關(guān)鍵詞拉薩地塊;申扎地區(qū);晚古生代冰期;巖相;沉積環(huán)境;冰川演化第一作者簡(jiǎn)介,男,1997年出生,碩士研究生,冰川沉積學(xué),E-mail:1124107240@qq.com通信作者許歡,男,副教授,碩士生導(dǎo)師,E-mail:xhO816@ynu.edu.cn
中圖分類(lèi)號(hào)P512.2 文獻(xiàn)標(biāo)志碼A DOI:10.14027/j.issn.1000-0550.2023.084 CSTR: 32268.14/j.cjxb.62-1038.2023.084
0 引言
晚古生代冰期是顯生宙以來(lái)持續(xù)時(shí)間最長(zhǎng)、影響范圍最廣、地質(zhì)記錄最豐富的大冰期],完整記錄了地球由冰室氣候向溫室氣候的轉(zhuǎn)變過(guò)程,被認(rèn)為是可以與現(xiàn)今人類(lèi)生存的第四紀(jì)冰室氣候進(jìn)行對(duì)比的相似型[8-9]
晚古生代冰期主要發(fā)育在南半球?qū)呒{大陸上,也被稱(chēng)為岡瓦納冰期,時(shí)代介于晚泥盆世一晚二疊世。前人研究將晚古生代冰期分為三個(gè)時(shí)期,包括晚泥盆世一早石炭世、中石炭世和晚石炭世一早二疊世[0-1]。其中,前兩個(gè)時(shí)期的冰期記錄主要分布在南美洲、非洲和澳大利亞?wèn)|部等地,以持續(xù)時(shí)間較短、分布范圍有限的山岳型冰川為特征,受地勢(shì)和雪線控制。相比之下,最后一個(gè)時(shí)段的冰期持續(xù)時(shí)間最長(zhǎng),廣泛分布于岡瓦納大陸及親岡瓦納大陸地塊群之上,陸地和海洋冰川均較為發(fā)育[2,7,0,12-21]。雖然許多學(xué)者對(duì)晚古生代冰期做了大量研究并取得了重要成果,但目前對(duì)于諸如冰期的起止時(shí)間]6,,2-23])冰川的時(shí)空遷移過(guò)程[10-1,5,23]、冰期的觸發(fā)機(jī)制[24-2]以及冰期的氣候演變歷史[7,2130-31]等關(guān)鍵科學(xué)問(wèn)題還存在許多爭(zhēng)議和不確定性。
拉薩地體起源于岡瓦納大陸,在晚古生代時(shí)期位于岡瓦納大陸東北緣[2-34]。前人已對(duì)拉薩地塊晚古生代冰期沉積開(kāi)展了部分研究,并取得了一定的認(rèn)識(shí)。例如,趙兵等[35基于改則地區(qū)晚石炭世拉嘎組中普遍存在的大小不等、分布不均的冰磧礫石和冷水型的腕足類(lèi)生物化石提出拉嘎組為一套冷水型的冰海陸棚相沉積。張予杰等對(duì)西藏申扎地區(qū)石炭系一二疊系進(jìn)行了詳細(xì)的研究,認(rèn)為拉嘎組為近岸冰海相沉積,并劃分出分支水道與間灣、水下冰水扇、冰磧物與冰筏和濱岸內(nèi)陸棚六類(lèi)沉積環(huán)境。季躍通過(guò)對(duì)西藏羅倉(cāng)地區(qū)拉嘎組的系統(tǒng)調(diào)查和分析,提出羅倉(cāng)地區(qū)拉嘎組為海相沉積,并劃分出:濱岸相和冰海陸棚相。Wangetal.38通過(guò)對(duì)西藏巴若地區(qū)拉嘎?tīng)柦M碎屑巖進(jìn)行野外地質(zhì)調(diào)查、巖石學(xué)以及化石研究,在地層中發(fā)現(xiàn)普遍存在冰海相冰磷巖,認(rèn)為拉嘎組沉積于晚石炭世一早二疊世岡瓦納北緣的淺海環(huán)境中,初步推測(cè)拉薩地塊為晚石炭世一早二疊世冰期作用下的淺海盆地。顯然,與岡瓦納大陸其他地區(qū)的晚古生代冰期研究相比,拉薩地塊的研究程度明顯不足,尤其是冰期沉積旋回和氣候變化研究,這在很大程度上阻礙了我們開(kāi)展全球晚古生代冰期古地理、古環(huán)境和古氣候等方面的對(duì)比研究。
基于此,本文選取拉薩地塊中部申扎地區(qū)晚古生代冰期沉積為研究對(duì)象,在大比例尺實(shí)測(cè)剖面的基礎(chǔ)上,開(kāi)展了詳細(xì)的巖相和沉積相分析,恢復(fù)了冰川沉積體系和環(huán)境,探討了拉薩地塊晚古生代冰期沉積演化歷史,為進(jìn)一步揭示冰期古地理、古環(huán)境變遷規(guī)律、開(kāi)展全球?qū)Ρ妊芯刻峁┲巍?/p>
1地質(zhì)背景
拉薩地塊位于青藏高原南部,北接羌塘地塊,南靠喜馬拉雅地塊(圖1)。晚古生代時(shí)期,拉薩地塊位于岡瓦納大陸東北緣。隨著特提斯洋的演化,拉薩地塊逐漸從岡瓦納大陸裂離并向北運(yùn)動(dòng),在早白堊世沿著班公湖一怒江縫合帶與羌塘地塊碰撞,在古近紀(jì)早期與特提斯喜馬拉雅地塊在雅魯藏布江縫合帶拼合[323,4142]。目前,對(duì)于拉薩地塊晚古生代的具體古地理位置仍然存在較大爭(zhēng)議,主要存在親澳大利亞[3.43]親印度[444介于澳大利亞與印度之間[7等多種觀點(diǎn)。
拉薩地塊晚古生代沉積記錄較為完整,由下向上依次發(fā)育石炭系永珠組、上石炭統(tǒng)一下二疊統(tǒng)拉嘎組、二疊系昂杰組、下拉組和木糾錯(cuò)組(圖1)。其中,晚古生代冰期沉積主要發(fā)育在拉嘎組中。
拉嘎組在拉薩地塊分布廣泛,且厚度較為穩(wěn)定,與下伏永珠組和上覆昂杰組均為整合接觸。其巖性主要為灰白色、灰黃色或灰綠色石英砂巖、黑色或深灰綠色雜砂巖、粉砂巖和泥巖等,雜砂巖中常見(jiàn)漂礫。前人基于拉嘎組巖石組合、冰筏墜石等特征,認(rèn)為拉嘎組是岡瓦納大陸晚古生代冰期時(shí)期形成的冰海沉積[3648-49]。此外,拉嘎組中發(fā)育大量冷水生物群化石,這為拉嘎組的形成時(shí)代提供了限定。例如,李曉勇等5認(rèn)為拉嘎組的腕足與澳大利亞西部等地區(qū)的Stepanouiella動(dòng)物群相似,時(shí)代為早二疊世的薩克馬爾期一亞丁斯克期。趙兵等35首次在改則昂拉仁錯(cuò)地區(qū)拉嘎組內(nèi)建立了2個(gè)腕足類(lèi)生物組合帶,即晚石炭世早期Choristites xainzaensis-Eomarginifera組合帶和早二疊世Neospirifer kubeiensis-Fusispiriferplicatus-Stepanoviella(Bandoproductus)組合帶,后者與薩克馬爾期一亞丁斯克期相當(dāng)。張予杰等在申扎地區(qū)拉嘎組中發(fā)現(xiàn)了以裸子植物花粉為主的孢粉化石,并建立了Hamiapolle-nites-Striatoabieites組合,與新疆北部早二疊世石人子溝組的孢粉組合較為相近。因此,拉嘎組形成時(shí)代為晚石炭世一早二疊世。
2 研究方法
選取拉薩地塊中部那曲地區(qū)申扎縣買(mǎi)巴鄉(xiāng)魯久村一帶為研究區(qū),通過(guò)廣泛的文獻(xiàn)調(diào)研和野外調(diào)查,查明了研究區(qū)石炭紀(jì)一二疊紀(jì)地層的時(shí)空分布和序列特征,尤其是拉嘎組中發(fā)育的冰川沉積。根據(jù)地層出露情況,對(duì)四條剖面開(kāi)展了1:200比例尺剖面實(shí)測(cè),包括永珠組上部、拉嘎組下部和上部,以及昂杰組下部,總厚度約為 393m 。其中1號(hào)剖面位于永珠組頂部一拉嘎組底部,2號(hào)剖面位于拉嘎組下部,3號(hào)剖面位于拉嘎組上部,4號(hào)剖面位于拉嘎組一昂杰組過(guò)渡層段(圖2)。實(shí)測(cè)剖面描述內(nèi)容包括巖石顏色、層厚、巖性、結(jié)構(gòu)、沉積構(gòu)造、生物化石、變形特征、側(cè)向延伸等。
在野外露頭觀察和剖面實(shí)測(cè)工作的基礎(chǔ)上,對(duì)冰期發(fā)育層位開(kāi)展沉積巖相及巖相組合劃分。運(yùn)用沉積構(gòu)型分析方法,查明沉積層在橫向及縱向上的變化,判別沉積環(huán)境,恢復(fù)沉積體系(主要為冰川沉積體系)。其中巖相代碼主要依據(jù)Miall提出的10類(lèi)巖相,并在此基礎(chǔ)上參考了Eyles、Zand-Moghadam、Lee等人的巖相劃分方案[53-59],部分巖相代碼由本文獨(dú)自提出。
3 沉積環(huán)境分析
3.1 巖相分析
通過(guò)對(duì)研究區(qū)拉嘎組實(shí)測(cè)剖面冰期發(fā)育層位的沉積學(xué)分析,共劃分出了20種主要巖相類(lèi)型(表1)。
(1)顆粒支撐塊狀礫巖相( :主要發(fā)育于拉嘎組上部,巖相厚 1~3m ,由深灰色、灰黑色塊狀礫巖組成,巖相側(cè)向上斷斷續(xù)續(xù)出露,延伸大于 30m ,呈楔狀或板狀體產(chǎn)出,通常與砂巖、冰巖有突變或漸變的界面,底部常見(jiàn)沖刷面或侵蝕界面。這種巖相通常是由于細(xì)粒物質(zhì)被水流帶走,只剩下較粗的顆粒堆積,反映了濕潤(rùn)型沖積扇根部一中部的高密度泥石流沉積[54.58.60],,或者是近源河流下快速堆積作用形成的河床底部滯留沉積[52-54,61-63]
