亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        DAP-seq和RNA-seq揭示轉(zhuǎn)錄因子APETALA3-3調(diào)控鐵皮石斛花型變化機理

        2025-05-25 00:00:00宋雅蓉朱洪鳳敖疊劉安祺陸德銀和鳳美
        熱帶作物學報 2025年5期
        關鍵詞:鐵皮石斛花瓣

        摘""要:蘭花唇瓣是特化的花瓣,因其多樣性具有極大觀賞價值和生物學價值,但其形成機理迄今仍未解決。APETALA3-3(AP3-3)是花器官身份基因,與蘭花唇瓣形成有關,但其如何調(diào)控蘭花唇瓣多樣性形成機理目前未見報道。本研究以鐵皮石斛野生型植株和鐵皮石斛DoAP3-3過表達植株的花器官為研究對象,通過DAP-seq和RNA-seq聯(lián)合分析,從鐵皮石斛轉(zhuǎn)錄因子DoAP3-3調(diào)控下游靶基因的角度探討唇瓣多樣性形成機制。結果表明:共鑒定出MADS6、NAC029、NAC054、WOX3、AS2、ERECTA、AG等7個關鍵候選靶基因,這些靶基因可能通過特異性調(diào)控或在DoAP3-3的作用下與其他基因互作調(diào)控花器官發(fā)育和花型發(fā)育。酵母單雜交實驗驗證表明轉(zhuǎn)錄因子DoAP3-3與MADS6之間存在相互作用,影響花型發(fā)育。該研究為初步解析花器官特征基因DoAP3-3與其靶基因之間的調(diào)控機制,探究蘭科植物中高度特化和多樣化的花形態(tài)形成機理奠定基礎。

        關鍵詞:APETALA3-3;鐵皮石斛;DNA親和純化測序;DAP-seq;轉(zhuǎn)錄組測序;花型發(fā)育中圖分類號:S682.31""""""文獻標志碼:A

        Mechanism"of"Transcription"Factor"APETALA3-3"Regulating"Floral"Morphogenesis"in"Dendrobium"officinale"Based"on"DAP-Seq"and"RNA-"seq"Analysis

        SONG"Yarong,nbsp;ZHU"Hongfeng,"AO"Die,"LIU"Anqi,"LU"Deyin,"HE"Fengmei*

        College"of"Horticulture"and"Landscape,"Yunnan"Agricultural"University,"Kunming,"Yunnan"650201,"China

        Abstract:"The"diversity"of"orchid"labellum,"a"specialized"petal,"has"great"ornamental"and"biological"value,"but"the"formation"mechanism"has"not"been"solved"so"far."APETALA3-3"(AP3-3)"is"a"floral"organ"identity"gene,"which"is"related"to"the"formation"of"orchid"labellum,"but"there"is"no"report"on"how"it"regulating"the"formation"mechanism"of"orchid"labellum"diversity."In"this"project,"wild"type"and"DoAP3-3"overexpressing"floral"organs"of"Dendrobium"officinale"were"used"as"the"research"objects"to"explore"the"formation"mechanism"from"the"perspective"of"transcription"factor"DoAP3-3"regulating"downstream"target"genes"through"DAP-seq"and"RNA-seq"joint"analysis."The"results"showed"that"a"total"of"7"key"candidate"target"genes,"MADS6,"NAC029,"NAC054,"WOX3,"AS2,"ERECTA,"AG"were"identified,"which"may"regulate"floral"organ"development"and"floral"morphogenesis"development"under"the"action"of"DoAP3-3"by"specific"regulation"or"interaction"with"other"genes."The"interaction"between"transcription"factor"DoAP3-3"and"MADS6"was"verified"by"yeast"one-hybrid"experiment,"which"further"affecting"floral"morphogenesis"development."This"study"would"lay"a"foundation"for"preliminary"analysis"of"the"regulatory"mechanism"between"DoAP3-3"and"its"target"genes,"and"exploring"the"formation"mechanism"of"highly"specialized"and"diversified"flower"morphology"in"Orchidaceae.

        Keywords:"APETALA3-3;"Dendrobium"officinale;"DNA"affinity"purification"sequencing;"DAP-seq;"RNA-seq;"flower"morphologies"development

        DOI:"10.3969/j.issn.1000-2561.2025.05.004

        石斛屬(Dendrobium"Sw.)是蘭科最大屬之一,兼具觀賞價值和藥用價值,也是四大觀賞蘭花屬之一。目前學者們已掌握了鐵皮石斛(Dendr obium"officinale)瓶內(nèi)開花技術及遺傳轉(zhuǎn)化技術,可在分子層面對其花器官特異性進行研究,因此鐵皮石斛是研究花器官發(fā)育的極好模型。

        已有研究表明MADS-box基因作為植物花器官的發(fā)生發(fā)育與形態(tài)構造的關鍵轉(zhuǎn)錄因子,可通過復雜的網(wǎng)絡在花器官發(fā)育不同階段形成復雜復合物來調(diào)控花器官的發(fā)育,因而成為花器官研究最廣泛的基因家族[1-2]。經(jīng)典的“ABC”模型在模式植物擬南芥和金魚草花器官突變體的研究中被提出[3-4],隨著矮牽牛和擬南芥中D類基因[5-6]及E類基因[7-8]的發(fā)現(xiàn)和鑒定,進一步將花發(fā)育模型擴展到“ABCDE”模型,即A+E共同控制萼片的形成,A+B+E共同控制花瓣的形成,B+C+E調(diào)控雄蕊的形成,C+E調(diào)控心皮的形成,D+E調(diào)控胚珠的形成。除“ABCDE模型”[9]外,“蘭花編碼”[10-11]、“Homeotic"Orchid"Tepal”模型[12]和“花被(P)編碼”[13]模型被廣泛認為是解釋蘭花花被器官身份特征的假說。

