亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        聚氨酯材料在新型智能紡織服裝領(lǐng)域的研究進(jìn)展

        2025-06-25 00:00:00姚怡金子敏蒙冉菊高慧英
        現(xiàn)代紡織技術(shù) 2025年5期
        關(guān)鍵詞:紡絲導(dǎo)電聚氨酯

        中圖分類號:TQ323.8;TQ340.1 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-265X(2025)05-0010-12

        智能紡織品是指具有集成化功能的織物或服裝,其功能突破了傳統(tǒng)服飾的限制,能夠在特定環(huán)境條件下對外界刺激作出響應(yīng),從而激發(fā)多種功能屬性以適應(yīng)不同環(huán)境條件[1-3]。智能材料的概念在20 世紀(jì)90年代末被引入紡織行業(yè)[1],并根據(jù)其對外界刺激的響應(yīng)特征分為被動智能紡織品、主動智能紡織品和超智能紡織品[4]。其中,聚氨酯(PU)材料因其高彈高強(qiáng)的力學(xué)特性、可設(shè)計(jì)性結(jié)構(gòu)以及高生物安全性,逐漸成為智能紡織服裝面料的重要材料載體。隨著PU材料在加工成型技術(shù)和結(jié)構(gòu)設(shè)計(jì)理論方面的不斷突破,PU材料在推動紡織服裝面料智能化和功能集成化等方面發(fā)揮著日益重要的作用

        PU材料通過異氰酸酯與多元醇的加聚反應(yīng),形成包含氨基甲酸酯重復(fù)單元及軟硬相結(jié)構(gòu)的聚合物[5-6]。在此結(jié)構(gòu)中,氨基甲酸酯與擴(kuò)鏈劑鏈段共同構(gòu)建了硬相,賦予PU材料卓越的機(jī)械強(qiáng)度;聚醚或聚酯多元醇長鏈因其良好的伸展性,則構(gòu)成了軟相,提供出色的回彈性和耐磨性[7]。在紡織服裝領(lǐng)域,PU材料的應(yīng)用范圍廣泛[8],并在新型智能紡織服裝技術(shù)的革新中發(fā)揮著愈發(fā)重要的作用。自

        1959年美國杜邦公司成功實(shí)現(xiàn)PU材料的工業(yè)化紡絲生產(chǎn)以來,PU基彈性纖維(即氨綸)便憑借其高斷裂伸長率、低模量及高彈性回復(fù)率,已成為高端服用化纖的重要組成部分,廣泛應(yīng)用于戶外運(yùn)動服飾、泳衣、休閑服飾等多個(gè)領(lǐng)域[9-10]。PU 材料也因其優(yōu)異的界面黏附能力在紡織涂料領(lǐng)域具有重要作用,不僅能夠改善織物的風(fēng)格,還能顯著提升其耐化學(xué)性、生物相容性、耐磨性和潤濕性等功能[1]。同時(shí),PU高分子的形狀記憶特性使其能夠通過感知人體微環(huán)境中的溫濕度變化來刺激面料形變,從而有效調(diào)控紡織品的透氣透濕性[12]。在力學(xué)性能方面,PU材料憑借其高回彈性和大形變能力,能夠完美適應(yīng)人體的運(yùn)動形變,為智能可穿戴服飾提供舒適性和適應(yīng)性,并有望應(yīng)用于人體運(yùn)動或健康監(jiān)測領(lǐng)域[13-14]。此外,PU 材料的高生物相容性使其成為傷口敷料、醫(yī)療防護(hù)服、手術(shù)縫合線等醫(yī)用紡織品的理想選擇[15]。作為一種紡織粘合劑,PU 與棉、麻、毛、絲及各類化纖基紡織品均展現(xiàn)出良好的界面強(qiáng)度,并易與各種功能助劑進(jìn)行復(fù)配,從而靈活賦予紡織品各類功能屬性[16-17] C

        本文基于近年來PU材料在智能紡織服裝領(lǐng)域的應(yīng)用研究,重點(diǎn)綜述了PU基“智能纖維”和“功能涂料\"2種材料形式在形狀記憶、智能可穿戴、醫(yī)療防護(hù)及環(huán)境響應(yīng)等新興功能紡織品中的研究進(jìn)展,并展望了PU基智能化和多功能化紡織品的發(fā)展前景及未來面臨的挑戰(zhàn)

        PU基智能纖維

        PU作為重要的紡織纖維,其工業(yè)紡絲方法一般可分為干法紡絲、濕法紡絲、熔融紡絲和反應(yīng)紡絲4類。隨著紡絲技術(shù)的不斷發(fā)展,PU彈性纖維的性能得到持續(xù)優(yōu)化,PU基面料在手感、風(fēng)格、彈性、耐磨性等服用性能指標(biāo)上也不斷提升。在此基礎(chǔ)上,研究人員通過對PU基纖維結(jié)構(gòu)的設(shè)計(jì),逐步開發(fā)出具有形狀記憶、導(dǎo)電及環(huán)境響應(yīng)等功能的智能PU基纖維。

        1. 1 形狀記憶PU基纖維

        形狀記憶聚氨酯(Shapememorypolyurethane,SMPU)分子具有典型的軟(可逆相)、硬(固定相)兩相結(jié)構(gòu)。當(dāng)外界溫度超過玻璃化轉(zhuǎn)變溫度 (Tg) 時(shí),材料受力后軟鏈段發(fā)生形變;在維持外力狀態(tài)下,當(dāng)溫度降至 Tg 以下時(shí),PU分子鏈段被凍結(jié),形變狀態(tài)將會固定,同時(shí)在分子內(nèi)部殘留相應(yīng)的內(nèi)應(yīng)力;當(dāng)外界溫度重新高于 Tg 時(shí),PU分子鏈段在分子回復(fù)力作用下回到初始狀態(tài)[18-19]。至此,SMPU通過“記憶起始態(tài)一固定變形態(tài)一恢復(fù)起始態(tài)”的循環(huán)實(shí)現(xiàn)了形狀記憶效果,如圖1(a)—(c)所示[19]。SMPU可用于紡絲,因材料在牽伸成型過程中發(fā)生取向,SMPU纖維不僅具有優(yōu)異的力學(xué)性能[20],且展現(xiàn)出更高的形狀回復(fù)比和更快的響應(yīng)速度[5]。同時(shí),不同的紡絲工藝會影響SMPU纖維的分子取向、結(jié)晶度及微觀結(jié)構(gòu),從而影響其形狀記憶效果。Meng等[21]對比了熔融紡絲和濕法紡絲制備的SMPU纖維,發(fā)現(xiàn)前者具有更好的力學(xué)性能和形變回復(fù)性。而通過對電紡SMPU纖維進(jìn)行加捻處理,還可以進(jìn)一步增加其形狀記憶能力[22]

        圖1SMPU 的形狀記憶原理示意圖[19]