(2)楔狀交錯(cuò)層理礫巖相(Gw):主要發(fā)育于拉嘎組上部,巖相厚 0.2~1m ,由深灰色、灰黑色中一厚層、塊狀礫巖組成,礫巖可見(jiàn)楔狀交錯(cuò)層理,巖相側(cè)向延伸相對(duì)較短,最短僅 2m 。該巖相呈楔狀或板狀產(chǎn)出,與楔狀交錯(cuò)層理砂巖或塊狀礫巖漸變過(guò)渡,接觸面相對(duì)平直或略有起伏。這種巖相通常指示辮狀河河道和心灘礫巖沉積環(huán)境或者曲流河河道和邊灘沉積環(huán)境[54,62.64],反映了辨狀河道沖刷充填沉積[52-53,57,65]
(3)塊狀砂巖相 ?Sm? :發(fā)育于拉嘎組上部,巖相厚度約 1m ,巖性主要為灰黃色、灰黑色塊狀中一粗砂巖,部分砂巖含礫較多,巖相側(cè)向延伸普遍小于20m 。該巖相多與泥巖、交錯(cuò)層理砂巖、冰磧巖相對(duì)平直接觸,接觸面略微起伏,拉嘎組頂部的塊狀砂巖則呈楔狀或透鏡狀?yuàn)A于礫巖之中。該巖相常常反映高流態(tài)下砂質(zhì)沉積物快速搬運(yùn)、卸載、堆積的過(guò)程[5,5,63.6.68],或者生物對(duì)原生層理的完全破壞。
(4)槽狀交錯(cuò)層理砂巖相(St):發(fā)育于拉嘎組下部和上部,巖相厚度變化較大,約 50cm~7m 范圍內(nèi),巖性主要為黃色、灰黑色中層、塊狀中一粗砂巖,部分槽狀交錯(cuò)層理砂巖底部含礫,可見(jiàn)槽形沖刷面。小型槽狀交錯(cuò)層理砂巖相側(cè)向延伸較短,長(zhǎng)度約1m ,大一中型槽狀交錯(cuò)層理砂巖相延伸較長(zhǎng),最大可達(dá) 30m 。該巖相通常與交錯(cuò)層理砂巖或冰磧巖的接觸面起伏不平或少部分呈楔狀或透鏡狀?yuàn)A于砂巖之中。槽狀交錯(cuò)層理砂巖通常是由于不同規(guī)模的不對(duì)稱(chēng)新月形或舌形床沙形體遷移或者河道渦流反復(fù)運(yùn)動(dòng)造成的[55.6.69-72],反映了低流態(tài)下?tīng)恳鞒练e的特征,為辮狀河水下沙丘下切、遷移、充填的產(chǎn)物[52-53,65,68]
(5)平行層理砂巖相 (Sp) :僅在拉嘎組上部可見(jiàn),巖相厚 0.5~1m ,巖性為黃色中厚層細(xì)砂巖,巖相在地表出露較差,目測(cè)側(cè)向延伸最大可達(dá) 25m ,呈楔狀或板狀產(chǎn)出,與上下部的交錯(cuò)層理砂巖或泥巖的接觸面相對(duì)平直。該巖相反映了河道高流態(tài)下水淺流急的平坦床沙環(huán)境[52.60.63.72],屬于辮狀河高流態(tài)面狀層流沉積[65-66]
(6)波狀交錯(cuò)層理砂巖相 (Sr) :發(fā)育于拉嘎組上部和下部,巖相厚 0.5~2.0m ,主要由黃色、灰黑色中層細(xì)一中砂巖組成,呈板狀或楔狀產(chǎn)出,側(cè)向延伸最大可達(dá) 20m 。該巖相與其他交錯(cuò)層理砂巖、礫巖連續(xù)變化,或與泥巖有突變界面,接觸面相對(duì)平直,偶有起伏,呈透鏡狀產(chǎn)出則夾于中一厚層交錯(cuò)層理砂巖之中。此巖相反映了低流態(tài)下水中的動(dòng)蕩環(huán)境[73],主要由單向水流造成浪成沙波遷移形成[52-5,66]
(7)含墜石波狀交錯(cuò)層理砂巖相( Sr(d)) :發(fā)育于拉嘎組上部,巖相厚約 0.5~2.0m ,巖性為灰黃色中層細(xì)砂巖,砂巖中夾墜石,墜石巖性主要為砂巖,墜石大小不一,其下部紋層翹曲,上部紋層繞過(guò)墜石生長(zhǎng)。該巖相側(cè)向出露較好,延伸長(zhǎng)度大于 30m ,其上部被泥巖覆蓋,下部為楔狀交錯(cuò)層理砂巖或塊狀冰磧巖,接觸面略微起伏。這種巖相反映了冰川消融,冰筏所包含的碎屑顆粒墜入水下正在遷移的沙波之中。
(8)軟沉積變形砂巖相(Sd):發(fā)育于拉嘎組上部,巖相厚 1~2m ,巖性主要為灰黃色、深灰色中層細(xì)一中砂巖,發(fā)育以褶皺變形為主的軟沉積變形構(gòu)造,側(cè)向延伸較短,長(zhǎng) 1~2m 。該巖相常與楔狀、波狀、槽狀交錯(cuò)層理砂巖伴生,界面上連續(xù)過(guò)渡。這類(lèi)巖相通常指示了沉積物在不穩(wěn)定情況下發(fā)生變形,多是在快速堆積時(shí)由于流水或垮塌作用造成的[53],常出現(xiàn)
表1申扎地區(qū)實(shí)測(cè)剖面巖相代碼表
在河流堤岸、三角洲前緣、大陸斜坡等環(huán)境中。
(9)低角度交錯(cuò)層理砂巖相(SI):發(fā)育于拉嘎組上部,巖相厚度介于 0.5~1.0m ,主要由灰黃色中層細(xì)砂巖組成,側(cè)向延伸有限,最大延伸長(zhǎng)度約 5m ,該巖相常呈透鏡狀?yuàn)A于交錯(cuò)層理砂巖之間,底部可見(jiàn)沖刷面。這類(lèi)巖相反映了水下低流態(tài)環(huán)境和高流態(tài)環(huán)境之間的過(guò)渡區(qū)中沙浪的遷移[52,54,66,69,72]
(10)楔狀交錯(cuò)層理砂巖相(Sw):發(fā)育于拉嘎組下部和上部。巖相厚 1.0~2.5m ,主要由黃色、深灰色中一厚層、塊狀中一粗砂巖組成,在部分層位側(cè)向出露情況較差,延伸最短僅 3m 。該巖相在地層中與泥巖、冰磧巖、砂巖、礫巖接觸,常呈楔狀或板狀與交錯(cuò)層理砂巖或礫巖連續(xù)過(guò)渡,或呈透鏡狀?yuàn)A于砂礫巖之中,與泥巖或冰磧巖則存在突變界面。這類(lèi)巖相反映了異向運(yùn)動(dòng)的水動(dòng)力條件或單向水流造成了沙壩的遷移,通常指示河流心灘或邊灘中低流態(tài)條件下充足碎屑物質(zhì)的側(cè)向加積,或者床沙底形向下游的前積[56.67.,72]
(11)沙紋爬升層理砂巖相(Scr):發(fā)育于拉嘎組頂部,巖相厚度約 2m ,巖性為深灰色塊狀細(xì)砂巖,側(cè)向出露較差,延伸僅見(jiàn)約 2m ,該巖相與上部塊狀冰磧巖和下部的波狀交錯(cuò)層理細(xì)砂巖接觸面較為平直。這類(lèi)巖相是由沙紋向前遷移同時(shí)還向上爬疊加積而成,反映了低流態(tài)條件、沉積物供應(yīng)較足、沉積速率較快的環(huán)境[72.74]
(12)水平層理粉砂巖、泥巖相(FI):大量發(fā)育于拉嘎組上部和下部,巖相厚度變化較大,最厚可達(dá)20m ,最薄不足 1m ,由灰黑色、灰綠色薄一厚層泥巖、粉砂巖組成,泥巖呈紋層狀,粉砂巖多發(fā)育水平層理。巖相側(cè)向出露較好,延伸可超過(guò) 100m ,與砂巖、礫巖、冰磧巖、灰?guī)r均有接觸,接觸面形態(tài)視其他巖石形態(tài)而定,既存在平直,也存在起伏不平。這類(lèi)巖相為靜水條件下的懸浮負(fù)載[60.66.68],反映了水動(dòng)力不足、沉積速率緩慢、水體不受外界擾動(dòng)的環(huán)境,水平層理和近水平的紋層指示了低流態(tài)條件下床沙的遷徙[52.68]
(13)含墜石粉砂巖、泥巖相(FId)):主要發(fā)育于拉嘎組下部,上部?jī)H零星出露,巖相厚度最大近15m ,最薄僅 2m ,由灰黑色、灰綠色薄層泥巖、薄一中層粉砂巖組成,泥巖、粉砂巖中夾有墜石,在不同的層位甚至同一層位中,墜石常常大小各異、分布不均、數(shù)量不一。墜石巖性主要為砂巖,其次為灰?guī)r,其下部紋層翹曲,上部紋層繞過(guò)墜石生長(zhǎng),具有典型的冰川墜石特征。巖相側(cè)向出露一般,最大延伸可達(dá) 50m ,被泥巖相包裹,與其連續(xù)過(guò)渡。這類(lèi)巖相反映了冰川在消融時(shí),脫離的浮冰所包含的冰筏碎屑顆粒在遠(yuǎn)端墜人下方較安靜的深水環(huán)境中[53]。
(14)塊狀冰磷巖相( Dmm :大量發(fā)育于拉嘎組上部,巖相厚度變化較大,約 1~10m 范圍內(nèi),由灰綠色、灰黃色、灰黑色塊狀冰巖組成,部分層位側(cè)向出露較好,延伸最長(zhǎng)可達(dá) 50m ,多與泥巖、砂礫巖接觸,接觸面略微起伏。冰巖中廣泛分布的零散、未分選的碎屑具有剪切結(jié)構(gòu)和弱至中等取向的組構(gòu),表明冰下沉積物在冰川侵蝕和搬運(yùn)過(guò)程中發(fā)生了變形和再沉積,該巖相指示了冰川底部的碎屑快速堆積而形成變形[53,77]