        APETALA3-3(AP3-3)是MADS-box基因家族中B類基因[14-15]。有研究表明在耬斗菜和黑種草中沉默AP3-3基因,僅導致其花瓣向萼片的同源異型轉(zhuǎn)變[16],已有研究鑒定和預測了毛茛科多個物種中花瓣特征基因AP3-3的下游靶基因[17]。蘭科植物的唇瓣是特化的花瓣,是蘭科植物獨有的特異性器官,也是蘭科植物的主要觀賞器官和昆蟲傳粉器官,而AP3-3已被證明是蘭花唇瓣發(fā)育的主要轉(zhuǎn)錄因子,但目前AP3-3在蘭科植物中的研究較少。因此研究AP3-3在蘭花中參與唇瓣多樣性形成的差異表達調(diào)控機理,不僅能揭示唇瓣的起源與進化等機制,還為遺傳操作改變花型、培育蘭花新品種和蘭花的保育等方面奠定基礎,在觀賞園藝和資源保護等領域具有更加廣闊的應用前景。

        DNA親和純化測序(DNA"affinity"purification"sequencing,DAP-seq)分析作為目前新開發(fā)的一種體外檢測TF-DNA(transcription"factor,TF)互作的分析方法,成功將體內(nèi)結合實驗轉(zhuǎn)移到體外,極大地提高了DNA結合位點發(fā)現(xiàn)的效率,可以高通量精確定位植物體內(nèi)基因組中轉(zhuǎn)錄因子的結合位點[18-20]。轉(zhuǎn)錄組測序(RNA-seq)技術被用于研究基因表達、調(diào)控和育種新基因的挖掘[21-22]。利用轉(zhuǎn)錄組與DAP-seq共同研究轉(zhuǎn)錄因子-靶基因的調(diào)控網(wǎng)絡關系,鑒定鐵皮石斛轉(zhuǎn)錄因子DoAP3-3下游靶基因,能夠精準地挖掘出對表型具有顯著貢獻的核心基因。

        1""材料與方法

        1.1""材料

        鐵皮石斛野生型植株(WT)和鐵皮石斛DoAP3-3過表達植株(OE)來自于本實驗室前期研究。鐵皮石斛新鮮葉片采自云南省林業(yè)和草原科學院石斛種植基地。

        1.2""方法

        1.2.1""DNA親和純化測序""提取鐵皮石斛葉片DNA,并將其片段化,用磁珠篩選目標片段后利用建庫試劑盒(NEXTflex"Rapid"DNA-Seq"Ki)構建文庫;構建轉(zhuǎn)錄因子DoAP3-3的halo-tag體外表達質(zhì)粒,利用麥胚系統(tǒng)進行蛋白表達。將純化后的轉(zhuǎn)錄因子DoAP3-3和親和標簽融合蛋白與基因組DNA文庫共同孵育,用Halo"Tag特異性磁珠,將目的蛋白和DNA復合物進行提取和純化,進行PCR擴增,用QubitTM"dsDNA-HS"Assay"Kit檢測DNA文庫質(zhì)量,測序由武漢愛基百客生物科技有限公司完成。

        1.2.2""DAP-seq測序數(shù)據(jù)分析""使用Fastqc(version:"0.11.5)軟件對原始數(shù)據(jù)質(zhì)控處理,使用Trimmomatic(version:"0.36)軟件進行數(shù)據(jù)過濾,使用BWA(version:"0.7.15-r1140)軟件將clean"reads數(shù)據(jù)比對到Dendrobium"catenatum(GCF_"001605985.2)參考基因組上,利用MACS(version:"2.1.1.20160309)軟件在基因組范圍內(nèi)檢測轉(zhuǎn)錄因子DoAP3-3相對于對照所富集的峰,篩選顯著性富集的峰,篩選閾值為q"valuelt;0.001且Fold"Change大于2。對peak關聯(lián)的基因進行GO及KEGG分析。利用Homer、MEME、MEME-ChIP軟件分析轉(zhuǎn)錄因子DoAP3-3靶標基因富集motif。利用IGV軟件對結合峰進行可視化分析,紅色峰為重復1,藍色峰為重復2,綠色峰為陰性對照(input)。每個基因的外顯子-內(nèi)含子結構和方向(箭頭)顯示在面板的底部。紅色箭頭表示靶基因TSS上下2000"bp范圍內(nèi)結合情況。[0-50]代表結合的強度,通過峰的高度來反映。

        1.2.3""轉(zhuǎn)錄組測序""對鐵皮石斛野生型植株(WT)和鐵皮石斛DoAP3-3過表達植株(OE)分別提取不同時期(從花芽到完全開放)混合樣花蕾RNA,利用Illumina高通量測序平臺進行RNA測序,測序由北京擎科生物科技股份有限公司完成。

        1.2.4""轉(zhuǎn)錄組測序數(shù)據(jù)分析""使用Fastqc對測序得到的raw"data進行過濾,利用Hisat將過濾得到的clean"reads與參考基因組Dendrobium"catenatum(GCF_001605985.2)進行序列比對。用DEGseq軟件對鐵皮石斛DoAP3-3過表達植株和WT植株測序結果進行基因表達量差異分析,以Fold"Change≥2且FDRlt;0.01篩選差異表達基因。將獲得的差異基因與NR、eggNOG、GO、KEGG、Swissprot和Pfam等六大公共數(shù)據(jù)庫進行比對,獲得在各數(shù)據(jù)庫的注釋信息,篩選花器官發(fā)育相關差異表達基因。

