect of tool angle in nanocutting of single crystal GaN using diamond cutter

        WANG Yongqiang12, XIA Hao1, HU Zhihang2, ZHANG Shuaiyang1, YIN Shaohui3

        (1.School ofMechanical Engineering, UniversityofSouth China,Hengyang 421ool,Hunan,China ) (2. Collge of Intelligent Manufacturing and Mechanical Engineering,Hunan Institute of Technology,Hengyang 421002, Hunan, China)

        (3. College ofMechanical and Vehicle Engineering,Hunan University, Changsha 41oo82,China)

        AbstractObjectives:Single-crystal galiumnitride(GaN)isapivotalsemiconductormaterial widelyutilized inhighpower,high-frequencyelectronicdevices,ndotoelectronicapplicatios.However,itsinherenthardnessandrtleness pose significant chalenges in achieving damage-free surfaces during ultra-precision machining. Understanding the fundamentaldeformationmechanisms inducedbycuting,particularlythecriticalroleoftoolgeometry,isessential for advancing GaN machining technology.This study aims to comprehensively elucidate the influence mechanism of diamond toolangles,specifically therakeangle and flank angle,on thecutting-induced deformation behavior and subsurface damage formation in single-crystal GaN at the nanoscale.The primaryobjective is to establish clear relationships between toolangles,material removal mechanisms,defect generation (dislocations,phasetransformation,amorphization),and final surface integrity,thereby providing foundational knowledge for optimizing ultra-precision machining processes.Methods:To achieve these objectives,a rigorous multi-scale investigation is conducted,combining molecular dynamics simulation with experimental verification.Large-scale MD simulations are meticulously performed to model tne nanoscaie cuting process ol single-crystal GaN using a diamond tool. Ine simulations employed nignly validates interatomic potentials capable ofcapturing thecomplexbonding and deformation behaviorof GaN.The model incorporates realistic crystal orientations and environmental conditions.The influenceof toolanglesis systematically explored by simulating cuting processes with a wide range of rake angles (-18°,-12°,-6°,6°,12°,18°) and flank angles 1 (-18° , -12° -6° , 6° , 12° , 18° ). Post-simulation analysis utilizes sophisticated algorithms to dissect the deformation mechanisms: employed to identify,characterize,and quantifythe evolution of dislocations,including their types (e.g., perfect dislocations,partial dislocations),Burgersvectors,anddensitieswithin the workpiece.Used to distinguish between the pristine wurtzite GaN structure, transformed phases (e.g., posible local zinc-blende or other metastable structures under high stres),and amorphous regions generated during cuting. Local atomic stress (Von Mises or equivalent stress)and strain distributionsare calculatedandvisualized tocorelate mechanical loading with observed deformationand damage.Atomic kinetic energy is tracked to map the temperature evolution within the cuting Zone and subsurface layers.To corroborate the simulation findings,controlled nanocutting experiments are conductedon singlecrystal GaN substrates. Crucially,two distinct diamond abrasive grains with differing morphologies are employed as cutting tools: rake angle of -70° and a flank angle of 10° ; rake angle of -43° and a flank angle of 20° .This direct comparison allows for the experimental assessment of the impact of varying rake and flank angles on surface morphology, chip formation behavior, and subsurface damage extent, using techniques such as transmission electron microscopy (TEM)and optical microscopy for cross-sectional analysis.Results: The integrated simulation and experimental approach yields profound insights into therole of tool angles: Increasing the positiverake angle or reducing the magnitude of a negative rake angle is found to significantly enhance the shear-dominated material removal mechanism.This promotes more eficient and continuous chip formation while efectively suppressing undesirable lateral atomic flow and material pile-upat the groove sides,leading to improved groove definition. Conversely,increasing themagnitude of the negative rake angle dramatically exacerbates subsurface damage. The highly compressd wedge beneath the tool tip induces severe plastic deformation deeper into the substrate. Comprehensive analysis using DXA,and stress-strain fields reveals the fundamental mechanisms triggered by large negative rake and flank angles: These tool geometries induce substantiallyhigher compresive and shear stresses within the primary deformation zone directlyaheadof the tool and the subsurface region. Consequently,localized temperatures rise significantly due to intense plastic work and friction. The extreme mechanical and thermal loading promotes prolific nucleation of dislocations.These dislocations readily propagate and interact,forming complex networks.The high von Mises stress and shear stressbeneath the tool facilitate solid-state phase transformations from the stable wurtzite structure to other phases.Furthermore,the intense deformation and temperature lead to extensive amorphization (loss of long-range crystaline order) within the subsurface layer. Employing tools with positive rake angles and adequate positive flank angles demonstrably aleviates subsurface damage.The cuting mechanics shift towards eficient shearing at the primary shear zone, minimizing the crushing effect belowthe tol.This promotes cleaner material removal,reduces dislocation densityand amorphization depth,and consequently facilitates the generation of high-quality surfaces with minimal subsurface damage.Nanocuting experiments using the two specific diamond grains provids clear validation. more negative rake consistently produced scratches with significantly greater pile-up,more pronounced lateral cracks,and deeper subsurface damage zones compared to less negative rake and larger flank angle, as evidencedby TEM characterization. This directly supports the simulation predictions regarding the detrimental effects of highly negative rake angles. Conclusions: This comprehensive study,synergizing high-fidelity molecular dynamics simulations with targeted experimental validation using distinct tool geometries,has significantly deepened the understandingofthe nanoscale deformation and damage mechanisms insingle-crystal GaN during diamond cuting. Itunequivocally establishes that: Toolrake angle is a paramount factor governing the dominant material removal mode, chip formation eficiency,and the severity of subsurface damage.Large negative rake angles,while sometimes necessary for tooledge strength,induceextreme stressand temperatureconditions that promote massive dislocationactivity,phase transformation,and amorphization,leading todeepsubsurfacedamage.Positive rake angles and suficient positive flank angles promote shear-dominated cutting,suppress deleterious lateral flow and deepdamage,and are highly conducive to achieving superior surface integrity with minimal subsurface defects.The mechanistic insights gained,particularlythe detailed characterization of defect evolution (dislocations,phasechanges, amorphous layers)linked directly to specific tool angles,provide crucial theoretical guidanceandarobust scientific foundation for therationaldesign andoptimization ofultra-precision machining (e.g.,diamond turning,grinding,polishing)processes forsingle-crystal GaN.This knowledgeis vital for enhancing the performance andreliabiltyof next-generation GaN-based devices.