(15)塊狀含巨型巖塊冰磧巖相 (Dmm(r) ):發(fā)育于拉嘎組下部,巖相厚度約為 20m ,由灰綠色塊狀冰磷巖組成。巖層中含有較多的巨型巖塊,巖塊表面可見(jiàn)冰川擦痕。巖塊分選較差,最大的巖塊長(zhǎng) 4.35m 、寬 19.42m 高 4.54m ,最小的巖塊長(zhǎng) 0.80m, 寬2.90m 高 1.35m ,巖塊外形呈次圓球狀,整體呈疊瓦狀排列,分布較廣泛,側(cè)向延伸近 1km 。巖塊巖性主要為砂巖,僅極少數(shù)為花崗巖和灰?guī)r,表面可見(jiàn)擦痕和雁列張節(jié)理。巖塊出露于地表,嵌入在灰綠色泥巖、粉砂巖基質(zhì)中,由于受冰川推覆應(yīng)力而引起下部粉砂、泥巖基質(zhì)發(fā)生褶皺變形[76.78]。該巖相整體與泥巖、含泥灰?guī)r結(jié)核的泥巖呈連續(xù)過(guò)渡。這類(lèi)巖相反映了冰川攜帶巨型巖塊運(yùn)動(dòng)引起冰底的構(gòu)造變形,同時(shí)巖塊與冰底碎屑一起快速堆積形成構(gòu)造。
(16)塊狀變形冰磧巖相( Dmm(c) ):僅在拉嘎組上部有一處可見(jiàn),巖相厚度約 1m ,由灰綠色塊狀冰磧巖組成,側(cè)向延伸不足 1m ,冰碩巖中可見(jiàn)軟沉積變形構(gòu)造,與塊狀冰磧巖伴生,上下部為泥巖。變形構(gòu)造是冰下沉積物發(fā)生黏性變形的結(jié)果,該巖相反映了冰底碎屑在快速堆積時(shí)受到融化水流的牽引改造作用,屬于冰底環(huán)境下的構(gòu)造。
(17)塊狀含砂巖塊冰磧巖相( Dmm(s) :在拉嘎組上部和下部各有一處可見(jiàn),巖相厚度介于 5~7m ,由灰綠色塊狀冰磷巖組成,冰磧巖中含有分選較差、無(wú)規(guī)則排列的砂巖塊,巖塊呈次圓球狀,表面多風(fēng)化破碎,最小砂巖塊長(zhǎng)軸約 0.7m ,最大砂巖塊長(zhǎng)軸約3m ,側(cè)向出露一般,延伸可達(dá) 10m ,與砂巖、泥巖或粉砂巖的接觸面略微起伏。該巖相反映了受冰川作用較強(qiáng)的環(huán)境,指示了冰底巖石受冰川改造發(fā)生變形破碎和冰底碎屑經(jīng)短距離搬運(yùn),且未經(jīng)持續(xù)研磨和壓實(shí)而快速堆積的變形]。
(18)平行層狀、弱層狀冰巖相(Dms):發(fā)育于拉嘎組下部和上部,巖相厚 7~15m ,由灰綠色厚層冰磧巖組成,側(cè)向分布廣泛,延伸距離超過(guò) 100m ,與交錯(cuò)層理砂巖、泥巖、粉砂巖接觸,接觸面起伏不平。該巖相反映了冰川近岸水下卸載冰底碎屑,碎屑流在冰川接地區(qū)堆積成巖,或者冰川融水加強(qiáng),導(dǎo)致冰底邊緣的塊狀冰磧物在堆積過(guò)程受流水影響而形成成層的變形[53.59.77]。
(19)再沉積平行層狀、弱層狀冰磧巖相(Dms(r)):發(fā)育于拉嘎組下部,巖相厚度介于 8~15m ,主要由灰綠色中一厚層冰巖組成,側(cè)向延伸距離約100m ,多與交錯(cuò)層理砂巖、泥巖接觸,接觸面輕微起伏。冰磷巖中包含有砂礫巖和極少的花崗巖冰筏碎屑,碎屑多呈次圓球狀,分布不均、大小不一,其下部紋層翹曲,上部紋層繞過(guò)墜石生長(zhǎng),具有典型的冰筏碎屑?jí)嬋胨卤镏械奶攸c(diǎn)[3]。此外,冰巖中還可見(jiàn)高含量的較大碎屑巖塊,巖塊成分以石英砂巖為主,少部分為花崗巖。該巖相反映了在接地區(qū)斜坡上,冰底前緣冰磧物與冰川融水沉積物或滑塌沉積物疊合,同時(shí)冰川釋放碎屑進(jìn)入水體中受流水影響成層的冰磧物這一現(xiàn)象[。
(20)平行層狀、弱層狀變形冰磷巖相(Dms(c)):發(fā)育于拉嘎組上部,巖相厚度約為 10m ,由灰黑色厚層冰磧巖組成,側(cè)向分布廣泛,延伸距離超過(guò)50m 。冰磧巖中含有較大的巖塊,成分以石英砂巖為主,少部分為花崗巖,基質(zhì)中顯示受水流活動(dòng)改造的證據(jù),如波狀交錯(cuò)層理、軟沉積變形。與塊狀冰碩巖、交錯(cuò)層理砂巖的接觸面略有起伏。該巖相反映了塊狀冰磧物在快速堆積過(guò)程中不穩(wěn)定,被流水牽引力二次改造或發(fā)生了垮塌變形[53.7,屬于冰底環(huán)境下的構(gòu)造。
3.2 巖相組合分析
根據(jù)巖相類(lèi)型及其空間相互關(guān)系,結(jié)合冰期層位特征,本研究共劃分出16類(lèi)典型巖相組合,識(shí)別出5類(lèi)沉積體系(圖3)。綜合分析巖相和巖相組合特征,本文認(rèn)為拉嘎組的沉積物組合為正常的濱淺海碎屑巖和受近岸一陸棚冰海環(huán)境影響的冰水沉積,與冰期有關(guān)的沉積環(huán)境主要有淺海陸棚、基線扇、冰底、冰河、冰湖、冰水扇這六類(lèi)(圖4,5),存在多次海平面波動(dòng),六類(lèi)沉積環(huán)境詳細(xì)描述如下。
淺海陸棚:位于拉嘎組下部,橫向分布十分廣泛,雖然在多個(gè)層位可見(jiàn),但與冰期相關(guān)的沉積相僅有一處,厚度約為 7m 。過(guò)渡帶的冰筏碎屑沉積以含墜石灰綠色薄一中層粉砂巖為特征,墜石巖性為砂巖[80-81],由于沒(méi)有遭受近岸濱海波浪作用及水道牽引流的影響,泥巖、粉砂巖沉積構(gòu)造以水平層理為特征,但墜石在野外不易識(shí)別。
基線扇:位于拉嘎組底部,橫向分布十分廣泛,沉積相厚度約為 15m 。主要由灰綠色薄層泥巖、薄一中層粉砂巖、中層細(xì)砂巖組成,泥巖呈紋層狀且發(fā)育冰筏墜石,墜石巖性主要為砂巖和灰?guī)r,細(xì)砂巖可見(jiàn)波狀交錯(cuò)層理。楔狀的細(xì)砂巖體是冰川融水?dāng)y帶砂礫質(zhì)碎屑從冰下隧道中流出,經(jīng)過(guò)水下斜坡時(shí)沉積形成的[2,代表著基線扇近端的沉積。含冰筏墜石的泥巖、粉砂巖屬于基線扇體近端到遠(yuǎn)端的過(guò)渡區(qū)(圖6a),這些冰筏碎屑來(lái)自富含沉積物的溫基潮水冰川,而不含冰筏墜石的泥巖屬于基線扇遠(yuǎn)端,表明冰川崩解的浮冰在到達(dá)基線扇體外圍時(shí)就已完全消融[82]。
冰底:位于拉嘎組下部和上部,沉積相度變化較大,約在 2~30m 范圍內(nèi)。主要由灰綠色、灰黃色、灰黑色塊狀或平行層狀冰磧巖組成。拉嘎組底部的灰綠色塊狀冰巖中含有多個(gè)巨型巖塊,這些巨型巖塊呈疊瓦排列嵌入灰綠色泥巖、粉砂巖基質(zhì)中(圖6b),并引起基質(zhì)褶皺變形;疊瓦狀排列的現(xiàn)象顯然是由冰底推覆作用造成的,推進(jìn)應(yīng)力還使得巖塊下部的粉砂巖、泥巖層發(fā)生了褶皺變形[76.78(圖6c),這是典型的冰底構(gòu)造變形現(xiàn)象,最后這些巨型巖塊隨同冰底碎屑堆積并與下部基質(zhì)一起成巖。其他塊狀冰磧巖主要分布在拉嘎組上部(圖6d),基質(zhì)中可見(jiàn)漂礫或巖塊,其巖性主要為砂巖,部分冰巖基質(zhì)發(fā)育同沉積變形,這是垮塌變形或者冰底內(nèi)部融水流改造的結(jié)果,這一類(lèi)廣泛分布沉積較厚的塊狀冰碩巖常被解釋為冰川底部的沉積[59.80],用來(lái)指示冰川作用加強(qiáng)和冰進(jìn)的過(guò)程。常與泥巖或交錯(cuò)層理砂巖接觸的平行層狀、弱層狀冰磧巖(圖6e),是由于冰川底部近端處的高能水流對(duì)不穩(wěn)定的塊狀冰磧物進(jìn)行改造的結(jié)果[83],常反映冰川作用的減弱和冰川融水的加強(qiáng)[53.59],屬于冰川底部前緣沉積。
冰河:主要位于拉嘎組上部,拉嘎組下部局部發(fā)育,各層位沉積相厚度差距較大,最大可達(dá) 20m ,最小僅約 3m 。冰河沉積下部一般由黃色、灰黑色、深灰色細(xì)礫巖、含細(xì)礫粗砂巖、中砂巖、細(xì)砂巖組成,上部為灰黑色泥巖、粉砂巖和深灰色、灰黃色、灰黑色含細(xì)礫砂巖,砂巖發(fā)育有槽狀交錯(cuò)層理、楔狀交錯(cuò)層理、低角度交錯(cuò)層理、波狀交錯(cuò)層理、局部的軟沉積變形和平行層理,該沉積體系為辨狀河沉積[54.64.84]。存在沖刷面的透鏡狀或疊瓦狀構(gòu)造礫巖、含礫砂巖指示河道沖刷后的河床滯留沉積[52,61,65.85](圖6f)。下覆含礫砂巖、砂巖常發(fā)育楔狀交錯(cuò)層理和槽狀交錯(cuò)層理(圖6g),向上發(fā)育小型低角度交錯(cuò)層理、小型波狀交錯(cuò)層理和平行層理的砂巖(圖6h),指示心灘沉積或河道沙壩沉積8。夾于交錯(cuò)層理含礫砂巖中的透鏡狀小型交錯(cuò)層理砂巖或透鏡狀礫巖很可能是由于高流態(tài)下水流突然加快而在心灘頂部形成的流槽沉積[72.87]。發(fā)育模糊不清的楔狀或波狀交錯(cuò)層理砂巖之上的水平層理粉砂巖和泥巖,屬于泛濫平原沉積[]。礫巖中夾有透鏡狀砂巖,或含礫砂巖呈楔狀體覆蓋在礫巖之上,且礫巖局部發(fā)育疊瓦狀構(gòu)造,與砂巖均可見(jiàn)楔狀交錯(cuò)層理,指示洪水期的高能河道充填沉積[54.57,62]