        在傳統(tǒng)紡織服裝領(lǐng)域,SMPU纖維被用于制造具有形狀記憶效果的領(lǐng)帶、內(nèi)衣、服飾襯里、繃帶、運(yùn)動服和帳篷等。這些材料可通過體溫或溫度的變化自動調(diào)節(jié),實(shí)現(xiàn)抗皺、免燙、防水和透濕等多種功能[19]。此外,SMPU纖維還可用于智能紡織服裝的制備,例如SMPU基織物可以根據(jù)微環(huán)境中的溫度變化調(diào)節(jié)織物的微觀結(jié)構(gòu),從而實(shí)現(xiàn)面料透氣透濕性能的調(diào)控。SMPU面料在人體的濕熱傳遞途徑[23如圖2所示,可以觀察到,在高溫階段,SMPU面料通過分子運(yùn)動增加織物的透氣散熱性,從而增強(qiáng)人體熱輻射的傳遞、增加織物內(nèi)外空氣的對流、促進(jìn)汗液的蒸發(fā),實(shí)現(xiàn)高效的散熱和透濕效果。此外,SMPU纖維也可通過濕度刺激進(jìn)行響應(yīng),Korkmaz等[24]通過在SMPU溶液中混入纖維素納米晶須,并采用濕法紡絲技術(shù),制備了具有熱、濕雙重響應(yīng)性能的形狀記憶長絲,從而實(shí)現(xiàn)了對人體溫濕度的雙重調(diào)節(jié)。類似的SMPU形變響應(yīng)機(jī)制還包括電致型[25]、光致型[26]、磁致型[27]和化學(xué)感應(yīng)型[28],這意味著SMPU基織物能夠根據(jù)不同的環(huán)境因素變化自動調(diào)節(jié)織物的結(jié)構(gòu)與性能。除此之外,SMPU纖維在智能紡織服裝領(lǐng)域的功能性也在不斷拓展。Zhang等[29]將SMPU和MXene進(jìn)行復(fù)合,通過靜電紡絲和真空過濾工藝制備復(fù)合面料,該面料利用SMPU的形狀記憶行為觸發(fā)火災(zāi)警報(bào),當(dāng)環(huán)境溫度高于SMPU的玻璃化轉(zhuǎn)變溫度時(shí),可以提供穩(wěn)定的信號監(jiān)測和火災(zāi)預(yù)警響應(yīng),這為SMPU在智能紡織品中的應(yīng)用開辟了新的方向。

        圖2人體的濕熱傳遞途徑[23]Fig.2Thermal-moisture transfer pathways of human body[23]

        1. 2 導(dǎo)電傳感纖維

        可穿戴智能紡織品的快速發(fā)展促使服裝面料突破了保暖、導(dǎo)濕和親膚等傳統(tǒng)需求,新型智能服裝以導(dǎo)電纖維材料為基材,是一種集成電子皮膚、身體運(yùn)動監(jiān)測、醫(yī)療檢測和健康預(yù)警等功能的綜合系統(tǒng)[30]。PU基面料因具有柔軟、親膚、可拉伸等性能,成為開發(fā)智能紡織服裝的理想材料[31]。然而,未改性的PU纖維并不具備導(dǎo)電性,一般可通過導(dǎo)電涂層整理、摻雜導(dǎo)電材料或與金屬纖維混紡等方式制備導(dǎo)電復(fù)合纖維,以滿足智能紡織品的功能需求。

        1. 2.1 導(dǎo)電涂層法

        導(dǎo)電涂層法,即在PU纖維表面涂覆導(dǎo)電物質(zhì),是制備導(dǎo)電復(fù)合纖維的常見方法。當(dāng)涂層固化后,導(dǎo)電物質(zhì)在纖維表面沉淀,均勻包覆纖維,從而形成導(dǎo)電網(wǎng)絡(luò)結(jié)構(gòu),賦予PU纖維導(dǎo)電性能。這種涂層工藝簡單、生產(chǎn)效率高,且與紡織染整工序契合度高,適用于導(dǎo)電纖維的批量化生產(chǎn)[32]。早期導(dǎo)電物質(zhì)主要使用導(dǎo)電性能相對較差的炭黑材料。近年來,以氧化石墨烯(GO)、碳納米管(CNTs)、銀納米線( 為代表的高電導(dǎo)率無機(jī)納米填料開始應(yīng)用于PU纖維涂層。然而,這些導(dǎo)電物質(zhì)容易因納米尺寸效應(yīng)產(chǎn)生聚集,導(dǎo)致涂層的體積電阻增加。此外,PU基纖維與導(dǎo)電涂層之間缺乏共價(jià)作用力,導(dǎo)致在纖維長期的拉伸、彎曲或洗滌過程中,涂層易脫落,導(dǎo)電性能隨之下降,這些問題在后續(xù)研究中有待進(jìn)一步優(yōu)化。為改善這一情況,He等[33]結(jié)合了靜電紡絲和噴涂技術(shù),以PU納米纖維膜為基材,將CNT/聚乙烯吡咯烷酮(PVP)涂覆于基布上,制備了具有高透氣性、拉伸性( ~250% )和導(dǎo)電性的PU基復(fù)合織物,如圖3(a)所示。即使經(jīng)過1000次彎曲,該復(fù)合織物的電導(dǎo)率和塞貝克系數(shù)也保持不變。

        1. 2.2 摻雜紡絲法

        摻雜紡絲法是一種通過在紡絲過程中將導(dǎo)電物質(zhì)摻雜于PU基體中,并在PU纖維內(nèi)部形成導(dǎo)電通路的技術(shù),用于制備具有高牢度和穩(wěn)定導(dǎo)電性能的導(dǎo)電纖維。然而,對于難溶的導(dǎo)電高分子聚合物,通常采用熔融共混或濕法紡絲技術(shù)來制備PU基導(dǎo)電纖維。熔融復(fù)合紡絲是通過將熱塑性聚氨酯(TPU)加熱至熔融狀態(tài),再與導(dǎo)電物質(zhì)進(jìn)行復(fù)合紡絲。Probst等[34]將CNTs加入熔融態(tài)TPU中,并通過共混擠出制備了柔性傳感纖維。在 5% 的CNTs添加量下,復(fù)合纖維電阻率低至 110Ω?cm ,且在多次循環(huán)拉伸后仍能保持穩(wěn)定的導(dǎo)電性能。濕法復(fù)合紡絲技術(shù)則是將PU溶解于有機(jī)溶劑中,并與導(dǎo)電物質(zhì)復(fù)合,經(jīng)噴絲頭擠出后進(jìn)入凝固浴固化,形成導(dǎo)電PU 纖維[35]。Lan等[36]采用濕法紡絲技術(shù),將MXene和CNT分散于PU溶液中,連續(xù)制備了可拉伸的MXene/CNT/P(MC)纖維,如圖3(b)所示。該纖維在機(jī)械變形下顯示出高導(dǎo)電性和耐久性,并作為傳感單元開發(fā)了一種高靈敏度 (0.94kPa-1 )快速響應(yīng)( 39ms? )和優(yōu)異耐用性的超靈敏光纖壓力傳感器,可應(yīng)用于構(gòu)建PU基智能可穿戴面料。

        1. 2.3 靜電紡絲法

        靜電紡絲法因其能夠制備出直徑達(dá)到微納米量級的纖維以及技術(shù)的靈活性,成為制備導(dǎo)電PU纖維的重要方法。一般而言,以CNTs[37] GO[38] 、導(dǎo)電聚合物[39]、納米銀線[40]為代表的導(dǎo)電材料可以與PU溶液共混配置紡絲液,隨后通過靜電紡絲法制備導(dǎo)電納米纖維,但該方法中需要克服導(dǎo)電材料的尺寸效應(yīng),既要解決微納尺寸導(dǎo)電材料在PU溶液中的分散和穩(wěn)定性問題,也要避免導(dǎo)電粒子尺寸過大造成噴絲孔堵塞[4I]。相比之下,同軸靜電紡絲法避免了微納米的導(dǎo)電粒子在PU基質(zhì)中分散困難的問題,可以制備兼具高力學(xué)性能和導(dǎo)電性能的復(fù)合纖維。在該方法中,高彈性的PU一般作為殼層,導(dǎo)電介質(zhì)作為芯層,兩者的復(fù)合實(shí)現(xiàn)了纖維在穩(wěn)定性、機(jī)械性能和導(dǎo)電性能方面的均衡,并能降低環(huán)境干擾[42]。然而,同軸靜電紡絲技術(shù)芯層注液壓力大,難以實(shí)現(xiàn)導(dǎo)電纖維的連續(xù)生產(chǎn),且同軸紡絲纖維直徑較大,降低了可紡性。因此,在近期的研究中,研究人員選擇將靜電紡的PU納米纖維作為基材,通過浸漬或涂覆的方式與導(dǎo)電材料復(fù)合,開發(fā)納米導(dǎo)電纖維膜[43]