        1.2.5""啟動子順式作用元件生物信息學分析""利用植物順式元件數(shù)據(jù)庫Plant"CARE對關鍵候選靶基因啟動子序列的順式作用元件進行預測分析,用TBtools軟件進行可視化分析。

        1.2.6""酵母單雜交互作實驗""以鐵皮石斛DoAP3-3過表達植株的cDNA為模板,擴增DoAP3-3編碼序列,連接到pGADT7載體(Clontech,"USA)中,得到pGADT7-DoAP3-3,作為獵物。以鐵皮石斛MADS6基因DNA為模板,擴增目的基因啟動子的特異性DNA序列,克隆到pHIS2載體(Clontech,"USA)中,得到pHIS2-MADS6,作為誘餌。將構建到pHIS2載體上的MADS6基因及構建到pGADT7的DoAP3-3基因,通過共轉(zhuǎn)的方法轉(zhuǎn)化至酵母菌株Y187。分別從轉(zhuǎn)化反應的平板上隨機挑取3個單菌落,OD600=0.002,稀釋(100、10?1、10?2)點板至對應的不添加histidine,但添加不同濃度(0、2.5、5、10、20、30、40、50、75、100"mmol/L)HIS3蛋白競爭性抑制劑3-AT(3-amino-1,2,4-"triazole)的缺陷型平板上,30"℃恒溫培養(yǎng)3"d,篩選合適濃度,消除自激活現(xiàn)象。將實驗組(pHIS2-MADS6+"pGADT7-DoAP3-3)、陰性對照組(pHIS2-MADS6+"pGADT7)、陽性對照組(pGAD53m+pHIS2-p53)驗證成功的單菌落,用2"mL的ddH2O水重懸,OD600=0.002,濃度設置為3個梯度100、10?1、10?2,吸取10"μL分別點板到SD-TL(-trp,-leu)、SD-TLH(-trp,-leu,-his)、SD-TLH+40"mmol/L"3AT培養(yǎng)基上(參照Clontech公司的PT3024-1/Yeast"Protocols"Handbook),每個板點3個點,30"℃恒溫培養(yǎng)3~5"d。

        2""結果與分析

        2.1""鐵皮石斛野生型植株和DoAP3-3過表達植株花器官形態(tài)比較分析

        鐵皮石斛野生型植株和DoAP3-3過表達植株花型差異如圖1所示,其花型差異只表現(xiàn)在花瓣和萼片分布以及唇瓣的大小和顏色上,其他形態(tài)無明顯變化。過表達花朵的2片花瓣逆時針旋轉(zhuǎn)大于90°,與萼片幾乎重疊,花瓣和萼片或鑲嵌或融合;過表達花朵的唇瓣較大,且唇瓣腹部近軸凸起消失較為平展,遠軸處紫色斑點消失。

        2.2""DAP-seq測序數(shù)據(jù)結果分析

        提取鐵皮石斛葉片DNA進行DAP-Seq測序,獲得DAP-seq原始數(shù)據(jù)。將鐵皮石斛clean"reads數(shù)據(jù)比對到Dendrobium"catenatum(GCF_"001605985.2)基因組序列,比對率達99.72%,并得到轉(zhuǎn)錄因子DoAP3-3結合的peaks。對所有轉(zhuǎn)錄因子結合的peaks進行匯總和分類,在基因組范圍內(nèi)共獲得175"468個peaks,平均peaks長度為399.43"bp,對peaks各功能元件分布個數(shù)進行統(tǒng)計,其中6579個peaks位于啟動子區(qū)域上,占peaks總數(shù)的3.75%(圖2),有56.85%位于基因間區(qū),3.75%峰位于啟動子區(qū)域,5′-非翻譯區(qū)和3′-非翻譯區(qū)分布最少(圖3A)。位于啟動子區(qū)域上的peaks有90.74%的峰都結合到啟動子上(圖3B)。這表明DoAP3-3是具有DNA結合能力和基因調(diào)控活性的轉(zhuǎn)錄因子。

        2.3""DAP-seq鑒定轉(zhuǎn)錄因子DoAP3-3結合花發(fā)育下游潛在靶標基因分析

        在啟動子范圍內(nèi)共篩選出5768個潛在結合靶基因,對應6579個peaks,其中與花器官及花型發(fā)育相關的潛在靶基因共82個,對應94個peaks。這些潛在結合靶基因包括轉(zhuǎn)錄因子家族基因和功能性蛋白基因,如MYB-related、MADS-MIKC、AP2/ERF-ERF、B3、B3-ARF、C2C2-YABBY、HB-BELL、MADS-M-type、NAC等轉(zhuǎn)錄因子家族基因(圖4);TAA1、DCR、ERECTA等功能性蛋白基因。

        對DAP-seq檢測到的與花發(fā)育相關的基因進行功能注釋,篩選Plt;0.05前30條途徑進行富集分析,結果顯示,鐵皮石斛富集GO條目主要是生物過程,包括繁殖結構發(fā)育、花器官發(fā)育、花輪發(fā)育等生物過程(圖5)。

        2.4""轉(zhuǎn)錄組測序分析

        對鐵皮石斛野生型植株和DoAP3-3"過表達植株分別提取生殖生長期花蕾RNA,利用Illumina高通量測序平臺進行RNA測序,共產(chǎn)出15.88"Gb數(shù)據(jù),Q30堿基百分比在95.98%及以上。分別將各樣品的clean"reads與參考基因組進行序列比對,比對效率為87.82%~91.43%。