冰湖:位于拉嘎組上部,橫向分布十分廣泛,沉積相厚 3~15m 。主要由灰黑色薄層泥巖、灰黑色中層細(xì)一中砂巖、深灰色塊狀細(xì)砂巖組成,泥巖呈紋層狀且局部層位泥巖中可見(jiàn)砂巖墜石,發(fā)育波狀交錯(cuò)層理的中層細(xì)一中砂巖中也含有砂巖墜石,深灰色塊狀細(xì)砂巖發(fā)育沙紋爬升層理和波狀交錯(cuò)層理。泥巖覆蓋在含有墜石的波狀交錯(cuò)層理細(xì)砂巖之上(圖6i),且波狀交錯(cuò)層理細(xì)砂巖之下的楔狀交錯(cuò)層理中一粗巖頂部可見(jiàn)浪成波痕,反映了淺水環(huán)境下的波浪以及與冰川接觸時(shí)對(duì)沉積物的作用,屬于受冰川墜石影響的淺湖沉積[89-90]。紋層狀泥巖分布最為廣泛且厚度最大可達(dá) 15m ,反映了水動(dòng)力較弱或安靜的環(huán)境,屬于未與冰川接觸的深湖環(huán)境84,8.901]。泥巖層頂?shù)琢阈强梢?jiàn)的冰筏墜石,屬于冰筏碎屑?jí)嬋牒璧椎纳詈练e。夾于厚層泥巖中的塊狀冰磧巖和砂巖應(yīng)是在近岸的濱、淺湖環(huán)境中受冰川作用而發(fā)生的冰底沉積。下部為波狀交錯(cuò)層理細(xì)砂巖,上部為沙紋爬升層理細(xì)砂巖的巖石組合,屬于淺湖環(huán)境下的三角洲前緣沉積[74.84](圖6j)。
冰水扇:位于拉嘎組頂部,在以中一厚層生物碎屑灰?guī)r為代表的碳酸鹽臺(tái)地沉積層之下,橫向分布廣泛,側(cè)向延伸可達(dá) 30m ,沉積相厚度約 9m 。主要以塊狀、雜亂的灰黑色礫巖為主(圖6k),與深灰色、灰黑色含礫粗一中砂巖互層。下部礫巖可見(jiàn)疊瓦狀構(gòu)造,和砂巖均有楔狀交錯(cuò)層理(圖61),上部為中層塊狀粗砂巖與礫巖互層,構(gòu)成粗一細(xì)旋回。塊狀、雜亂、分選差、次棱角一次圓狀的礫巖與含礫砂巖是由冰川融水噴射流輸送到水下融水扇而沉積的,構(gòu)成冰水扇環(huán)境,其中扇體下部或中部的泥石流和片狀洪水占主導(dǎo)地位。具有顆粒支撐的大礫石的厚層礫巖屬于泥石流沉積[85],片狀的層狀粗砂巖與礫巖互層屬于漫流沉積[85.90.92]。具有沖刷基底的疊瓦狀礫石可能與辮狀河道的縱向沙壩有關(guān),由高能河道流產(chǎn)生[85,9.92-93]。夾于礫巖中的楔狀交錯(cuò)層理砂巖是辨狀河道充填沉積[57-58.62.,93]。
4討論
4.1冰川沉積體系
冰川依據(jù)其整體發(fā)育環(huán)境的不同,可分為陸地型冰川和海洋型冰川,同時(shí)冰川沉積物又可以出現(xiàn)在一系列不同的亞環(huán)境中8],這些亞環(huán)境可以由它們的地貌和相對(duì)于冰體的位置來(lái)定義,每一種環(huán)境都創(chuàng)造了不同的沉積體系,具有其獨(dú)特的沉積特征,而沉積環(huán)境是否受到冰川的影響,取決于對(duì)冰磷巖的判斷[49]。
研究區(qū)冰川演化階段可分為位于拉嘎組下部的早期演化階段(剖面1、2)和位于拉嘎組上部的晚期演化階段(剖面3、4)。通過(guò)上述對(duì)研究區(qū)實(shí)測(cè)剖面拉嘎組及其上覆和下伏地層的沉積環(huán)境的恢復(fù),加之拉嘎組中發(fā)育有指示淺海相的苔蘚蟲(chóng)等化石,可以確定拉薩地塊中部的晚古生代冰川位于近岸冰海環(huán)境中。其不是正常的海洋型冰川,存在位于低潮帶附近的冰墻及延伸至淺海的冰舌及斷離的冰筏[83],冰川沉積體系主要分為海相和陸相(圖7)。
從上文對(duì)巖相、巖相組合的劃分,及沉積環(huán)境的分析來(lái)看,研究區(qū)冰底沉積體系指示冰川底部沉積環(huán)境,位于海岸或近海環(huán)境中。地層保留了塊狀、平行層狀或弱層狀冰巖,以及代表冰川向海推進(jìn)過(guò)程的含疊瓦排列巨型巖塊的冰巖。但拉嘎組這些冰期沉積物表面很難見(jiàn)到擦痕,可能是冰川消融發(fā)生卸載時(shí)在原地或近原地釋放碎屑來(lái)堆積,使得冰體所承載的碎屑顆粒沒(méi)有發(fā)生明顯的相互運(yùn)動(dòng)或擠壓?;€扇沉積體系指示近岸一陸棚沉積環(huán)境,地層中既保存了指示水下位于水下斜坡靠近冰川的楔狀砂巖體,同時(shí)也保留了切穿正常巖層層理的冰筏墜石等指示冰海沉積的證據(jù)。淺海陸棚沉積體系指示淺海陸棚沉積環(huán)境,粉砂巖中保存有較多的冰筏墜石,指示遠(yuǎn)端浮冰或海上冰舌釋放冰筏碎屑的作用,反映冰海相沉積特征。冰河和冰湖主要由冰川融水或排水提供水流和沉積物,冰河沉積體系多指示冰緣河流沉積環(huán)境,主要由砂巖、含礫砂巖、礫巖組成,巖石普遍發(fā)育交錯(cuò)層理,巖石組合也較為豐富(a)含墜石泥巖、粉砂巖;(b)巨型砂巖巖塊;(c)冰底基質(zhì)褶皺變形;(d)塊狀冰巖;(e)層狀冰巖;(f)具沖刷面含礫砂巖; Π(Πg) 槽狀交錯(cuò)層理砂巖;(h)波狀交錯(cuò)層理砂巖;(i)含墜石砂巖;(j)沙紋爬升層理砂巖;(k)塊狀礫巖;(1)楔狀交錯(cuò)層理礫巖
(sd fied diamictite; (f) pebbled sandstone with erosion surface; trough cross-bedded sandstone; (h)rippled cross-bedded sandstone; (i) sandstone containing dropstone; (j. sandclimbing ripple bedding sandstone;(k) massive conglomerate;(l) wedge-shaped cros-bedded conglomerate
多樣,具備辨狀河沉積的一般特征;冰湖沉積體系指示位于近海的陸上湖泊環(huán)境,主要由泥巖,以及砂巖組成,泥巖呈紋層狀且分布廣泛,砂巖具有爬升沙紋層理、波狀交錯(cuò)層理等特征,冰筏墜石的出現(xiàn)與否可指示湖盆與冰川是否接觸。冰水扇沉積體系指示冰川邊緣的沖積扇環(huán)境,以塊狀、雜亂的礫巖和含礫砂巖為主,可見(jiàn)泥石流沉積、漫流沉積、河道充填沉積等特征,冰水扇的砂礫巖相是由冰川邊緣的強(qiáng)大融水噴射流輸送到水下融水扇上并沉積形成的[94]。
早期演化階段,發(fā)育于低海拔地區(qū)的冰川在潮坪沉積體之上形成并逐漸向海推進(jìn),這一運(yùn)移使得冰川底部對(duì)先前海岸附近的灰?guī)r、花崗巖及砂巖巨型巖塊產(chǎn)生明顯的摩擦、擠壓和推移作用,加之海浪不斷拍打使其逐步磨圓,最終呈疊瓦狀堆積在冰川底部。隨后冰川推進(jìn)到濱岸附近,發(fā)生卸載堆積,冰川融水析出的碎屑物質(zhì)會(huì)形成層狀、弱層狀冰巖以及楔狀砂巖體,反映冰川消融后沉積物原地或近原地的卸載。此外,漂浮在海上的冰蓋或脫離冰蓋的冰筏,攜帶有較多的漂礫及細(xì)碎屑物質(zhì),這些冰筏碎屑快速卸載,在淺海陸棚陡坡深水地帶與粉砂或泥巖沉積混合,形成以墜石沉積為特點(diǎn)的冰海相沉積[77.80]。晚期演化階段,塊狀冰巖向?qū)訝?、弱層狀冰磧巖轉(zhuǎn)變,最后再向砂泥質(zhì)沉積的粗一細(xì)序列變化,反映了冰進(jìn)時(shí)冰川對(duì)先前沉積物強(qiáng)烈的冰川構(gòu)造化作用到冰退時(shí)冰川融水流沉積作用這一過(guò)程[7.80,895]。冰河沉積環(huán)境和冰湖沉積環(huán)境主要由冰川融水或排水提供水流和沉積物,冰水扇的砂礫巖相是由冰川邊緣的強(qiáng)大融水噴射流輸送到水下融水扇并沉積形成的94。晚期演化階段的冰川已較為成熟且逐步走向衰退,冰底、冰河、冰湖沉積環(huán)境韻律的頻繁出現(xiàn),暗示該陸地型冰川在研究區(qū)經(jīng)歷了多次冷暖事件。拉嘎組頂部和昂杰組的大規(guī)模碳酸鹽巖沉積則指示該冰川完全消亡,研究區(qū)最終恢復(fù)為溫暖氣候背景下的正常濱淺海沉積。
4.2對(duì)拉薩地塊晚古生代冰期的指示意義
本文利用冰川層序地層方法來(lái)分析剖面垂向上沉積序列的變化趨勢(shì),識(shí)別研究區(qū)早期演化階段和晚期演化階段的冰進(jìn)一冰退旋回。早期演化階段,冰川旋回層序位于海洋環(huán)境中,冰底構(gòu)造或變形磧代表著冰進(jìn)過(guò)程,基線扇中的含冰筏墜石泥巖或粉砂巖,以及冰河的含礫砂巖或砂巖則代表著冰退過(guò)程。在冰期到間冰期的轉(zhuǎn)變過(guò)程中,大量冰川融水進(jìn)入海洋導(dǎo)致海平面的快速上升。晚期演化階段,冰川旋回層序則位于陸相環(huán)境中,從塊狀冰巖到層狀、弱層狀冰磷巖,再到整體粒度細(xì)化的砂巖、泥巖這一垂向變化,說(shuō)明冰川體量逐漸變小,氣候逐漸變暖,冰川持續(xù)消退直至完全消融。塊狀冰磧巖與指示河流的砂礫巖韻律,則說(shuō)明多次小規(guī)模冰期一間冰期的出現(xiàn)。在拉嘎組上部,可識(shí)別出一次特殊的冰期,冰川融水?dāng)y帶的大量泥沙礫石形成冰水扇環(huán)境覆蓋在冰底環(huán)境之上,而拉嘎組頂部和昂杰組中下部約 50m 的中一厚層灰?guī)r則恰好位于冰水扇沉積之上,說(shuō)明這一次的冰水扇沉積代表研究區(qū)氣候變暖和晚古生代冰期的結(jié)束。冰川融化使得海平面上升,海侵加劇,因此,研究區(qū)開(kāi)始恢復(fù)為溫暖氣候背景下的正常濱淺海沉積??傮w上,拉嘎組在早期演化階段和晚期演化階段均可劃分出較多的小冰期一間冰期沉積序列,佐證了晚古生代冰期存在過(guò)多次小規(guī)模的冰期事件,發(fā)生了多次小規(guī)模的冷一暖氣候化11,978] ○