        1. 2. 4 混紡編織法

        混紡編織法同樣也是一種制備導(dǎo)電PU纖維的重要方法。Yang等[44]報(bào)道了一種以彈性PU纖維和導(dǎo)電銅纖維混編制備3D螺旋導(dǎo)電纖維的方法,如圖3(c)所示。該團(tuán)隊(duì)通過對PU纖維進(jìn)行預(yù)拉伸,并將丙烯酸涂層與銅纖維復(fù)合,利用PU纖維的應(yīng)力松弛和銅纖維的塑性形變,開發(fā)了具有3D螺旋形狀的纖維。這種纖維不僅電阻低,且能在500次拉伸循環(huán)后維持電阻穩(wěn)定。將3D螺旋纖維編織進(jìn)彈性織物后,再通過焊接方式與電子器件組裝成智能穿戴系統(tǒng),該系統(tǒng)在大應(yīng)變和水下環(huán)境中均能保持良好的導(dǎo)電穩(wěn)定性。 ΔXu 等[45]將碳纖維紗線整經(jīng)到PU纖維上,制備了高導(dǎo)電復(fù)合纖維,該復(fù)合纖維展現(xiàn)出了優(yōu)異的靈敏度和出色的動態(tài)耐久性,可被開發(fā)成高靈敏度和快速響應(yīng)的智能紡織品,應(yīng)用于人體健康監(jiān)測和個(gè)人熱量管理

        圖3不同PU基傳感纖維制備方法Fig.3Various preparation methods of PU-based sensing fibers

        1.3 PU基環(huán)境響應(yīng)纖維

        環(huán)境響應(yīng)智能服裝面料是一類能夠感知和響應(yīng)環(huán)境變化的創(chuàng)新型紡織材料。這些面料通常集成了傳感器、致動器和納米材料等多種智能技術(shù),能夠?qū)ν饨绲臏囟取穸?、光照、化學(xué)物質(zhì)等刺激作出有效反應(yīng)[46] 。

        1. 3.1 光響應(yīng)型

        光響應(yīng)PU通過在其結(jié)構(gòu)中引入光響應(yīng)單元,在光照條件下發(fā)生物理或化學(xué)變化,進(jìn)而表現(xiàn)出形態(tài)、溫度、顏色或表面性質(zhì)等變化。其中,光熱效應(yīng)的應(yīng)用最為普遍。涂琳等[47]通過靜電紡絲制備了光熱轉(zhuǎn)換PU儲能調(diào)溫纖維,該纖維通過相變行為存儲光能,這可以提高服裝的舒適度并減少能源損耗。此外,光還可以驅(qū)動PU材料發(fā)生形變或運(yùn)動,Cui 等[48]以端羥基聚乙二醇400(PEG-400)、異氟爾酮異氰酸酯(IPDI)、 4,4′ —雙(6-羥基己氧基)偶氮苯(BHHAB)和4-氨基苯基二硫?yàn)樵?,采用兩步法制備了PU材料,利用偶氮結(jié)構(gòu)的光效應(yīng)驅(qū)動PU在紫外線照射下發(fā)生變形,這種紫外驅(qū)動特性為開發(fā)具有紫外線感知能力的智能服飾提供了可能。Li等[49]將螺吡喃(SP)光致變色基團(tuán)直接摻入聚氨酯水凝膠,制備了具有優(yōu)異的光致變色和機(jī)械性能的新型光致變色PU水凝膠。與PU水凝膠相比,PU-SP水凝膠的抗張強(qiáng)度 (3.41MPa) )和高彈性模量 (4.29MPa) 分別增加了5.4倍和9.5倍。該研究提供了一種通過摻入SP制備高強(qiáng)度、光響應(yīng)的PU水凝膠的有效方法,無需進(jìn)一步的化學(xué)改性,展示了其在可穿戴軟傳感器和人工智能系統(tǒng)中的廣闊應(yīng)用前景

        1.3.2 pH響應(yīng)型

        PU基pH響應(yīng)纖維可以織造成親膚面料,用于監(jiān)測人體汗液的 pH 值。Chung等[50]通過將靜電紡絲技術(shù)與金濺射涂層相結(jié)合,利用4-巰基苯甲酸和4-巰基吡啶這兩種常見的 pH 響應(yīng)分子對TPU納米纖維進(jìn)行功能化改造,成功制備出可穿戴的汗液pH響應(yīng)服裝。該服裝能夠精確檢測汗液中0.14和0.51個(gè) pH 值單位的變化。此外, Ha 等[51]利用 pH 響應(yīng)特性,進(jìn)一步研發(fā)了一種PU基智能織物,如圖4(a)所示。當(dāng)汗液 pH 值升高時(shí),織物中的酮-烯醇結(jié)構(gòu)發(fā)生變化,導(dǎo)致光吸收率和反射率改變,從而使姜黃素-TPU復(fù)合纖維的顏色從黃色變?yōu)榧t色。為了進(jìn)一步開發(fā)具有傳感功能的服裝,該研究還嘗試對棉、絲綢、氨綸等多種織物進(jìn)行TPU表面處理,制備出 ΔpH 響應(yīng)型的智能服裝

        1.3.3 濕度響應(yīng)型

        PU具有親水的氨基甲酸酯結(jié)構(gòu),通過電紡紡絲制備PU基納米纖維膜具有較大的比表面積和納米級孔隙結(jié)構(gòu),有利于水分子的吸附,從而引起納米纖維的電容和電阻等性能的變化[52]。在此基礎(chǔ)上,在PU基材中添加濕致變色材料,可實(shí)現(xiàn)對環(huán)境濕度的可視化監(jiān)控。朱俊榮等[53]以TPU母粒、碘化鎳為原料,通過靜電紡絲法制備了基于碘化鎳/熱塑性聚氨酯的納米纖維膜,該材料能夠隨環(huán)境濕度變化而改變顏色,具有響應(yīng)時(shí)間快(0.9s)、恢復(fù)時(shí)間短(9.9 s)和回滯度較低( 0.4% RH)等優(yōu)點(diǎn)。Ding等[54]開發(fā)了一種PU基全納米纖維可穿戴濕度傳感器,能夠通過非接觸式的濕度傳感對人體呼吸、皮膚濕度等指標(biāo)進(jìn)行實(shí)時(shí)監(jiān)測,其濕度檢測范圍為11%~95% RH,具有靈敏度高、響應(yīng)速度快、抗干擾能力好的特點(diǎn)。這種濕度敏感的PU基紡織品有望被加工成嬰兒或成人紙尿褲、床上用品、運(yùn)動醫(yī)療監(jiān)控服等,能夠感知人體微環(huán)境的濕度變化,從而輔助實(shí)現(xiàn)濕度的檢測與調(diào)控

        1.3.4 熱響應(yīng)型

        熱響應(yīng)PU纖維包括熱致變色、熱致相變儲能和熱致形狀記憶等類型。其中,熱致變色面料顏色能夠隨溫度的變化改變顏色,為紡織服飾帶來獨(dú)特的視覺效果。在運(yùn)動服裝、戶外服裝或者職業(yè)工裝中,熱致變色服飾能夠通過顏色變化提供溫度反饋,幫助穿戴者判斷環(huán)境溫度的變化。PU基熱致變色面料通過涂層、印染或混紡等方式將熱致變色材料涂覆于PU 基布,從而實(shí)現(xiàn)熱致變色效果。Zhang等[55]采用同軸濕法紡絲制備了鞘—芯結(jié)構(gòu)的PU基相變纖維,在鞘層結(jié)構(gòu)中加入MXene以增強(qiáng)光熱轉(zhuǎn)化能力,如圖4(b)所示,并將浸有熱致變色微膠囊的纖維縫在織物上,使織物通過顏色變化起到熱指示作用。該研究開發(fā)了一種集溫度調(diào)節(jié)、光熱轉(zhuǎn)換和熱致變色響應(yīng)于一體的新型智能熱調(diào)節(jié)織物,具有出色的柔韌性、高的飽和溫度( 65.35°C )和優(yōu)異的光熱轉(zhuǎn)換效率( 90.01% ),這些特性使得智能調(diào)溫紡織品在節(jié)能和個(gè)人熱管理方面具有廣闊的應(yīng)用前景。