        Key wordssingle crystal GaN; diamond cutter; nano-cuting; molecular dynamics;tool angle;deformation

        久久人人爽av亚洲精品| 一区二区三区视频在线免费观看 | 日韩免费一区二区三区在线| 亚洲国产色图在线视频| 91偷拍与自偷拍亚洲精品86| 亚洲精品一品区二品区三品区| 亚洲av成人精品日韩一区| 韩国无码精品人妻一区二 | 免費一级欧美精品| 亚洲第一页视频在线观看 | 免费精品美女久久久久久久久久| 女同重口味一区二区在线| 中文字幕一区二区三区四区五区| 一本色道久久99一综合| 韩国一级成a人片在线观看| 蜜桃视频一区二区三区| 天堂8在线新版官网| 免费无码午夜福利片69| 中文精品久久久久中文| 国产护士一区二区三区| 18禁黄网站禁片免费观看女女| 先锋影音av资源我色资源| 一区二区三区中文字幕有码 | 69精品丰满人妻无码视频a片| 成年女人片免费视频播放A | 亚洲日韩国产精品第一页一区| 久久99精品久久久久久国产人妖| 亚洲中文字幕乱码一二三| 亚洲国产成人片在线观看| 香蕉视频一级| 久久老熟女乱色一区二区| 亚洲国产精品久久久久久无码| 秋霞鲁丝片av无码| 日韩Va亚洲va欧美Ⅴa久久| 亚洲香蕉av一区二区三区| 伊人久久精品久久亚洲一区 | 日本人妻伦理在线播放| 免费无码一区二区三区蜜桃大 | 亚洲精品美女久久久久网站| 精品高清免费国产在线| 成人毛片一区二区|