冰海環(huán)境中與冰川有關(guān)的沉積物數(shù)量的多少不僅與盆地性質(zhì)有關(guān),而且與冰川的熱狀態(tài)有很大關(guān)聯(lián),正在解凍的冰川要比完全處于冷凍狀態(tài)下的冰川所提供的沉積物多的多[3。通過(guò)前文對(duì)申扎地區(qū)拉嘎組的巖相、巖相組合特征及沉積環(huán)境分析,可以發(fā)現(xiàn)地層中的沉積物特別是冰期沉積物的數(shù)量及類(lèi)型十分豐富,反映了十分高的沉積速率背景,由此可以判斷影響拉薩地塊申扎地區(qū)的冰川處于解凍或正在解凍的狀態(tài)中3。此外,通過(guò)上述對(duì)研究區(qū)冰期地層垂向上的沉積序列分析,不難看出冰川沉積環(huán)境整體由深水區(qū)向淺水區(qū)的變化,這指示了申扎地區(qū)存在海洋型冰川向陸地型冰川的演化,說(shuō)明了冰川向陸地方向的不斷退縮。這種大型冰川由海到陸的退縮與晚石炭世一早二疊世期間全球氣候變化息息相關(guān),為此,結(jié)合前人對(duì)此時(shí)期的氣候變化研究可以更好理解拉薩地塊冰川消融的原因。20世紀(jì)90年代,Berner9就利用硅酸鹽礦物風(fēng)化的反饋函數(shù)來(lái)計(jì)算 CO2 水平,建立了過(guò)去5.7億年間大氣中的二氧化碳水平的模型,結(jié)果顯示在晚石炭世一早二疊世大氣 CO2 濃度呈增高趨勢(shì)。進(jìn)入21世紀(jì)后,也有許多學(xué)者為這一時(shí)期的氣候變化研究做出不小的貢獻(xiàn),如Milleretal.[o匯編了顯生宙各階段的海平面變化,認(rèn)為在不同時(shí)間尺度,海平面與氧同位素的變化相對(duì)應(yīng),可以反映百萬(wàn)年尺度上的冰量變化,在賓夕法尼亞亞紀(jì)中期一早二疊世,全球海平面上升,冰川總體量減少,與Rosa et al.、,F(xiàn)ielding et al.[15]、Rygel et al.[o1]發(fā)現(xiàn)此時(shí)期全球海平面上升及冰川覆蓋面積減少的結(jié)果一致;Frank[匯編了來(lái)自俄羅斯、華南、澳大利亞?wèn)|部、歐美等地的牙形石和腕足類(lèi)化石穩(wěn)定碳氧同位素研究,分析發(fā)現(xiàn)在晚石炭世一早二疊世,全球大氣 O2 濃度呈降低趨勢(shì),大氣 CO2 濃度呈增高趨勢(shì),海平面處于上升階段。上述前人的研究說(shuō)明在晚石炭世一早二疊世這一階段,全球大氣 O2 濃度降低、大氣CO2 濃度增高、海平面上升、冰川總體量降低(圖8),此外更直觀的海水古溫度升高[103]植物優(yōu)勢(shì)種向干旱植被轉(zhuǎn)變104等現(xiàn)象,均指示了全球氣候整體變暖的趨勢(shì)。因此,可以認(rèn)為晚石炭世一早二疊世的全球氣候變暖是驅(qū)動(dòng)拉薩地塊冰川消融的主要原因。
5結(jié)論
(1)根據(jù)地層巖石巖性、沉積構(gòu)造及空間展布等特點(diǎn),申扎地區(qū)晚古生代冰期早期演化階段可識(shí)別出潮坪相、濱岸相、冰川相和淺海陸棚相,冰川相以冰筏墜石和冰底沉積為主;晚期演化階段中可識(shí)別出冰河相、冰湖相、冰川相、冰水扇相和碳酸巖臺(tái)地相,冰川相以冰底沉積為主。
(2)通過(guò)對(duì)拉嘎組冰磧巖特征和沉積序列的綜合分析,識(shí)別出申扎地區(qū)晚古生代冰期存在頻繁的冰期一間冰期旋回,說(shuō)明拉薩地塊晚古生代冰期是由多次冰期事件組成的,指示地球在這一時(shí)期存在多次的冷一暖氣候交替。
(3)根據(jù)冰川層序地層學(xué)研究,得出申扎地區(qū)拉嘎組中冰川沉積環(huán)境由早期海相轉(zhuǎn)變?yōu)橥砥陉懴嗟慕Y(jié)果,說(shuō)明冰川整體向陸退縮,處于消融狀態(tài),反映了全球氣候在晚石炭世一早二疊世逐漸變暖的趨勢(shì)。
(4)本次研究未能呈現(xiàn)拉薩地塊申扎地區(qū)拉嘎組整個(gè)沉積序列,中間缺少的地層可能保留了其他冰期沉積記錄,下一步對(duì)研究區(qū)完整的拉嘎組沉積序列分析是工作的重點(diǎn)。關(guān)于拉薩地塊晚古生代冰期的研究較少,前人多聚焦于拉嘎組碎屑鋯石U-Pb年代學(xué)和生物化石研究,需要加強(qiáng)對(duì)晚古生代冰期沉積學(xué)的研究,以此恢復(fù)拉薩地塊晚古生代冰期沉積演化歷史。
致謝感謝兩位審稿專(zhuān)家和編輯部老師的寶貴意見(jiàn)和建議。申扎縣自然資源局在野外工作中給予了大力支持,碩士研究生趙瀟然也參與了部分野外工作,在此一并感謝。
參考文獻(xiàn)(References)
[1]Eyles N. Earth's glacial record and its tectonic setting[J].EarthScience Reviews,1993,35(1/2):1-248.
[2]Powell M G. Geographic range and genus longevity of Late Paleozoic brachiopods[J]. Paleobiology,2007,33(4):530-546.
[3] BishopJW,MontafezIP,GulbransonEL,etal.Theonsetof mid-Carboniferousglacio-eustasy:Sedimentologic and diagenetic constraints,ArrowCanyon,Nevada[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2009,276(1/2/3/4):217-243.
[4]Clapham ME, Shen S Z,Bottjer DJ. The double mass extinction revisited:Reassessingthe severity,selectivity,and causesofthe end-Guadalupian biotic crisis (Late Permian)[J].Paleobiology, 2009,35(1): 32-50.
[5]Pfefferkorn H W,Alleman V, Iannuzzi R.A greenhouse interval between icehouse times: Climate change,long-distance plant dispersal,and plate motion in the Mississippian (Late Visean-earliest Serpukhovian) of Gondwana[J].Gondwana Research,2014,25 (4): 1338-1347.
[6]Metcalfe I,Aung K P. Late Tournaisian conodonts from the Taungnyo group near Loi Kaw,Myanmar (Burma): Implications for Shan Plateau stratigraphy and evolution of the GondwanaderivedSibumasu Terrane[J].Gondwana Research,2014, 26(3/4): 1159-1172.
[7]Qie WK,Algeo TJ,Luo G M,et al. Global events of the Late Paleozoic (Early Devonian to Middle Permian): Areview[J].Palaeogeography,Palaeoclimatology,Palaeoecology,2019,531:109259- 109259.
[8]Chen JT, Montanez I P, Zhang S,et al. Marine anoxia linked to abruptglobal warmingduringEarth’spenultimate icehouse[J]. Proceedings of the National Academy of Sciences of the United States of America,2022,119(19): e2115231119.