        圖4不同環(huán)境響應(yīng)型PU基纖維Fig.4Various environmentally responsive PU-based fibers

        2PU基多功能涂料

        紡織品涂層整理主要是通過浸漬、涂覆和噴涂等工藝將功能助劑涂覆于紡織品表面,以賦予其特定的功能和性能。在眾多聚合物涂層材料中,PU涂料憑借其優(yōu)異的彈性和柔韌性,增加了織物的舒適性和耐用性,從而使涂有PU的織物在拉伸、彎曲和壓縮過程中仍能保持良好的性能。此外,通過對PU化學(xué)結(jié)構(gòu)的調(diào)控,可以實(shí)現(xiàn)對涂料性能的設(shè)計(jì),從而增加其與紡織服裝面料的匹配性。這些優(yōu)勢使得PU涂料廣泛應(yīng)用于紡織品的功能性設(shè)計(jì)中,能夠賦予面料具有阻燃性、疏水性、抗菌性及環(huán)境耐受性等多種理想功能[15,56-57] 。

        2. 1 阻燃整理涂層

        耐溫阻燃服裝面料的主要功能是在高溫和火焰環(huán)境中提供有效的保護(hù),廣泛應(yīng)用于消防、電力、軍事、航空航天及戶外運(yùn)動服等領(lǐng)域。對于合成紡織品,可在熔融紡絲的纖維階段添加阻燃劑,但可能降低紡織品的力學(xué)性能[58]。相比之下,采用高效簡單的涂層阻燃整理技術(shù)被認(rèn)為是開發(fā)阻燃面料最經(jīng)濟(jì)的方式[59]。目前,以環(huán)保型水性聚氨酯作為阻燃粘合層,并復(fù)合非鹵族阻燃劑,已成為阻燃防護(hù)服未來的重要發(fā)展方向。Cheng等在PU涂料中添加植酸鹽,并通過涂層的方式制備出耐用的阻燃防滴PET織物,該織物的極限氧指數(shù)高達(dá) 34.2% ,且在燃燒過程中總放熱量和總放煙量分別降低了 34.3% 和56.8% 。相似的,Liu等[]利用植酸鹽改性PU對戶外滌綸織物進(jìn)行了涂層處理,如圖5所示,處理后的聚酯織物表現(xiàn)出離火自熄性能,且極限氧指數(shù)達(dá)到33.8% ,經(jīng)50次反復(fù)洗滌仍具有優(yōu)異的阻燃性能,此外,磷雜菲-10-氧化物[62]、蒙脫石[63]、多聚磷酸銨[64]、石墨烯[65]等阻燃劑也有望與PU復(fù)合,用于紡織品的阻燃整理。然而,除了阻燃劑的種類和用量外,PU的涂覆量對織物的阻燃性能和服用性能也具有直接影響。PU涂覆量過低會導(dǎo)致面料阻燃性能不達(dá)標(biāo),而涂覆量過高則會增加生產(chǎn)成本,并對織物的手感、透氣性和柔韌性產(chǎn)生不利影響[66] 。

        圖5阻燃聚氨酯涂層PET織物的開發(fā)示意圖[61]

        2.2 抗菌防護(hù)涂層

        以水性聚氨酯為代表的PU基涂料因其低VOC含量和高生物相容性,適用于醫(yī)用紡織品的開發(fā)。Cheng等[6]將PU作為透氣阻濕粘合層,設(shè)計(jì)出由低孔隙率、疏水外層和高孔隙率、親水內(nèi)層組成的緊密編織的Janus織物,該織物表現(xiàn)出良好的透氣性,并在經(jīng)過10次洗滌循環(huán)后,仍能保持織物的形態(tài)和性能,優(yōu)于商用的N95防護(hù)口罩。抗菌性是醫(yī)用紡織品的重要性能指標(biāo)之一,然而普通的PU涂料本身并不具有抗菌性。因此,研究人員將抗菌劑通過物理或共價(jià)鍵合的方式引入PU涂層中,進(jìn)而制備抗菌織物[68-69]。常見的物理添加抗菌劑包括納米銀、銅、氧化鋅等,其與PU的復(fù)合工藝較為簡單,但容易出現(xiàn)與基體相容性差、遷移率高、抗菌持久性差、容易洗脫等問題。因此,研究人員通過將抗菌劑以共價(jià)鍵方式引入PU分子中,進(jìn)而賦予涂料持久的抗菌性能,避免了抗菌劑在織物洗滌過程中遷出。Zhao等[70]合成了一種新型的甲基丙烯酸季銨鹽化合物,該化合物一端帶有全氟烷基尾基,另一端帶丙烯酸基團(tuán),通過UV固化制備自分層抗菌聚氨酯涂層。 Du 等[71]將乙酸胍抗菌成分接枝于PU中,該材料的抗菌效率較線性含銨基水性聚氨酯提升50% ,且抗菌涂層固化后經(jīng)12次循環(huán)洗滌仍保持87.94% 的抑菌率。此外,為了避免細(xì)菌在織物表面附著,Huang等[72]使用了新型的兩性離子聚氨酯,該材料含有大量的磺胺甜菜堿兩性離子基團(tuán),通過互擴(kuò)散結(jié)構(gòu)(見圖6)使得涂層表面表現(xiàn)為疏水性,從而有效減少了細(xì)菌的黏附,且這種PU涂層可通過簡易的噴涂方法應(yīng)用于織物,展現(xiàn)出持久的抗菌能力。

        圖6互擴(kuò)散抗菌PU涂層制備示意圖[72] Fig.6Schematic diagram of preparation of interdiffusion antibacterial PU coating[72]

        2.3 輻射冷卻PU涂層

        輻射冷卻服裝通過發(fā)射紅外輻射,將熱量從人體傳遞到外界,從而有效調(diào)節(jié)人體表面溫度。作為一種無源輸入的降溫技術(shù),輻射冷卻技術(shù)實(shí)現(xiàn)了零能耗、零污染的自發(fā)降溫,是開發(fā)體溫調(diào)控智能紡織品的理想技術(shù)[73]。為解決輻射降溫材料與服用性能之間的兼容和同步問題,研究者通常采用與PU復(fù)合的方式構(gòu)建輻射降溫涂料,并涂覆于紡織品表面。Fan等[74]制備了由聚氨酯/聚二甲基硅氧烷和改性空心二氧化硅微球組成的疏水性輻射冷卻復(fù)合涂層。通過二氧化硅微球填料和周圍微孔PU基體的協(xié)同作用,復(fù)合涂層在大氣透明窗口中表現(xiàn)出優(yōu)異的太陽光反射率和熱發(fā)射率,分別可達(dá)0.906和0.961,在白天和夜晚分別實(shí)現(xiàn) 8.18C 和 3.9°C 的降溫效果。在此基礎(chǔ)上,Song等[75]通過在PU涂層增加亞微米和微米尺寸的孔隙結(jié)構(gòu),可以有效增強(qiáng)多孔涂層在近紅外區(qū)域的光反射行為,從而強(qiáng)化輻射降溫效果。Shan等[76]采用非溶劑相分離策略制備了TPU/二氧化硅氣凝膠的復(fù)合薄膜,如圖7所示,由于復(fù)合薄膜的分級多孔結(jié)構(gòu)和二氧化硅的高光反射率,該薄膜能夠?qū)崿F(xiàn)最高 17.6°C 的降溫效果,并有望作為棉、滌綸和尼龍等傳統(tǒng)紡織品的防水透濕涂層

        圖7 AFTPU薄膜日間輻射冷卻示意圖描述[76] Fig.7Schematic description of radiative cooling of the AFTPU thin film during the day[76]