        2.5""轉(zhuǎn)錄組測序分析鑒定轉(zhuǎn)錄因子DoAP3-3調(diào)控花發(fā)育相關差異表達基因

        為了鑒定在鐵皮石斛中受DoAP3-3轉(zhuǎn)錄調(diào)控的基因,本研究通過轉(zhuǎn)錄組測序?qū)﹁F皮石斛野生型植株(WT)和DoAP3-3過表達(OE)植株花蕾進行比較轉(zhuǎn)錄組分析,共發(fā)現(xiàn)8101個差異表達基因,其中3845個基因下調(diào)表達、4256個基因上調(diào)表達(圖6A)。進一步對這些差異表達基因進行篩選,發(fā)現(xiàn)86個與花發(fā)育相關的差異表達基因,其中32個基因上調(diào)差異表達,54個基因下調(diào)差異表達(圖6B)。AS2、MADS16、NAC054、DL、LFL1、GI等基因在過表達植株中的表達量較低,均低于野生型植株。WOX3、FT、FZP、GATA22、ENDO2等基因在過表達植株中的表達量較高,均高于野生型植株。

        2.6""DAP-seq結合RNA-seq分析轉(zhuǎn)錄因子DoAP3-3調(diào)控花器官及花型發(fā)育的潛在直接靶基因

        將DAP-seq中鑒定到的與花發(fā)育相關的82個靶標基因與過表達植株和野生型植株RNA-seq分析中的85個DEGs進行比較,發(fā)現(xiàn)30個共同的基因(圖7A)。在DoAP3-3過表達植株中有19個基因為正向調(diào)控的靶標基因,11個為負向調(diào)控的靶標基因(圖7B)。這些靶標基因按照功能分類可分為3類:第一類與花發(fā)育階段中的成花誘導有關,其中NAC035、FT、LFL1、LHY、ZHD4、ZTL、AOD3、RVE8參與調(diào)控開花時間;第二類與花器官原基形成即花器官發(fā)育有關,其中MADS6影響花分生組織決定性花器官發(fā)育、花器官形成及花輪形態(tài)發(fā)生,F(xiàn)ZP、BAM1決定花分生組織身份,指定花器官身份,AG、CYP40參與花早期發(fā)育過程中器官身份的控制,在維持花分生組織的決定性中發(fā)揮作用,DL決定心皮身份和花分生組織,ATH1控制花器官與莖之間的邊界形成,影響花器官脫落,TAA1、FHA2影響花器官、雄蕊發(fā)育,LUG調(diào)節(jié)花器官的發(fā)育,JMJ706參與花形態(tài)發(fā)生;第三類參與花發(fā)育階段花器官發(fā)育成熟即花型發(fā)育,其中NAC054、NAC029影響花朵發(fā)育,WOX3參與萼片形成,AS2影響花瓣發(fā)育,ERECTA調(diào)控花形態(tài)和花序結構,DCR影響毛狀體形態(tài)發(fā)生。在DoAP3-3過表達植株中WOX3、NAC029、MADS6、ERECTA、AG表達量均高于野生型,AS2、NAC054的表達量較低(圖8,圖9),結合過表達植株花型表型變化與其基因功能,這些基因極有可能是轉(zhuǎn)錄因子DoAP3-3的關鍵下游靶基因。

        2.7""轉(zhuǎn)錄因子DoAP3-3調(diào)控花型關鍵候選靶基因分析

        本研究從鑒定出的直接靶標基因中挑選出7個與花型發(fā)育密切相關的靶基因MADS6、NAC029、NAC054、WOX3、AS2、ERECTA、AG作為關鍵候選靶基因。對這7個靶基因進行順式作用元件分析,結果顯示,除了含有多個轉(zhuǎn)錄起始核心元件TATA-box和CAAT-box外,這7個基因啟動區(qū)域分布的順式作用元件與植物激素反應、光反應、植物生長發(fā)育、生物和非生物脅迫反應有關(圖10)。

        為了更深入地了解DoAP3-3的DNA結合特性,本研究使用MEME和MEME-CHIP軟件對7個候選靶基因的啟動子與peak重疊序列分別進行motif分析和motif富集分析。motif分析發(fā)現(xiàn),除AG外其余靶基因均能與motif1、motif2、motif3結合(圖11)。motif富集分析顯示,富集到BASIC"PENTACYSTEINE(BPC)TFs的結合基序的GA/CT-rich(圖12)。

        為了進一步驗證DoAP3-3調(diào)控花型發(fā)育的直接作用,本研究選擇在DAP-seq分析中啟動子區(qū)域顯示出富集結合位點(圖9,圖11)的MADS6基因作進一步驗證,通過酵母單雜交實驗驗證DoAP3-3與其之間是否存在相互作用以調(diào)控花型變化。由圖13可知,陽性對照(pGAD53m+"pHIS2-p53)在SD-TL、SD-TLH、SD-TLH+"40"mmol/L"3AT平板上均能正常生長;陰性對照組(pHIS2-MADS6+pGADT7)在SD-TL、SD-TLH平板上能正常生長,在SD-TLH+40"mmol/L"3AT平板上不生長;實驗組(pHIS2-MADS6+pGADT7-"DoAP3-3)在SD-TL、SD-TLH平板上能正常生長,在SD-TLH+40"mmol/L"3AT平板微弱生長,表明DoAP3-3與酵母中MADS6的啟動子存在相互作用。