[9]Raymond A,Metz C. Ice and its consequences: Glaciation in the Late Ordovician, Late Devonian, Pennsylvanian-Permian,and Cenozoic compared[J]. The Journal of Geology,2004,112(6): 655-670.
[10]Isbell JL,LenakerPA,Askin RA, et al.Reevaluation of the timing and extent of Late Paleozoic glaciation in Gondwana: Role of the transantarctic mountains[J]. Geology,20o3, 31(11): 977-980.
[11]Rosa EL M, IsbellJL.Late Paleozoic glaciation[M]//Alderton D,Elias S A.Encyclopedia of geology.2nd ed. Amsterdam: Elsevier,2021: 534-545.
[12]Isbel JL,Miller MF,Babcock LE,et al. Ice-marginal environment and ecosystem prior to initial advance of the Late Palaeozoic ice sheet in the Mount Buttersarea of the central transantarctic mountains,Antarctica[J].Sedimentology,20o1,48(5): 953-970.
[13]Stanley SM.An analysis of the history of marine animal diversity [J].Paleobiology,2007,33(Suppl. 4):1-55.
[14]Isbel JL,F(xiàn)raiser ML,Henry L C.Examining the complexity of environmental change during the Late Paleozoic and Early Mesozoic[J]. Palaios,2008,23(5): 267-269.
[15]Fielding CR,F(xiàn)rank TD,IsbellJL. The Late Paleozoic ice age: A review of current understanding and synthesis of global climate patterns[M]//Fielding CR,F(xiàn)rank TD,Isbell JL.ResolvingtheLatePaleozoic iceage intimeand space.McLean:Geological Society of America,2008: 343-354.
[16]Isbell JL,Henry L C,Gulbranson E L,etal.Glacial paradoxes during the Late Paleozoic ice age: Evaluating the equilibrium line altitude as a control on glaciation[J].Gondwana Research, 2012, 22(1): 1-19.
[17]Barham M,JoachimskiMM,MurrayJ,etal.Diageneticalteration of the structure and δ18O signature of Palaeozoic fish and conodont apatite: Potential use for corrected isotope signatures inpalaeoenvironmentalinterpretation[J].Chemical Geolgy, 2012,298-299:11-19.
[18]Roy D K,Roser B P. Climatic control on the composition of Carboniferous-Permian Gondwana sediments,Khalaspir Basin, Bangladesh[J]. Gondwana Research,2013,23(3): 1163-1171.
[19]RoyDK,Roser B P.Geochemical evolution of the Tertiary succession of the NW shelf,Bengal Basin,Bangladesh: Implications for provenance,paleoweathering and Himalayan erosion [J].Journal of Asian Earth Sciences,2013,78: 248-262.
[20]Isbell JL,Biakov A S,VedernikovI L,et al.Permian diamictites in northeastern Asia: Their significance concerning the bipolarityof the Late Paleozoic ice age[J].Earth-Science Reviews, 2016,154: 279-300.
[21]楊兵,夏浩東,楊欣杰,等.晚古生代冰期研究進(jìn)展[J].地質(zhì)科 技情報(bào),2016,35(2):140-151.[Yang Bing,Xia Haodong,Yang Xinjie,et al.Late Paleozoic ice age: Review of recent progress [J].Geological Science and Technology Information,2016,35 (2): 140-151. ]
[22]Smith LB,Jr,Read JF.Rapid onset of Late Paleozoic glaciation on Gondwana: Evidence from Upper Mississippian strata of theMidcontinent,United States[J].Geology,2000,28(3): 279-282.
[23]Torsvik TH,Cocks LR M.Gondwana from top to base in space and time[J]. GondwanaResearch,2013,24(3/4): 999-1030.
[24]Crowley TJ, Baum S K. Modeling Late Paleozoic glaciation[J]. Geology,1992,20(6): 507-510.
[25]Mii H S,Grossman EL,Yancey TE.Carboniferous isotope stratigraphies of North America:Implications for Carboniferous paleoceanography and Mississippian glaciation[J]. GSA Bulletin, 1999, 111(7): 960-973.
[26]Saltzman M R. Late Paleozoic ice age: Oceanic gateway or pCO?[J]. Geology,2003,31(2): 151-154.
[27]Davies N S,Gibling MR.The sedimentary record of Carboniferous rivers: Continuing influence of land plant evolution on alluvial processes and Palaeozoic ecosystems[J]. Earth-Science Reviews,2013,120:40-79.
[28]Nelsen MP,Dimichele WA,Peters SE,etal.Delayed fungal evolution did not cause the Paleozoic peak in coal production[J]. ProceedingsoftheNationalAcademyofSciencesof theUnited States of America,2016,113(9): 2442-2447.
[29]Goddéris Y,Donnadieu Y, Carretier S,et al. Onset and ending of theLate Palaeozoic iceage triggered bytectonicallypaced rock weathering[J]. Nature Geoscience,2017,10(5):382-386.
[30]楊江海,顏佳新,黃燕.從晚古生代冰室到早中生代溫室的氣 候轉(zhuǎn)變:兼論東特提斯低緯區(qū)的沉積記錄與響應(yīng)[J].沉積學(xué) 報(bào),2017,35(5):981-993.[YangJianghai,Yan Jiaxin,Huang Yan.The earth's penultimate icehouse-to-greenhouse climate transition and related sedimentary records in low-latitude regions of eastern Tethys[J].Acta Sedimentologica Sinica,2017,35(5): 981-993. ] [31]Chen JT,ShengQY,HuKY,et al.Late Misissippian glaci eustasy recorded in the eastern Paleo-Tethys Ocean (South China)[J].Palaeogeography,Palaeoclimatology,Palaeocolg
2019,531: 108873. [32]Yin A, Harrison T M. Geologic evolution of the HimalayanTibetan orogen[J].Annual Review of Earth and Planetary Sciences,2000,28:211-280. [33]Zhu D C,Zhao Z D,NiuYL,et al.Lhasa Terrane in southern Tibet came from Australia[J]. Geology,2011,39(8):727-730. [34]Metcalfe I. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys[J]. Journal of AsianEarth Sciences,2013,66:1-33. [35]趙兵,劉登忠,陶曉風(fēng),等.西藏仲巴縣昂拉仁錯(cuò)—塔若錯(cuò)一 帶拉嘎組的地層特征及沉積環(huán)境[J].地質(zhì)通報(bào),2006,25(7):
800-805.[Zhao Bing,Liu Dengzhong, Tao Xiaofeng, et al.Stratigraphy and sedimentary environment of the Laka Formation in the Ngangla Ringco-Taro Co area,Zhongbacounty,Tibet,China [J].Geological Bulletin of China,2006,25(7): 800-805.] [36]張予杰,張以春,龐維華,等.西藏申扎地區(qū)拉嘎組巖相/沉積 相分析[J].沉積學(xué)報(bào),2013,31(2):269-281.[Zhang Yujie, Zhang Yichun,PangWeihua, etal.The litho/sedimentary facies analysis ofLagar Formation,Xainzaarea,Tibet[J].Acta Sedimentologica Sinica,2013,31(2): 269-281.] [37]李躍.西藏羅倉(cāng)地區(qū)拉嘎組沉積特征及其構(gòu)造背景探討[D]. 成都:成都理工大學(xué),2016:1-65.[LiYue. Sedimentary characteristics and tectonic seting of Laga Formation inLuocang area, Tibet[D].Chengdu: Chengdu University of Technology,2016:
1-65.] [38]WangM, ZengXW,Xie C M,et al.Dating of detrital zircon grains and fossils from Late Palaeozoic sediments of the Baruo area,Tibet:Constraints on the Late Palaeozoic evolution of the Lhasa Terrane[J]. International Geology Review,2020,62(4):
465-478. [39]許志琴,楊經(jīng)綏,李海兵,等.青藏高原與大陸動(dòng)力學(xué):地體拼 合、碰撞造山及高原隆升的深部驅(qū)動(dòng)力[J].中國(guó)地質(zhì),2006,33 (2):221-238.[Xu Zhiqin,Yang Jingsui,Li Haibing,etal.The Qinghai-Tibet Plateau and continental dynamics: Areview on terrain tectonics,collisional orogenesis,and processes and mechanisms for the rise of the plateau[J].Geology in China,2006,33 (2): 221-238. ] [40] 吉林大學(xué)地質(zhì)調(diào)查研究院.中華人民共和國(guó)區(qū)域地質(zhì)調(diào)查報(bào) 告:比例尺1:250000申扎縣幅[R].長(zhǎng)春:吉林大學(xué),2003:37-
57.[Institute of Geological Survey,Jilin University.Regional geological survey report of the People's Republic of China: 1:
250,000 Xainza County[R]. Changchun: Jilin University,2003:
37-57.] [41]Li ZY,Ding L,Lippert PC,etal.Paleomagneticconstraints on the Mesozoic drift of the Lhasa Terrane (Tibet) from Gondwana to Eurasia[J].Geology,2016,44(9):737-740. [42]孫知明,曹勇,李海兵,等.青藏高原形成和演化的古地磁研 究進(jìn)展綜述[J].地球?qū)W報(bào),2019,40(1):17-36.[Sun Zhiming, Cao Yong,Li Haibing,etal.Areview of paleomagnetic study of the formation and evolution of the Tibetan Plateau[J].Acta Geoscientica Sinica,2019,40(1):17-36.]
[43]Audley-Charles M G. Evolution of the southern margin of Tethys(North Australian region) from Early Permian to Late Cretaceous[J].Geological Society,London,Special Publications, 1988,37(1): 79-100.
[44]Allegre CJ, Courtillot V, Tapponnier P, et al. Structure and evolution of the Himalaya-Tibet orogenic belt[J].Nature,1984, 307 (5946): 17-22.
[45]Zhang Z M,Dong X,LiuF,et al.The making of Gondwana: Discovery of 65OMa HP granulites from the North Lhasa,Tibet [J].Precambrian Research,2012,212-213:107-116.
[46]Chen L R, Xu W C, Zhang HF, et al. Origin and early evolution of the Lhasa Terrane,South Tibet:Constraints from the Bomi Gneiss Complex[J].Precambrian Research,2019,331:105360.
[47]Guynn J,Kapp P,Gehrels G E,et al.U-Pb geochronology of basement rocks in central Tibet and paleogeographic implications [J].Journal ofAsian Earth Sciences,2012,43(1):23-50.