        2.4 新型仿皮革PU涂層

        PU因其優(yōu)異的黏附性能、耐磨性和柔韌性,能夠通過浸軋、涂層等工藝與基布復(fù)合,從而制備出具備類似天然皮革質(zhì)感的人造革面料[77]。其中,超纖革因其彈性、柔軟度和豐滿的手感接近天然皮革,在服用面料中應(yīng)用最為廣泛。早期的超纖革主要采用溶劑型PU,但由于溶劑的揮發(fā)和殘余問題,與綠色發(fā)展的理念不符。因此,無溶劑型PU和水性聚氨酯(WPU)基皮革逐漸成為發(fā)展主流。李琛等[78]以聚碳酸酯二醇為軟鏈段,與異佛爾酮二異氰酸酯聚合,合成WPU乳液,并加入助劑,隨后對海島纖維進(jìn)行浸軋,制備出WPU基超細(xì)革。該WPU的斷裂強(qiáng)度和斷裂伸長率分別達(dá)到 3.7MPa 和 764.0% ,且制成的超細(xì)革表面裂紋少,展現(xiàn)了優(yōu)異的彈性和柔軟度,有望替代動物皮革制品,

        新型PU基皮革不僅具有優(yōu)異的力學(xué)性能,還被賦予多種功能屬性,從而拓展了其在特種服裝中的應(yīng)用前景。Fan等[利用PU基皮革的優(yōu)異力學(xué)性能,開發(fā)了一種智能可穿戴的抗沖擊軟體防彈衣,如圖8(a)所示。該防彈皮革通過分級夾層結(jié)構(gòu)設(shè)計(jì),實(shí)現(xiàn)了韌性與柔性的耦合,具有優(yōu)異的能量緩沖、沖擊波防護(hù)和壓力感應(yīng)性能。此外,這種皮革/CNT-SSG/PU在沖擊過程中會產(chǎn)生傳感信號,兼具良好的身體防護(hù)和現(xiàn)場監(jiān)控功能。Li等[80]通過仿天然皮革結(jié)構(gòu),如圖8(b)所示,在PET基無紡布上構(gòu)建了銀納米線和耐磨PU涂料的復(fù)合涂層,展現(xiàn)出高效的電磁波吸收損耗( 98.5% 和卓越的電磁波屏蔽性能 (~110dB,8.2-12.4GHz) 。該復(fù)合材料中的PU網(wǎng)絡(luò)不僅提供了強(qiáng)大的粘合強(qiáng)度和機(jī)械性能,還使復(fù)合材料能夠經(jīng)受超聲波洗滌、強(qiáng)酸、強(qiáng)堿、膠帶剝離、彎曲和磨損等測試。

        3 總結(jié)與展望

        近年來,隨著PU基材料和智能加工技術(shù)的不斷革新,智能紡織服裝的發(fā)展得到了顯著推動。與現(xiàn)有的聚合物相比,PU基材料具有優(yōu)異的生物相容性、可生物降解性、卓越的機(jī)械強(qiáng)度、可定制的理化性能和微觀結(jié)構(gòu),且具備良好的界面黏附性能,因而適用于形狀記憶面料、智能可穿戴服飾、環(huán)境響應(yīng)型面料以及多功能紡織品的制造。然而,如何將智能PU基纖維和功能涂料以低成本、可持續(xù)、可批量化加工的方式集成到日常紡織服裝中,仍存在諸多挑戰(zhàn)。基于可持續(xù)發(fā)展及產(chǎn)業(yè)化的需求,未來關(guān)于PU基智能紡織服裝的研究應(yīng)重點(diǎn)關(guān)注以下幾個(gè)方面:

        (a)智能叮穿戴軟體防彈衣[79]
        圖8PU基皮革功能材料Fig.8PU-based leather functional material

        a)盡管PU基功能化紡織服裝正處于快速發(fā)展階段,但現(xiàn)有研究主要集中于理論層面。未來需開展更多實(shí)證研究,以探索智能化紡織技術(shù)方案的可行性,評估其成本效益,并推動相關(guān)產(chǎn)品的工業(yè)化驗(yàn)證。b)對PU基智能紡織服裝的研究應(yīng)重視紡織品的本質(zhì)特征。作為功能性服裝,不僅需關(guān)注其智能化特性,還應(yīng)全面評估其服用性能,包括硬挺度、透氣性、色牢度、抗皺性及水接觸角等關(guān)鍵指標(biāo),以確保其綜合性能滿足實(shí)際應(yīng)用需求,

        c)在PU基智能紡織服裝制備、使用及廢棄的全生命周期中,應(yīng)以確保人體健康與環(huán)境安全無負(fù)面影響為核心戰(zhàn)略目標(biāo)。因此,未來研究應(yīng)著重推動生物質(zhì)PU的合成,開發(fā)可降解、可回收的綠色PU基紡織品。

        總之,PU基智能紡織品集傳感、環(huán)境感知、健康檢測、人體微環(huán)境調(diào)節(jié)及多功能性于一體。未來的研究應(yīng)進(jìn)一步優(yōu)化PU基智能紡織品的結(jié)構(gòu)設(shè)計(jì),創(chuàng)新PU材料與紡織纖維的集成技術(shù),以實(shí)現(xiàn)耐用性、染色性、柔軟性、功能性、織造性、降解性及低制造成本等相融合,從而為推動智能化生活貢獻(xiàn)紡織科技的力量。

        參考文獻(xiàn):

        [1]陳海通,王進(jìn)美,王丞,等.纖維材料在智能紡織品的研究與應(yīng)用[J].合成纖維,2024,53(4):24-30.

        CHENHaitong,WANGJinmei,WANGCheng,etal.Researchand applicationof fibermaterialsinsmart textiles[J].SyntheticFiberin China,2024,53(4):24-30.

        [2]張蕊,鄭瑩瑩,董正梅,等.仿生設(shè)計(jì)在智能紡織品中的應(yīng)用與研 究進(jìn)展[J].現(xiàn)代紡織技術(shù),2023,31(6):226-240. ZHANG Rui, ZHENG Yingying, DONG Zhengmei,et al. Application and research progress of bionic design in smart textiles [J].Advanced Textile Technology,2023,31(6):226-240.

        [3]LI Q,XUE Z,WU Y,et al. The status quo and prospect of sustainable development of smart clothing[J]. Sustaina-bility, 2022,14(2):990.

        [4]DE OLIVEIRA CRS,DA SILVAAHJr, IMMICHAP S,et al. Use of advanced materials in smart textile manufacturing[J]. MaterialsLetters,2022,316:132047.

        [5]郭書君,尹昌平,趙秀輝,等.聚氨酯彈性體分子結(jié)構(gòu)對阻尼 及力學(xué)性能的影響[J].材料工程,2023,51(9):192-199. GUO Shujun,YIN Changping,ZHAO Xiuhui,et al. Effect of molecular structure ofpolyurethane elastomer on damping and mechanical properties[J]. Journal of Materials Eng-ineering,2023, 51(9):192-199.

        [6]FERNANDEZ CE,BERMUDEZ M,VERSTEEGEN R M,et al. Anoverview on12-polyurethane:synthesis, structureand crystallization[J].European Polymer Journal,2010,46(11): 2089-2098.

        [7]田千俊,王淋,黃志超,等.R值對含二硒鍵聚氨酯自修復(fù)性能的 影響[J].現(xiàn)代紡織技術(shù),2023,31(5):106-116. TIAN Qianjun,WANG Lin,HUANG Zhichao,et al. Eect of the R value on the self-healing property of polyurethane containing diselenide bonds[J]. Advanced Textile Technology,2023,31(5): 106-116.

        [8] GHONIAJR,SAVANI N G,PRAJAPATI V,et al. A review on polyurethanebasedmultifunctionalmaterialssynthesisfor advancement in textile coating applications[J]. Journal of Polymer Research,2024,31(3):95. 3979-3991.

        [10]張娟,趙耀明,郭熙桃.聚氨酯彈性纖維紡絲及改性技術(shù)進(jìn)展 [J].化纖與紡織技術(shù),2008,37(1):31-35. ZHANG Juan, ZHAO Yaoming,GUO Xitao. The development of technique for spinning and modification of polyurethane elastic fiber [J].Chemical Fiberamp; Textile Technology,2008,37(1): 31-35.