        3""討論

        花是被子植物獨有的非常重要的觀賞及生殖器官?;ㄆ鞴僭诖笮?、形態(tài)、顏色等方面均有差異,但決定花器官身份特性的潛在遺傳和分子機制是高度保守的,花器官的基本身份特征由一套核心的基因和調(diào)控網(wǎng)絡決定,這些基因通過調(diào)節(jié)不同下游基因集的表達來控制花器官的發(fā)育和特征,而這種調(diào)控機制涉及復雜的基因網(wǎng)絡和環(huán)境影響,以確保花器官在保持基本身份特征的同時,表現(xiàn)出豐富的特異性,如蘭科植物由花瓣特化而來的唇瓣。

        MADS6在水稻中是AGL6-like的同源基因,調(diào)節(jié)花器官身份和花分生組織決定性。在AGL6-like突變體的花中,內(nèi)稃和漿片的身份受到干擾,并觀察到漿片-雄蕊的鑲嵌器官[23];TSAI等[24]在蝴蝶蘭中分離得到了1個GLOBOSA/"PISTILLATA樣基因PeMADS6,PeMADS6的表達集中在萼片、花瓣和唇瓣原基中,通過異位過表達PeMADS6的擬南芥植物的花顯示出花瓣狀萼片的形態(tài)。有研究表明,靶基因NAC054的同源基因CUC1突變會導致花器官的輕微融合,而雙重突變體(CUC1和CUC2同時突變)則表現(xiàn)出嚴重的花器官融合現(xiàn)象[25]。AG作為MIKCc型MADS-box家族中的C類基因,不僅控制雄蕊、心皮的分化和發(fā)育,還調(diào)控花分生組織的終止[26-27]。在AG基因突變體植株中,WUS基因的高調(diào)表達能夠誘導花分生組織發(fā)育過程產(chǎn)生不確定性,使得AG基因突變體植株的花器官出現(xiàn)只含萼片和花瓣,且數(shù)量不確定的輪軸,產(chǎn)生“花嵌花”的表型[28]。本研究結果發(fā)現(xiàn),在DoAP3-3過表達植株花朵表型中出現(xiàn)了花瓣-萼片的鑲嵌器官,MADS6、AG基因在過表達植株花朵中的表達量顯著高于野生型,NAC054在野生型和過表達植株中的表達量均較低,在過表達植株中表達量幾乎為0。因此,過表達植株花朵出現(xiàn)花瓣-萼片鑲嵌器官可能是轉(zhuǎn)錄因子DoAP3-3正調(diào)控MADS6、AG基因,鑲嵌器官可能是花瓣狀萼片,也可能是DoAP3-3負調(diào)控NAC054造成花瓣和萼片基部融合現(xiàn)象。

        PRS是WOX3的一個同源基因,在PRS突變體中,PRS基因的表達受到抑制,導致側(cè)生萼片發(fā)育受到抑制,萼片邊緣細胞缺失,側(cè)生萼片缺失或變小,導致發(fā)育不對稱,從而造成花器官形態(tài)異常等現(xiàn)象[29]。本研究獲得的DoAP3-3過表達植株花朵中,花器官萼片左右兩側(cè)大小不一,右側(cè)萼片明顯大于左側(cè)萼片,且WOX3基因在野生型植株花朵中不表達,在過表達植株花朵中低表達,這表明WOX3基因的過表達和低表達均會影響萼片發(fā)育。AS2[30]作為AS2/"LOB(基因家族的成員,除了在葉片極性形成中調(diào)節(jié)外,在花發(fā)育中具有獨立的功能[31]。AS2與ASL[32]相互作用共同調(diào)控花瓣的近端-遠端對稱性,從而影響花瓣形態(tài)和功能。在單突變體(AS2或ASL1)中,花瓣的形態(tài)發(fā)育異常并不明顯,但在雙突變體(AS2和ASL1)中,花瓣的形態(tài)異常更加顯著;ASL1和AS2的過表達會導致BP表達的下調(diào),而BP的過表達則會導致花瓣形態(tài)異常,如花瓣變長和向外卷曲,因此ASL1和AS2通過抑制KNOX基因(如BP)的表達來調(diào)控花瓣的極性[33]。在某些極性異常的花瓣中,由于細胞擴展和分化異常導致花瓣基部可能出現(xiàn)膨大現(xiàn)象;或花瓣可能偏離正常位置,導致花對稱性破壞;或?qū)е禄ò昱c萼片等其他花器官的重疊現(xiàn)象,影響花的整體形態(tài)。因此AS2可能通過與其他基因相互作用,影響花瓣和萼片的近端-遠端極性,在維持花器官正常形態(tài)和對稱性中發(fā)揮重要作用。

        NAP作為NAC029的同源基因,在模式植物擬南芥中已被鑒定為是花同源基因APETALA3/"PISTILLATA的直接靶標,參與調(diào)控花瓣和雄蕊的形成,該研究在擬南芥中敲除了AP3-3,導致花瓣被萼片狀的器官替代,雄蕊被心皮狀的器官替代,通常與第四輪的心皮融合[34]。而NAP基因的過表達會造成花瓣和雄蕊生長受抑制,導致花瓣短小且雄蕊縮短,因此NAP正常表達是保證花瓣和雄蕊細胞適時擴張和器官成熟的關鍵。本研究鑒定出NAC029在過表達植株中的表達量高于野生型,NAC029與NAP基因?qū)儆谕椿?,這表明其功能可能在一定程度上是保守的,可能存在保守的TF-Target關系,因此推測NAC029或許是轉(zhuǎn)錄因子DoAP3-3的關鍵靶基因之一。