[48]Zhang Y C,Shi G R, Shen S Z. A review of Permian stratigraphy,palaeobiogeographyand palaeogeography of the QinghaiTibet Plateau[J]. Gondwana Research,2013,24(1): 55-76.
[49]尹集祥.青藏高原及鄰區(qū)岡瓦納相地層地質(zhì)學(xué)[M].北京:地 質(zhì)出版社,1997:1-200.[Yin Jixiang.Stratigraphic geology of Gondwana facies of Qinghai-Xizang (Tibet) Plateau and adjacent areas[M].Beijing:Geological Publishing House,1997: 1-200.]
[50]李曉勇,謝國(guó)剛,袁建芽,等.西藏文部—姆錯(cuò)丙尼地區(qū)早二 疊世拉嘎組:兼述雜礫巖形成環(huán)境與成因[J].地質(zhì)通報(bào),2002, 11(21):723-727.[Li Xiaoyong,Xie Guogang,Yuan Jianya,et al.Early Permian Raka Formation inthe Ombu-Monco Bunnyi area,Tibet-With a discussion of the formation environment and origin of petromictic conglomerate[J]. Geological Bulletin of China,2002,11(21): 723-727.]
[51]張予杰,安顯銀,張以春,等.西藏申扎地區(qū)早二疊世冰海相 地層中孢粉化石的發(fā)現(xiàn)[J].科學(xué)通報(bào),2015,60(23):2227- 2235.[ZhangYujie,An Xianyin, Zhang Yichun, et al. The discovery of sporopollen fossiles bearing Early Permian glaciomarine sequences of Xainza area, Tibet[J].Chinese Science Bulletin,2015,60(23): 2227-2235.]
[52]Miall AD.Lithofacies types and vertical profile models in braidedriver deposits: A summary[M]//Miall AD.Fluvial sedimentology.Calgary:Canadian Society of Petroleum Geologists, 1978: 597-604.
[53]Eyles N,Eyles C H,MiallAD.Lithofacies types and vertical profile models; an alternative approach to the description and environmental interpretation of glacial diamict and diamictite sequences[J].Sedimentology,1983,30(3): 393-410.
[54]Maizels J.Lithofacies variations within sandur deposits: The role of runoff regime,flow dynamics and sediment supply characteristics[J].SedimentaryGeology,1993,85(1/2/3/4):299-325.
[55]Klingbeil R,Kleineidam S,Asprion U, etal.Relating lithofacies tohydrofacies:Outcrop-based hydrogeological characterisation of Quaternary gravel deposits[J]. Sedimentary Geology,1999, 129(3/4): 299-310.
[56]許歡,柳永清,劉燕學(xué),等.陰山一燕山地區(qū)晚侏羅世—早白 堊世土城子組地層、沉積特征及盆地構(gòu)造屬性分析[J].地學(xué)前 緣,2011,18(4):88-106.[Xu Huan,LiuYongqing,LiuYanxue, et al.Stratigraphy, sedimentology and tectonic background of basin evolution of the Late Jurassc-Early Cretaceous Tuchengzi Formation in Yinshan-Yanshan,North China[J].Earth Science Frontiers,2011,18(4): 88-106.]
[57]Zand-Moghadam H,Moussavi-Harami R,Mahboubi A,et al. Lithofacies and sequence stratigraphic analysis of the Upper Jurassic siliciclastics in the eastern Kopet-Dagh Basin,NE Iran [J].Journal of African Earth Sciences,2016,117: 48-61.
[58]Xu H,Liu YQ,Kuang HW, et al.Sedimentary response to the intracontinental orogenicprocess:Insight from the anatomyofa smallMesozoic basin inwestern Yanshan,northernNorth China [J].International Geology Review,2016,58(12):1528-1556.
[59]Lee J.Glacial lithofacies and stratigraphy[M]//Menzies J,van der Meer JJM.Past glacial environments.2nd ed.Amsterdam: Elsevier,2018:377-429.
[60]許歡,柳永清,曠紅偉,等.燕山西部尚義盆地沉積巖區(qū)專(zhuān)題 地質(zhì)填圖方法與成果[J].地質(zhì)通報(bào),2017,36(11):1893-1918. [Xu Huan,Liu Yongqing,Kuang Hongwei,etal.Methods and results of sedimentary geological mapping of special issues in the Shangyi Basin,western Yanshan Mountain[J].Geological Bulletin of China,2017,36(11): 1893-1918.]
[61]胡求紅,張昌民,侯國(guó)偉,等.馬爾科夫鏈分析在東海陸架盆 地花港組沉積微相分析中的應(yīng)用[J].地質(zhì)與資源,2020,29 (1):7-20.[Hu Qiuhong,Zhang Changmin, Hou Guowei,et al. ApplicationofMarkov Chainanalysis inthemicrofaciesrecognition of Huagang Formation in the East China sea shelf basin[J]. Geology andResources,2020,29(1): 7-20.]
[62]O'ConnellB,DorseyRJ,Hasiotis S T,et al.Mixed carbonatesiliciclastic tidal sedimentation in the Miocene to Pliocene Bouse Formation,palaeo- gulf of California[J].Sedimentology,2021, 68(3): 1028-1068.
[63]趙一波,李勝利,周練武,等.近源河流相辮狀河—曲流河微 相轉(zhuǎn)換沉積特征及控制因素:以劉官莊油田館陶組三段為例 [J].東北石油大學(xué)學(xué)報(bào),2022,46(1):14-25.[ZhaoYibo,Li Shengli, Zhou Lianwu,et al.Sedimentary characteristics and controlling factorsof microfacies transformation from braided river to meandering river of near source fluvial facies: Taking the third member of Guantao Formation in Liuguanzhuang oilfield asanexample[J].Journal of Northeast Petroleum University, 2022, 46(1): 14-25. ]
[64]龐志超,焦悅,袁波,等.準(zhǔn)噶爾盆地南緣二疊—三疊紀(jì)原型 盆地性質(zhì)與沉積環(huán)境演化[J].地質(zhì)學(xué)報(bào),2020,94(6):1813- 1838.[Pang Zhichao,Jiao Yue,Yuan Bo,etal.Permian-Triassic depositional environmental evolution and the prototype basin of thesouthernJunggarBasin[J].Acta Geologica Sinica,2020,94 (6): 1813-1838. ]
[65]侯乾,牟傳龍,鄭斌嵩,等.北祁連西段肅南地區(qū)下志留統(tǒng)骯 臟溝組河流相的發(fā)現(xiàn)及其大地構(gòu)造意義[J].地質(zhì)論評(píng),2021, 67(3):612-624.[Hou Qian,Mou Chuanlong, Zheng Binsong,et al.The discovery and the tectonic significance of fluvial facies of the Lower Silurian Angzanggou Formation in Sunan area of the western section of North Qilian orogen[J].Geological Review,2021,67(3): 612-624.]
[66]Wakefield O JW,Hough E,PeatfieldAW.Architectural analysisofa Triassic fluvial system:The Sherwood sandstone of the East Midlands Shelf, UK[J]. Sedimentary Geology,2015,327: 1-13.
[67]何維領(lǐng),李少華,王濡岳,等.砂質(zhì)辮狀河儲(chǔ)層構(gòu)型特征及沉 積演:以山西大同侏羅系云岡組露頭為例[J].沉積學(xué)報(bào),2024, 42(5):1699-1710.[He Weiling,Li Shaohua,Wang Ruyue,et al.Sandy braided river architecture characteristicsand evolution: A case study from outerops in the Middle Jurassic Yungang Formation,Datong,Shanxi province[J].Acta Sedimentologica Sinica,2024,42(5): 1699-1710.]
[68]王科,趙俊峰,薛銳,等.鄂爾多斯盆地延安組河流沉積類(lèi)型 及演變:來(lái)自典型露頭精細(xì)解剖的證據(jù)[J].沉積學(xué)報(bào),2022,40 (5):1367-1377.[WangKe,Zhao Junfeng,XueRui, etal.Fluvial sedimentary typesand their evolution in the Yan'anFormationinthe OrdosBasin:Evidence from the detailed anatomy of typical outcrops[J].Acta Sedimentologica Sinica,2022,40(5): 1367-1377. ]
[69]王文才.沉積巖的交錯(cuò)層理類(lèi)型及其環(huán)境意義[J].礦物巖石, 1985,5(4):63-7o.[Wang Wencai.The types of crossbeddings in sedimentary rocks and its environmental significance[J]. MineralsandRocks,1985,5(4):63-70.]
[70]Khalifa M A, Catuneanu O. Sedimentology of the fluvial and fluvio-marine facies of the Bahariya Formation (Early Cenomanian),Bahariya Oasis,western desert,Egypt[J].Journalof African Earth Sciences,2008,51(2):89-103.
[71]Desjardins PR,Buatois L A,Limarino C O,et al.Latest Carboniferous-earliest Permian transgressive depositsin the Paganzo Basin of western Argentina: Lithofacies and sequence stratigraphy of a coastal-plain to bay succession[J].Journal of South American Earth Sciences,2009,28(1): 40-53.
[72]譚程鵬,于興河,劉蓓蓓,等.季節(jié)性河流體系高流態(tài)沉積構(gòu) 造特征:以?xún)?nèi)蒙古岱海湖半灘子河為例[J].古地理學(xué)報(bào),2018, 20(6):929-940.[Tan Chengpeng,Yu Xinghe,Liu Beibei,et al. Sedimentary structures formed under upper-flow-regime in seasonal riversystem:Acase studyofBantanzi River,Daihai Lake, InnerMongolia[J].Journal of Palaeogeography,2018,20(6): 929-940.]
[73]Harms JC, Southard JB,Walker RG. Structures and sequences inclastic rock[M]. Tulsa:SEPMSociety for Sedimentary Geology,1982: 55.
[74]劉志飛,王成善,金瑋.可可西里盆地早漸新世雅西措群爬升 沙紋層理及其沉積環(huán)境意義[J].沉積學(xué)報(bào),2004,22(4):560- 565.[Liu Zhifei,Wang Chengshan,Jin Wei.Climbing-ripple cross-lamination of the Early Oligocene Yaxicuo Group in the Hoh Xil Basin and its significance for depositional environment [J].Acta Sedimentologica Sinica,2004,22(4): 560-565.]