        [11]于國玲,符英,趙萬賽,等.國內(nèi)聚氨酯涂料的研究進(jìn)展[J]. 彈性體,2022,32(5):98-102. YU Guoling,F(xiàn)U Ying, ZHAO Wansai, et al. Research progress of polyurethane coatings in China[J]. China Elastomerics,2022,32 (5): 98-102.

        [12]郝習(xí)波,趙彩莉,劉國亮.形狀記憶聚氨酯在紡織服飾領(lǐng)域應(yīng) 用的研究進(jìn)展[J].毛紡科技,2023,51(11):113-118. HAO Xibo, ZHAO Caili,LIU Guoliang. Applications of shape memory polyurethane in the field of textiles and apparel[J].Wool Textile Journal, 2023,51(11): 113-118.

        [13]WANG R,XUW,SHEN W,et al.A highly stretchable and transparent silver nanowire/thermoplastic polyurethane film strain sensor for human motion monitoring[J]. Inorganic Chemistry Frontiers,2019,6(11) : 3119-3124.

        [14]莫涯,岳萌,吳萬超,等.聚氨酯導(dǎo)電復(fù)合材料研究進(jìn)展[J]. 現(xiàn)代化工,2024,44(1):39-43. MO Ya,YUE Meng,WU Wanchao,et al.Research progress of polyurethane conductive composites [J].Modern Chemical Industry,2024,44(1) :39-43.

        [15] SIKDAR P,DIP T M,DHAR A K,et al.Polyurethane(PU) based multifunctional materials:emerging paradigm for functional textiles,smart,and biomedical applications[J]. Journal of Applied Polymer Science,2022,139(38): e52832.

        [16]曾登,孫振波,閆子涵.水性聚氨酯的改性及其在紡織領(lǐng)域的 應(yīng)用[J].紡織報(bào)告,2023,42(12):1-4. ZENG Deng,SUN Zhenbo,YAN Zihan.Modificationof waterborne polyurethane and its application in the textile field[J]. Jiangsu Textile,2023,42(12):1-4.

        [17]SUN Y,TIAN X,CHEN Z,et al. Multifunctional fabric leveraging coating of bio-based waterbome polyurethane[J].Fibers and Polymers,2024,25(5):1751-1764.

        [18]LIANG Z,LI J, CHEN K,et al. Multiple relaxation mechanismbased thermo-mechanical constitutive model describing cyclic shape memory effect of shape memory polyurethane[J].Acta Mechanica Sinica,2024,40(1):423347.

        [19]孫煥惟,張恒,李霞,等.形狀記憶聚氨酯及其非織造材料成 型方法研究進(jìn)展[J].材料導(dǎo)報(bào),2021,35(23):23212-23218. SUN Huanwei, ZHANG Heng,LI Xia,et al. A review on the shape memorypolyurethane and itsnonwovenprogress[J]. Materials Reports,2021,35(23): 23212-23218.

        [20] JIF L, ZHU Y,HUJL,et al.Smart polymer fibers with shape memory effect[J]. Smart Material Structures,2006,15(6): 1547-1554.

        [21] MENG Q,HU J, ZHU Y,et al. Morphology,phase separation, prepaieu by umeremt spmng meuious J」. smait Matenais anu Structures,2007,16(4):1192-1197.

        [22] SHI Y, CHEN H, GUAN X. High shape memory properties and high strength of shape memory polyurethane nanofiber-based yarn and coil[J].Polymer Testing,2021,101:107277.

        [23]PENG Y,CUIY. Advanced textiles forpersonal thermal management and energy[J]. Joule,2020,4(4): 724-742.

        [24]KORKMAZ MEMIS N,KAPLAN S. Production of thermal and water responsiveshape memory polyurethane nanocomposite filaments with celulose nanowhisker incorporation[J].Celulose, 2021,28(11): 7075-7096.

        [25] ZHENG Y, ZENG B, YANG L, et al. Fabrication of thermoplastic polyurethane/polycaprolactonemultilayeredcompositeswith confined distribution of MWCNTs for achieving tunable thermo-and electro-responsive shape-memory performances [J]. Industrial amp; Engineering Chemistry Research,2020,59(7) : 2977-2987.

        [26]YANG L,TONG R,WANG Z,et al. Polydopamine particle-flled shape-memory polyurethane composites with fast near-infrared light responsibility[J].Chemphyschem,2018,19(16):2052-2057.

        [27] YAKACKI C M, SATARKAR N S, GALL K, et al. Shape-memory polymer networks with Fe3O4 nanoparticles for remote activation [J].Journal of Applied Polymer Science,2009,112(5): 3166-3176.

        [28]FAN W, ZHANG Y,LI W,et al. Multi-level self-healing ability of shape memory polyurethane coating with micro-capsules by induction heating[J].Chemical Engineering Journal,2019,368: 1033-1044.

        [29] ZHANG L,HUANG Y,DONG H,et al.Flame-retardant shape memory polyurethane/MXene paper and the application for early fire alarm sensor[J].Composites Part B:Engineering,2021, 223:109149.

        [30]賀軍,郭書文,李琳,等.面向智能可穿戴紡織品的聚合物基 柔性傳感器的研究進(jìn)展[J].棉紡織技術(shù),2024,6(5):1-9. HE Jun,GUO Shuwen,LI Lin,et al. Advance in polymer-based flexible sensors for smart wearable textiles[J].Cottn Textile Technology,2024,6(5):1-9.

        [31] ZHAO Y,YOU S,F(xiàn)ANG J,et al.Wearable skin-like polyurethane devices with variable optical functions[J].Chemical Engineering Journal,2024,491:152126.

        [32]周丹硯,黃漢雄.基于導(dǎo)電涂層微結(jié)構(gòu) TPU柔性傳感器的制 備和性能[J].中國塑料,2022,36(11):1-6. ZHOU Danyan,HUANG Hanxiong. Preparation and performance offlexible sensorsbased onmicrostructured thermoplastic polyurethane with conductive coatings[J]. China Plastics,202, 36(11) : 1-6.

        [33]HEX,SHI J,HAO Y,et al.Highly stretchable,durable,and breathable thermoelectric fabrics for human body energy harvesting and sensing[J].Carbon Energy,2022,4(4):621-632.

        [34]PROBST H,KATZER K,NOCKE A,et al. Melt spinning of highly stretchable, electrically conductive filament yarns[J]. Polymers,2021,13(4):590. 2023,49:15.

        [36]LAN L,JIANG C,YAO Y,et al.A stretchable and conductive fiber for multifunctional sensing and energy harvesting[J].Nano Energy,2021,84:105954.

        [37]孫靜怡,黃鋒林,薛麗媛,等.軟硬鏈段添加碳納米管/炭黑對 聚氨酯納米纖維性能的影響[J].精細(xì)化工,2020,37(6): 1184-1192. SUN Jingyi,HUANG Fenglin,XUE Liyuan,et al. Effect of carbon nanotubes/carbon black dispersed in soft and hard chain segment of polyurethane on thepropertiesofpolyurethane nanofibers[J].Fine Chemicals,2020,37(6):1184-1192.

        [38]NAJAFI TIREH SHABANKAREH A,SAMADI PAKCHIN P, HASANY M,et al. Development of a new electroconductive nanofibrous cardiac patch based on polyurethane-reduced graphene oxidenanocomposite scaffolds[J].Materials Chemistryand Physics,2023,305:127961.

        [39]陳中華,曾明,李亮,等.導(dǎo)電聚合物/聚氨酯復(fù)合材料的研 究進(jìn)展[J].現(xiàn)代化工,2020,40(5):73-76. CHEN Zhonghua, ZENG Ming,LI Liang,et al. Research progress on conductive polymers/polyurethane composites [J]. Modern Chemical Industry,2020,40(5):73-76.

        [40]XUE B,ZHANGF,ZHENG J,et al.Flexible piezoelectric device directly assembled through the conti-nuous electrospinning method [J].Smart Materials and Structures,2021,30(4):045006.