        ERECTA基因影響細胞分裂的速率和模式,被認為是植株在不同發(fā)育環(huán)境下的生長調(diào)節(jié)因子,ERECTA編碼一個富含亮氨酸重復片段的類受體絲氨酸/蘇氨酸激酶,它與細胞的增殖有關并且被認為是植物生長因子受體[35]。在ER突變體中,花器官的細胞分裂速率降低會導致細胞數(shù)量減少;ER基因的過表達會促進細胞分裂和擴展。在過表達ER基因的植物中,細胞分裂速率加快,細胞體積增大,從而導致組織和器官的增大,這表明ER基因在維持正常的細胞分裂速率中發(fā)揮重要作用[36]。大多數(shù)花器官是從變態(tài)葉發(fā)育而來的,ER可以通過控制花瓣細胞增殖來調(diào)節(jié)花瓣的形狀和大小,有研究者推測ER可能是控制不同植物花器官形態(tài)差異的主要因素[37]。蘭科植物唇瓣是花瓣特化而來,在DoAP3-3過表達花器官中,ERECTA的表達量顯著高于野生型,且ERECTA在啟動子范圍內(nèi)有2個結合峰,與轉(zhuǎn)錄因子DoAP3-3結合強度較強,結合其功能特征,這或許可以解釋過表達植株唇瓣比野生型唇瓣明顯增大的原因。

        本研究成功鑒定出轉(zhuǎn)錄因子DoAP3-3的7個靶標基因,DoAP3-3通過結合GA/CT基序來調(diào)控這7個靶基因的表達。CArG"box"motif"[CC"(A+"T-rich)"6GG]是AP3-3最常見的結合位點[17],MADS結構域蛋白已被證明在體外可以與非CArG盒序列結合[38],這意味其在基因表達調(diào)控中有更廣泛的多樣性和復雜性。即使這些基因調(diào)控序列中不存在CArG盒,DoAP3-3結構域蛋白仍然有可能與其他基序結合,并調(diào)控這些基因的表達。本研究通過酵母單雜交實驗驗證DoAP3-3與MADS6之間存在相互作用,表明DoAP3-3通過調(diào)控MADS6的表達,進而影響花型發(fā)育。DoAP3-3是否與其他靶基因之間存在相互作用,后續(xù)還需進行轉(zhuǎn)錄因子與靶基因啟動子互作實驗研究。

        4""結論

        DAP-seq作為體外檢測轉(zhuǎn)錄因子結合位點的一種方法,成功將體內(nèi)結合實驗轉(zhuǎn)移到體外,極大地提高了DNA結合位點發(fā)現(xiàn)的效率,可用于非模式植物轉(zhuǎn)錄因子的研究。在本課題組的前期研究基礎上,通過瓶內(nèi)開花技術,培育出鐵皮石斛過表達植株花朵,并對其進行轉(zhuǎn)錄組測序分析;通過DAP-seq和RNA-seq聯(lián)合分析成功鑒定出與轉(zhuǎn)錄因子DoAP3-3直接結合并調(diào)控花型形態(tài)發(fā)育的7個關鍵候選靶標基因:MADS6、NAC029、NAC054、WOX3、AS2、ERECTA、AG。這些基因可能通過特異性調(diào)控或與其他基因相互作用,在調(diào)控花型形態(tài)發(fā)育中發(fā)揮重要功能。該研究為初步解析花器官特征基因DoAP3-3與其靶基因之間的調(diào)控機制,探究蘭科植物中高度特化和多樣化的花形態(tài)形成機理奠定基礎。

        參考文獻

        [1]"HSU"H"F,"HSU"W"H,"LEE"Y"I,"MAO"W"T,"YANG"J"Y,"LI"J"Y,"YANG"C"H."Model"for"perianth"formation"in"orchids[J]."Nature"Plants,"2015,"1(5):"1-8.

        [2]"PAN"Z"J,"CHENG"C"C,"TSAI"W"C,"CHUNG"M"C,"CHEN"W"H,"HU"J"M,"CHEN"H"H."The"duplicated"B-class"MADS-box"genes"display"dualistic"characters"in"orchid"floral"organ"identity"and"growth[J]."Plant"and"Cell"Physiology,"2011,"52(9):"1515-1531.

        [3]"IRISH"V."The"ABC"model"of"floral"development[J]."Current"Biology,"2017,"27(17):"R887-R890.

        [4]"COEN"E"S,"MEYEROWITZ"E"M."The"war"of"the"whorls:"genetic"interactions"controlling"flower"development[J]."Nat ure,"1991,"353(6339):"31-37.

        [5]"SCHNEITZ"K."The"molecular"and"genetic"control"of"ovule"development[J]."Current"Opinion"in"Plant"Biology,"1999,"2(1):"13-17.

        [6]"ANGENENT"G"C,"FRANKEN"J,"BUSSCHER"M,"VAN"DIJKEN"A,"VAN"WENT"J"L,"DONS"H"J,"VAN"TUNEN"A"J."A"novel"class"of"MADS"box"genes"is"involved"in"ovule"develo pment"in"petunia[J]."Plant"Cell,"1995,"7(10):"1569-1582.

        [7]"FERRARIO"S,"IMMINK"R"G,"SHCHENNIKOVA"A,"BUSSCHER-LANGE"J,"ANGENENT"G"C."The"MADS"box"gene"FBP2"is"required"for"SEPALLATA"function"in"petun ia[J]."Plant"Cell,"2003,"15(4):"914-925.

        [8]"HONMA"T,"GOTO"K."Complexes"of"MADS-box"proteins"are"sufficient"to"convert"leaves"into"floral"organs[J]."Nature,"2001,"409(6819):"525-529.