[75]徐希旺,陳世悅,王越,等.吐哈盆地大河沿地區(qū)塔爾朗組細(xì) 粒沉積巖特征[J].沉積學(xué)報(bào),2017,35(4):705-713.[Xu Xiwang,Chen Shiyue,Wang Yue,et al.Characteristics of finegrained sedimentary rocks in Taerlang Formation,Daheyan area, Turpan-Hami Basin[J].Acta Sedimentologica Sinica,2017,35 (4): 705-713.]
[76]Garcia M,Ercilla G,Alonso B,et al.Sediment lithofacies, processes and sedimentary models in the Central Bransfield Basin, Antarctic Peninsula, since the Last Glacial Maximum[J].Marine Geology,2011,290(1/2/3/4): 1-16.
[77]Eyles N,Lazorek M.Glacial landforms,sediments 丨glaciogenic lithofacies[M]// Encyclopedia of Quaternary Science (Second Edition).Amsterdam: Elsevier,2013:18-29.
[78]Alley R B, Blankenship D D,Rooney S T, et al. Sedimentation beneath ice shelves:Theview fromice stream B[J].Marine Geology,1989,85(2/3/4): 101-120.
[79]Hermann E,Barclay K.Basal sliding of ice stream B,West Antarctica[J].JouralofGlaciology998,44(147):22-30.
[80]Chen X S,KuangHW,LiuYQ,et al.Revisiting the Nantuo Formation in Shennongjia,South China:A new depositional model and multiple glacial cycles in the Cryogenian[J].Precambrian Research,2021,356:106132.
[81]黃秀.豫西地區(qū)中元古代薊縣紀(jì)地層沉積特征及沉積古地理 研究[D].北京:中國(guó)地質(zhì)大學(xué)(北京),2009:22.[HuangXiu. A study on the sedimentary character and paleogeography of the Mesoproterozoic Jixianian Period in western Henan province [D].Beijing: China University of Geosciences (Beijing), 2009:22.]
[82]Koch ZJ, Isbel JL.Processes and products of grouding-line fans from the Permian Pagoda Formation,Antarctica: Insight into glacigenic conditions in polar Gondwana[J]. Gondwana Research,2013,24(1): 161-172.
[83]Eyles C H, Eyles N, MiallA D. Models of glaciomarine sedimentationand their applicationto theinterpretationof ancient glacial sequences[J].Palaeogeography,Palaeoclimatology,alaeoecology,1985,51(1/2/3/4): 15-84.
[84]吳崇筠,劉寶珺,王德發(fā),等.碎屑巖沉積相模式[J].石油學(xué) 報(bào),1981,2(4):1-10.[Wu Chongyun,Liu Baojun,Wang Defa, et al.Patterns of sedimentary facies of clastics in China[J].Acta Petrolei Sinica,1981,2(4): 1-10.]
「85]Nemec W. Steel R J. Alluvial and coastal conglomerates: Their
significant features and some comments on gravelly mass-flow deposits[M//KosterEH,SteelRJ.Sedimentologyofgravels and conglomerates.Calgary:Canadian Society of Petroleum Geologists, 1984: 1-31.
[86]劉林玉,李紅.沉積學(xué)原理[M].北京:地質(zhì)出版社,2016:64- 96.[Liu Linyu,Li Hong.Principles of sedimentology[M]. Beijing: Geological Publishing House,2016: 64-96.]
[87]蘭朝利,李繼亮,郭永貴.沖積沉積物搬運(yùn)和底形研究進(jìn)展 [J].地質(zhì)科技情報(bào),2000,19(2):12-16.[Lan Chaoli,Li Jiliang,Guo Yonggui.Progress in the aluvial sediment transport and bedforms[J].Geological Science and Technology Information,2000,19(2):12-16.]
[88]Walker RG. Facies models[M].2nd ed. Toronto:Geological Association of Canada, 1984:71-89.
[89] Menzies J. Modern and past glacial environments[M]. Amsterdam:Elsevier,2002:206-383.
[90]姜雪.海拉爾盆地烏爾遜—貝爾凹陷銅缽廟組—大磨拐河組 火山—碎屑沉積巖巖性巖相分析[D].長(zhǎng)春:吉林大學(xué),2007: 55-70.[JiangXue.Analysis on lithology-lithofaciesof volcaniclastic and sedimentary rock of Tongbomiao Formation-Damoguaihe Formation in Wuerxun-Beier Depressions Hailaer Basin [D].Changchun: Jilin University,2007: 55-70.]
[91]王勇,宋國(guó)奇,劉惠民,等.濟(jì)陽(yáng)坳陷細(xì)粒沉積巖形成環(huán)境及 沉積構(gòu)造[J].東北石油大學(xué)學(xué)報(bào),2015,39(3):7-14,31. [Wang Yong,Song Guoqi,Liu Huimin,et al. Formation environment and sedimentary structures of fine-grained sedimentary rock in Jiyang Depression[J].Journal of Northeast Petroleum University,2015,39(3): 7-14,31.]
[92]Blair T C,McPherson JG. Alluvial fans and their natural distinction fromrivers based on morphology,hydraulicprocesses, sedimentary processes,and facies assemblages[J].Journal of SedimentaryResearch,1994,64(3a): 450-489.
[93]Miall AD.A review of the braided-river depositional environment[J].Earth-Science Reviews,1977,13(1):1-62.
[94]Hunter LE,Powell RD, Smith GW.Facies architecture and grounding-line fan processes of morainal banks during the deglaciation ofcoastal Maine[J].Geological Society ofAmerica Bulletin,1996,108(8): 1022-1038.
[95]Hart JK.Identifying fast ice flow from landform assemblages in the geological record:A discussion[J].Annals of Glaciology, 1999,28: 59-66.
[96]MyrowPM,LambMP,EwingRC.Rapid sea level rise in the aftermath of a Neoproterozoic snowball earth[J]. Science, 2018, 360(6389): 649-651.
[97]Clapham ME,James N P.Paleoecology of Early-Middle Permian marine communities in eastern Australia:Response to global climate change in the aftermath of the Late Paleozoic ice age[J]. Palaios,2008,23(11): 738-750.
[98]Soreghan G S,Montanez IP. Special issue on the Late Paleozoic earth system[J].Palaeogeography, Palaeoclimatology,Palaeoecology,2008,268(3/4): 123-125.
[99]Berner RA.Atmospheric carbon dioxide levels over Phanerozoic time[J]. Science,1990,249(4975):1382-1386.
[100]MillerKG,Kominz MA,BrowningJV,et al.The Phanerozoic record of global sea-level change[J].Science,2005,310 (5752): 1293-1298.
[101]Rygel MC,F(xiàn)ieldingCR,F(xiàn)rank TD,et al.The magnitude of Late Paleozoic glacioeustatic fluctuations: A synthesis[J]. Journalof Sedimentary Research,2008, 78(8):500-511.
[102]Frank TD,BirgenheierLP,MontanezIP,etal.Late Paleozoic climate dynamics revealed by comparison of ice-proximal stratigraphicand ice-distal isotopic records[M]//FieldingCR, FrankTD, IsbellJL.ResolvingtheLatePaleozoic ice age in time and space. McLean: Geological Society of America, 2008: 178-195.
[103]Chen B,Joachimski MM,Shen S Z,et al.Permian ice volume and palaeoclimate history: Oxygen isotope proxies revisited[J]. GondwanaResearch,2013,24(1):77-89.
[104]DimicheleWA,MontanezIP,PoulsenCJ,etal.Climate and vegetational regime shifts in the Late Paleozoic ice age earth [J].Geobiology,2009,7(2): 200-226.
Abstract:[Objective]The climate records oftheLatePaleozoic icechamber,which developed mainlyin the Gondwana continent,are quite similar to the evolution of the currnt climate.It has becomea focus for comparative studies of Quaternary ice ages and icechamber climate.The Late Paleozoic ice age was a glacial event with the most widely ranging influence and the richest geological record since the Phanerozoic.Itsevidence of thecomplete greenhouseicehouse-greenhouse climate change processisof great significanceforanunderstanding of the evolutionof the present climateon Earth.The Lhasa Block was locatedatthe northeastern marginof theGondwanacontinent during the Late Paleozoic.Although many studies have been conducted on the spatial and temporal evolution and controling factors of theLatePaleozoic ice age,thesedimentary evolution historyof the Lhasa Block during thattime remained unclear.[Methods]In viewof this,inthis studythe Late Paleozoic strata inthe Xainza area of the Lhasa Block was selected for a 1:200 scale profile survey,which included rock color,lithological characteristics,rock thickness, sedimentary structures,fosilsand contactrelationships.Lithofacies and theirassociations were clasifiedforglacial development,andsedimentaryarchitecture analysis wasappliedtofind the lateraland vertical changes ofsedimentaryfaciesthat would identifythe sedimentary environmentand restorethe glacial sedimentary system.[Results]The study showed thatthe Late Paleozoic iceage records in the Lhasa Block are mainlyevident at the Lagar Formation, with the ageconstrained betweenthe Late Carboniferous and EarlyPermian.The glacial deposits of the Lagar Formationindicate twenty lithofacies and sixteen typical lithofacies asociations indicating six sedimentary environments : shallow sea shelf,baselinefan,subglacial,iceriver,ice lakeandoutwash fan.Conclusions]TheLatePaleozoic glaciers inthecentral part of the Lhasa Block were located inanearshore glaciomarine environment,and the glacial deposition system was mainlydivided into marine and terrestrial phases.In adition,a numberof small glacialinterglacialcyclones weredelineated inboth theEarlyandlateevolutionarystagesof theLagarFormation,basedon vertical variation of glacial and non-glacial environments.Thesedimentary system analysis for theLagar Formation sedimentary sequences indicates thattheLatePaleozoic ice age inthe Xainza area of theLhasa Block experienced a transition fromearlymarine to late terrstrial glaciations,indicatingaglobal trendof gradual climate warming from the LateCarboniferous tothe Early Permianconsistent with global Late Paleozoic iceage evolutionary features.The Late Paleozoic iceage was the closest global iceage tothe Quaternaryiceage and isan important window forunderstanding future climate shifts suchas glacial melting and global warming.Conducting research into Late Paleozoic sedimentary records inthe Lhasa Block is greatlysignificantfor explorationofthe spatial and temporal evolution,climate change and driving mechanisms of the global Late Paleozoic ice age.
Key words:Lhasa Block;Xainzaarea;Late Paleozoic ice age;lithofacies;sedimentary environment;glacier evolution