        [41]HOSSEINI RAVANDI S A, SADRJAHANI M, VALIPOURI A, et al.Recently developed electrospinning methods:a review[J]. Textile Research Journal,2022,92(23/24) : 5130-5145.

        [42]HOU X,ZHOU Y,LIU Y,et al. Coaxial electrospun flexible PANI//PU fibers as highly sensitive pH wearable sensor[J]. Journal of Materials Science,2020,55(33):16033-16047.

        [43]汪文龍,王江楠,趙昕.碳納米管/聚氨酯復(fù)合薄膜的制備及 其拉伸傳感性能[J].東華大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,47 (2):12-18. WANG Wenlong,WANG Jiangnan, ZHAO Xin. Preparation and stretchable sensing properties of carbon nanotubes/polyurethane films[J].Journal of Donghua University(Natural Science), 2021,47(2):12-18.

        [44]YANG Z, ZHAI Z, SONG Z,et al. Conductive and elastic 3D helical fibers for use in washable and wearable electronics[J]. Advanced Materials,2020,32(10):1907495.

        [45]XU D,OUYANG Z,DONG Y,et al.Robust,breathable and flexible smart textiles as multifunctional sensor and heater for personal health management[J].Advanced Fiber Materials,2023, 5(1): 282-295.

        [46]HU J,MENG H,LI G,et al.A review of stimuli-responsive polymers for smart textile applications[J].Smart Materials and Structures,2012,21(5):053001.

        [47]涂林,鮑利紅,修興洪,等.光熱轉(zhuǎn)換聚氨酯基儲能調(diào)溫纖維 的制備及性能[J].北京服裝學(xué)院學(xué)報(bào)(自然科學(xué)版),2021, propertiesof photothermal conversion fiber for energystorageand temperature regulation[J]. Journal of Beijing Institute of Fashion Technology(Natural Science Edition),2021,41(4):71-78.

        [48] CUI Z,YUE X,WANG Y,et al.A light-responsive poly (urethane-urea)actuatorwithroom temperatureself-healing performance[J]. Chemical Engineering Journal, 2024, 479:147538.

        [49]LI G,PAN Z, JIA Z,et al. An efective approach for fabricating high-strength polyurethane hydrogels with reversible photochromic performance as a photoswitch[J]. New Journal of Chemistry, 2021,45(14) : 6386-6396.

        [50] CHUNG M, SKINNER W H, ROBERT C, et al. Fabrication of a wearable flexible sweat pH sensor based on SERS-active Au/TPU electrospun nanofibers[J].ACS Applied Materials amp; Interfaces, 2021,13(43) : 51504-51518.

        [51]HA JH,JEONG Y,AHN J,et al.A wearable colorimetric sweat pH sensor-based smart textile for health state diagnosis[J]. Materials Horizons,2023,10(10) : 4163-4171.

        [52] XU W,HU X, ZHUANG S,et al. Flexible and salt resistant Janus absorbers by electrospinning for stable and effcient solar desalination [J].Advanced Energy Materials,2018,8(14) : 1702884.

        [53]朱俊榮,王潮霞.基于電紡 NiI2 /TPU納米纖維膜的濕敏變色傳 感器的制備及性能[J].精細(xì)化工,2021,38(12):2471-2477. ZHU Junrong,WANG Chaoxia. Preparation and proper-ties of colorimetric humidity sensor based onelectrospunNil 2 /TPU nanofibrous membrane[J].Fine Chemicals,2021,38(12): 2471-2477.

        [54]DING S,JIN X,WANG B,et al. Integrating Ti3C2Tx MXene nanosheets with thermoplastic polyurethane nanofi-bers as wearable humidity sensors for noninvasive sleep monitoring and noncontact sensing[J].ACSApplied Nano Materials,2023,6(13): 11810-11821.

        [55] ZHANG J,ZHANG Y,WU S,et al. Weavable coaxial phase change fibers concentrating thermal energy storage,photothermal conversion and thermochromicresponsivenesstowardsmart thermoregulatory textiles [J].Chemical Engineering Journal, 2024,483:149281.

        [56]LEI Y,JIANG B,LIUH,et al.Mechanicallyrobust superhydrophobic polyurethane coating foranti-icing applica-tion[J]. Progress in Organic Coatings,2023,183:107795.

        [57]仇慧麗,楊群,崔進(jìn),等.防水透濕膜在紡織上的應(yīng)用及研 究進(jìn)展[J].現(xiàn)代紡織技術(shù),2023,31(2):244-255. QIU Huili,YANG Qun,CUI Jin,et al. Research progress and application of waterprof and moisture permeable membranes on textiles[J].Advanced Textile Technology,2023,31(2): 244-255.

        [58]KUNDU C K,LI Z, SONG L, et al. An overview of fire retardant treatments for synthetic textiles:from traditional approaches to recent applications[J].European Polymer Journal,2020, 137: 109911.

        [59]OZER M S,WESEMANN M J,GAAN S. Flame retardant backcoated PET fabric with DOPO-based environmentally friendly formulations[J]. Progressin Organic Coatings,2023,175:107363.

        [60] CHENG X W,LIU Y W,JIN JH, et al.Metalic phytates modified polyurethane coating for constructing long-lasting flame retardant outdoor polyesterfabric[J].ProgressinOrganic Coatings,2024,188:108205.

        [61]LIU Y W,HU B Q,GUAN JP,et al. Biomass phytate salt-based flame-retardant polyurethane coating for outdoor polyester fabric:a long-lasting solution[J].Polymer Testing,2024,135:108467.

        [62] ZHOU J,DONG F,LIU C,et al. P,N,Si synergistic flameretarding water polyurethane coating with superior flame retardancy and hydrophobicity[J].Journal of Polymer Research,2023,30 (7): 260.

        [63]DING Z,LI J,XIN W,et al. Low gloss waterborne polyurethane coatings with anti-dripping and flame retardancy via montmorillonite nanosheets[J]. Progress in Organic Coatings, 2019,136: 105273.

        [64] ZHANG D,WILLIAMS B L,LIU J,et al. An environ-mentallyfriendly sandwich-like structured nanocoating system for wash durable,flame retardant,and hydrophobic coton fabrics[J]. Cellulose,2021,28(16):10277-10289.

        [65] ZHOUJ,LIUC,LU K,et al.Biomas-functionalized graphene oxide toward waterborne polyurethane composite with enhanced flame retardancy and hydrophobicity[J].Journal of Polymer Science,2023,61(22):2909-2921.

        [66]張薄,劉萍,黃桌然,等.水性阻燃劑的涂覆量對織物阻燃性 能的影響[J].產(chǎn)業(yè)用紡織品,2022,40(9):22-28. ZHANG Bo,LIU Ping,HUANG Zhuoran, et al.Efect of amount of water-borne flame retardant on flame-retardant properties of fabrics[J]. Technical Textiles,2022,40(9):22-28.

        [67]CHENG S,HAO W,WANG Y,et al. Commercial Janus fabrics as reusable facemask materials: a balance of water repellency, filtration efficiency,breathability,andreusa-bility[J].ACS AppliedMaterialsamp;Interfaces,2022,14(28):32579-32589.

        [68]HAN Y,JIANG Y,TAN P,et al.Waterborne fluorinated polyurethane containing guanidine for antibacterial andantiinorganic fouling coatings with improved mechanical properties[J]. Progress in Organic Coatings,2022,173: 107219.

        [69]CHENG L,REN S, LU X. Application of eco-friendly waterborne polyurethane composite coating incorporatedwith nano celulose crystalline and silver nano particles on wood antibacterial board[J]. Polymers,2020,12(2): 407.

        [70] ZHAO J,MILLIANS W,TANG S, et al.Self-stratified antimicrobial acrylic coatings via one-step UV curing[J].ACS Applied Materials amp; Interfaces.2015.7(33):18467-18472.

        [71]DU S,WANG Y,ZHANG C,et al. Self-antibacterial UV-curable waterborne polyurethane with pendant amine and modified by guanidinoacetic acid[J]. Journal of Materials Science,2018,53 (1):215-229.