        [9]"TSAI"W"C,"CHEN"H"H."The"orchid"MADS-box"genes"cont rolling"floral"morphogenesis[J]."The"Scientific"World"Journal,"2006(6):"1933-1944.

        [10]"MONDRAGóN-PALOMINO"M,"THEISSEN"G."MADS"about"the"evolution"of"orchid"flowers[J]."Trends"in"Plant"Science,"2008(13):"51-59.

        [11]"MONDRAGóN-PALOMINO"M,"THEISSEN"G."Why"are"orchid"flowers"so"diverse?"Reduction"of"evolutionary"cons traints"by"paralogues"of"class"B"floral"homeotic"genes[J]."Annals"of"Botany,"2009,"104(3):"583-594.

        [12]"王瑩,"穆艷霞,"王錦."MADS-box基因家族調(diào)控植物花器官發(fā)育研究進展[J]."浙江農(nóng)業(yè)學報,"2021,"33(6):"1149-1158."WANG"Y,"MU"Y"X,"WANG"J."Research"progress"of"floral"development"regulation"by"MADS-box"gene"family[J]."Journal"of"Zhejiang"Agricultural,"2021,"33(6):"1149-1158."(in"Chinese)

        [13]"RYAN"P"T,"ó'MAOILéIDIGH"D"S,"DROST"H"G,"KWA?NIEWSKA"K,"GABEL"A,"GROSSE"I,"GRACIET"E,"QUINT"M,"WELLMER"F."Patterns"of"gene"expression"during"Arabidopsis"flower"development"from"the"time"of"initiation"to"maturation[J]."BMC"Genomics,"2015,"16(1):"488.

        [14]"CAI"J,"LIU"X,"VANNESTE"K,nbsp;PROOST"S,"TSAI"W"C,"LIU"K"W,"CHEN"L"J,"HE"Y,"XU"Q,"BIAN"C,"ZHENG"Z,"SUN"F,"LIU"W,"HSIAO"Y"Y,"PAN"Z"J,"HSU"C"C,"YANG"Y"P,"HSU"Y"C,"CHUANG"Y"C,"DIEVART"A,"DUFAYARD"J"F,"XU"X,"WANG"J"Y,"WANG"J,"XIAO"X"J,"ZHAO"X"M,"DU"R,"ZHANG"G"Q,"WANG"M,"SU"Y"Y,"XIE"G"C,"LIU"G"H,"LI"L"Q,"HUANG"L"Q,"LUO"Y"B,"CHEN"H"H,"VAN"DE"PEER"Y,"LIU"Z"J."The"genome"sequence"of"the"orchid"Phalaenopsis"equestris[J]."Nature"Genetics,"2015,"47(1):"65-72.

        [15]"TSAI"W"C,"KUOH"C"S,"CHUANG"M"H,"CHEN"W"H,"CHEN"H"H."Four"DEF-like"MADS"box"genes"displayed"distinct"floral"morphogenetic"roles"in"Phalaenopsis"orchid[J]."Plant"And"Cell"Physiology,"2004,"45(7):"831-844.

        [16]"ZHANG"R,"GUO"C"C,"ZHANG"W"G,"WANG"P"P,"LI"L,"DUAN"X"S,"DU"Q"G,"ZHAO"L,"SHAN"H"Y,"HODGES"S"A,"KRAMER"E"M,"REN"Y,"KONG"H"Z."Disruption"of"the"petal"identity"gene"APETALA3-3"is"highly"correlated"with"loss"of"petals"within"the"buttercup"family"(Ranunculaceae)[J]."Proceedings"of"the"National"Academy"of"Scienceof"the"United"States"of"America,"2013,"110(13):"5074-5079.

        [17]"JIANG"Y"C,"WANG"M"M,"ZHANG"R,"XIE"J"H,"DUAN"X"S,"SHAN"H"Y,"XU"G"X,"KONG"H"Z."Identification"of"the"target"genes"of"AqAPETALA3-3"(AqAP3-3)"in"Aquilegia"coerulea"(Ranunculaceae)"helps"understand"the"molecular"bases"of"the"conserved"and"nonconserved"features"of"petals[J]."New"Phytologist,"2020,"227(4):"1235-1248.

        [18]"BARTLETT"A,"O'MALLEY"R"C,"HUANG"S"C,"GALLI"M,"NERY"J"R,"GALLAVOTTI"A,"ECKER"J"R."Mapping"genome-widenbsp;transcription-factor"binding"sites"using"DAP-"seq[J]."Nature"Protocols,"2017,"12(8):"1659-1672.

        [19]"LI"M"R,"CHEN"M"W,"ZHANG"Y"L,"ZHAO"L"G,"ZHANG"J"C,"SONG"H."Identification"of"the"target"genes"of"AhTWRKY24"and"AhTWRKY106"transcription"factors"reveals"their"regulatory"network"in"Arachis"hypogaea"cv."Tifrunner"using"DAP-seq[J]."Oil"Crop"Science,"2023,"8(2):"89-96.

        [20]"SI"J,"FAN"Z"Q,"WU"C"J,"YANG"Y"Y,"SHAN"W,"KUANG"J"F,"LU"W"J,"WEI"W,"CHEN"J"Y."MaHsf24,"a"novel"negative"modulator,"regulates"cold"tolerance"in"banana"fruits"by"repressing"the"expression"of"HSPs"and"antioxidant"enzyme"genes[J]."Plant"Biotechnology"Journal,"2024,"22(10):"2873-"2886.