        [72]HUANG Z,NAZIFI S,CHENG K,et al. Scalable inter-diffused zwitterionic polyurethanes for durable antibacterial coatings[J]. Chemical Engineering Journal,2021,422:130085.

        [73]韓夢瑤,任松,葛燦,等.用于個(gè)人熱管理的被動調(diào)溫服裝材 料研究進(jìn)展[J].現(xiàn)代紡織技術(shù),2023,31(1):92-103. HAN Mengyao,REN Song,GE Can,et al. Research progress of passive temperature-regulated clothing materials for personal thermal management[J].Advanced Textile Technology,2O23,31(1): 92-103.

        [74]FAN W,LI H,WANG Z,et al. Modified hollow glass microsphere insitureinforced polyurethane/polydimethyl-siloxane composite coating with self-cleaning and durable passive radiative cooling behaviors[J].Progress in Organic Coatings,2024,191: 108456.

        [75] SONG Y, ZHAN Y,LI Y,et al. Scalable fabrication of superelastic TPU membrane with hierarchical pores for subambient daytime radiative cooling[J]. Solar Energy,2023,256:151-157.

        [76] SHAN X,LIUL,WU Y,et al.Aerogel-functionalized thermoplastic polyurethane as waterproof, breathable freestanding films and coatings for passive daytime radiative coing[J]. Advanced Science(Weinheim,Baden-Wurttemberg,Germany), 2022,9(20): e2201190.

        [77]楊獻(xiàn)金,張子明,李勇.水性聚氨酯在合成革干法涂層中的應(yīng)用 研究[J].皮革科學(xué)與工程,2023,33(2):55-61. YANG Xianjin, ZHANG Ziming, LI Yong. Study on application of waterborne polyurethane in the dry coating of synthetic leather[J]. Leather Science and Engineering,2023,33(2): 55-61.

        [78]李琛,王冬,仲鴻天,等.超細(xì)纖維合成革含浸用水性聚氨酯 的合成及其應(yīng)用[J].紡織學(xué)報(bào),2024,45(3):129-136. LI Chen,WANG Dong,ZHONG Hongtian,et al. Synthesis and application of microfiber leather impregnated with waterborne polyurethane[J]. Journal of Textile Research,2024,45(3):129- 136.

        [79]FAN Z, ZHAO C,WU J,et al. Intelligent safeguarding Leather withexcellent energy absorption via the toughness-flexibility coupling designation[J]. Composites Part A: Applied Science and Manufacturing,2022,161:107078.

        [80]LI J,CUI M,WENJ,et al.Leather-like hierarchical porous composites with outstanding electromagnetic inter-ference shielding efectiveness and durability[J]. Compo-sites Part B: Engineering, 2021,225:109272.

        Research progress of polyurethane materials in the field of new intelligent textile and clothing

        YAO Yi1,2 , JIN Zimin2, MENG Ranju' , GAO Huiying (1.Fashion Institute of Design,Jiaxing Vocational amp; Technical College,Jiaxing 314036,China; 2. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University,Hangzhou 310018,China)

        Abstract:Polyurethane,abbreviated asPU,isa polymer material formed bythe additionpolymerizationof isocyanates and polyhydric alcohols.Itis widelyused inthe field of textiles.Since DuPont achieved industrial spinning production of PU materials in 1959,PU-based elastic fibers have been significantly applied in in high-end clothing chemical fiber fields such as outdoor clothing,sportswear,swimwear,and casual wear.PU materials are notonlyequipped with excelent mechanical strength,elasticityand abrasion resistance,but also show good interfacial adhesionability.Inthe technological innovationof intellgent textileandclothing,PUmaterials playan increasingly important role, promoting the development of smart wearable clothing.

        The various applications of PU materials inthe field of inteligent textile and clothing focus on shape memory fibers,conductive sensing fabrics and environmentally responsive textiles.Shape memory PU-based fibers utilize temperature and humidity changes to achieve morphological memory,andare widely used in wrinkle-resistant,nonironing,and waterprof apparel. Conductive sensing fabrics are prepared through methods such as coating,doping spinning,electrospinning,and blended weaving,achieving integrated electronic skinand health monitoring functions.Environmentally responsive PU-based fabrics,on the other hand,have beenapplied in clothing that adapts to diferent environmental conditions by introducing light responsive,pH responsive,humidityresponsive, and heatresponsive units.This article also explores the application of PU-based multifunctional coatings in flame retardancy,antibiosis,radiational coling,andleatherete imitation,demonstrating the importantrole of PU materials in promoting the development of intelligent textiles.

        In recent years,the continuous innovation of PU-based materials and intelligent machining technology has facilitatedthedevelopmentof inteligenttextileandclothing.Thebiocompatibility,biodegradability,excelent mechanical strength,and good interfacial adhesion propertiesof PU-based materials haveshown great potential in the processing of shape memory fabrics, smart wearable apparel,environmentally responsive fabrics,and multifunctional textileapparel.However,therearestill challenges inintegrating intelligentPU-based fibersand functional coatings into daily clothing ina low-cost,sustainable,and batch-processble manner.In future research,itisnecessary to focus ontheindustrialvalidationofPU-based intelligent textiles,comprehensively evaluate their wearability,and accelerate the synthesis of biomassPU and the development of green PU-based textiles to achieve the vision of smart living.

        Keywords: polyurethane; intelligent; textiles; fibers; coatings

        猜你喜歡
        紡絲導(dǎo)電聚氨酯
        同軸靜電紡絲法制備核-殼復(fù)合納米纖維
        靜電紡絲法制備正滲透膜材料
        云南化工(2021年7期)2021-12-21 07:27:36
        聚氨酯合成革的服裝產(chǎn)品及其應(yīng)用
        玻纖增強(qiáng)聚氨酯保溫耐火窗解決方案
        上海建材(2019年4期)2019-05-21 03:13:04
        靜電紡絲制備PVA/PAA/GO三元復(fù)合纖維材料
        數(shù)字直流調(diào)速器6RA70在紡絲牽伸系統(tǒng)中的應(yīng)用
        TiO2/PPy復(fù)合導(dǎo)電微球的制備
        CPS導(dǎo)電回路電動斥力的仿真計(jì)算
        復(fù)合軟段耐熱聚氨酯泡沫塑料的制備及表征
        中國塑料(2015年8期)2015-10-14 01:10:46
        新型鞋用水性聚氨酯膠研發(fā)成功
        国产91在线精品观看| 岛国AV一区二区三区在线观看| 亚洲av成人一区二区三区网址| 亚洲中文字幕国产剧情| 国产综合精品久久99之一| 国产精成人品日日拍夜夜免费| 中文字幕在线亚洲一区二区三区| 久草视频华人在线观看| 国产剧情av麻豆香蕉精品| 欧美人与禽zozzo性伦交| 亚洲最新偷拍网站| 久久婷婷国产五月综合色| 亚洲av成人av三上悠亚| 麻豆影视视频高清在线观看| 亚洲大尺度在线观看| 一区二区免费国产a在亚洲| 日本在线观看一区二区三| 亚洲精品字幕| 永久免费看免费无码视频 | 亚洲区小说区图片区qvod伊| 二区三区视频在线观看| 色呦呦九九七七国产精品| 国产真实夫妇视频| 精品少妇爆乳无码aⅴ区| 女同舌吻互慰一区二区| 国产a在亚洲线播放| 成人无码视频| 亚洲视频一区二区久久久| 中文字幕亚洲一区二区不下| 国产成人一区二区三区影院动漫 | 99国产超薄丝袜足j在线播放| 国产精品亚洲av无人区二区| 国产成人a级毛片| 处破痛哭a√18成年片免费| 人妻av一区二区三区高| 久久在一区二区三区视频免费观看| 人人爽人人澡人人人妻| 亚洲AV无码未成人网站久久精品| 亚洲乱码av中文一区二区第八页| 无码中文亚洲av影音先锋| 久久中文字幕乱码免费|