        [21]"SUN"Y,"WU"Q,"PAN"J,"LI"T,"LIU"L,"CHEN"D,"ZHANG"X,"CHEN"H,"LI"Y,"LIN"R."Identification"of"differentially"expressed"genes"and"signalling"pathways"in"the"ovary"of"higher"and"lower"laying"ducks[J]."British"Poultry"Science,"2020,"61(6):"609-614.

        [22]"LIU"K"D,"FENG"S"X,"PAN"Y"L,"ZHONG"J"D,"CHEN"Y,"YUAN"C"C,"LI"H"L."Transcriptome"analysis"and"identification"of"genes"associated"with"floral"transition"and"flower"development"in"sugar"apple"(Annona"squamosa"L.)[J]."Frontiers"in"Plant"Science,"2016(7):"1695.

        [23]"OHOMORI"S,"KIMIZU"M,"SUGITA"M,"MIYAO"A,"HIROCHIKA"H,"UCHIDA"E,"NAGATO"Y,"YOSHIDA"H."MOSAIC"FLORAL"ORGANS1,"an"AGL6-like"MADS"box"gene,"regulates"floral"organ"identity"and"meristem"fate"in"rice[J]."Plant"Cell,"2009,"21(10):"3008-3025.

        [24]"TSAI"W"C,"LEE"P"F,"CHEN"H"I,"HSIAO"Y"Y,"WEI"W"J,"PAN"Z"J,"CHUANG"M"H,"KUOH"C"S,"CHEN"W"H,"CHEN"H"H."PeMADS6,"a"GLOBOSA/PISTILLATA-like"gene"in"Phalaenopsis"equestris"involved"in"petaloid"formation,"and"correlated"with"flower"longevity"and"ovary"development[J]."Plant"and"Cell"Physiology,"2005,"46(7):"1125-1139.

        [25]"AIDA"M,"ISHIDA"T,"FUKAKI"H,"FUJISAWA"H,"TASAKA"M."Genes"involved"in"organ"separation"in"Arabidopsis:"an"analysis"of"the"cup-shaped"cotyledon"mutant[J]."Plant"Cell,"1997,"9(6):"841-857.

        [26]"YANOFSKY"M"F,"MA"H,"BOWMAN"J"L,"DREWS"G"N,"FELDMANN"K"A,"MEYEROWITZ"E"M."The"protein"encoded"by"the"Arabidopsis"homeotic"gene"agamous"resembles"transcription"factors[J]."Nature,"1990,"346(6279):"35-39.

        [27]"SIEBURTH"L"E,"RUNNING"M"P,"MEYEROWITZ"E"M."Genetic"separation"of"third"and"fourth"whorl"functions"of"AGAMOUS[J]."Plant"Cell,"1995,"7(8):"1249-1258.

        [28]"LENHARD"M,"BOHNERT"A,"JüRGENS"G,"LAUX"T."Termination"of"stem"cell"maintenance"in"Arabidopsis"floral"meristems"by"interactions"between"WUSCHEL"and"AGAMOUS[J]."Cell,"2001,"105(6):"805-814.

        [29]"MATSUNOTO"N,"OKADA"K."A"homeobox"gene,"PRES S ED"FLOWER,"regulates"lateral"axis-dependent"development"of"Arabidopsis"flowers[J]."Genes"amp;"Development,"2001,"15(24):"3355-3364.

        [30]"IWAKAWA"H,"UENO"Y,"SEMIARTI"E,"ONOUCHI"H,"KO JIMA"S,"TSUKAYA"H,"HASEBE"M,"SOMA"T,"IKEZA KI"M,"MACHIDA"C,"MACHIDA"Y."The"ASYMMETRIC"LEAV ES2"gene"of"Arabidopsis"thaliana,"required"for"formation"of"a"symmetric"flat"leaf"lamina,"encodes"a"member"of"a"novel"family"of"proteins"characterized"by"cysteine"repeats"and"a"leucine"zipper[J]."Plant"And"Cell"Physiology,"2002,"43(5):"467-478.

        [31]"XU"L,"XU"Y,"DONG"A"W,"SUN"Y,"PI"L"M,"XU"Y"Q,"HU AN G"H."Novel"as1"and"as2"defects"in"leaf"adaxial-abaxial"polarity"reveal"the"requirement"for"ASYMMETRIC"LEAVES1"and"2"and"ERECTA"functions"in"specifying"leaf"adaxial"identity[J]."Development,"2003,"130(17):"4097-4107.

        [32]"SHUAI"B,"REYNAGA-PE?A"C"G,"SPRINGER"P"S."The"lateral"organ"boundaries"gene"defines"a"novel,"plant-specific"gene"family[J]."Plant"Physiology,"2002,"129(2):"747-761.

        [33]"CHALFUN-JUNIOR"A,"FRANKEN"J,"MES"J"J,"MARSCH-"MARTINEZ"N,"PEREIRA"A,"ANGENENT"G"C."ASYMM E T RIC"LEAVES2-LIKE1"gene,"a"member"of"the"AS2/LOB"family,"controls"proximal-distal"patterning"in"Arabidopsis"petals[J]."Plant"Molecular"Biology,"2005,"57(4):"559-575.

        [34]"SABLOWSKI"R"W,"MRYEROWITZ"E"M."A"homolog"of"NO"APICAL"MERISTEM"is"an"immediate"target"of"the"floral"homeotic"genes"APETALA3/PISTILLATA[J]."Cell,"1998,"92(1):"93-103.

        [35]"ABRAHAM"M"C,"METHEETRAIRUT"C,"IRISH"V"F."Natural"variation"identifies"multiple"loci"controlling"petal"shape"and"size"in"Arabidopsis"thaliana[J]."PLoS"One,"2013,"8(2):"e56743.

        [36]"DOUGLAS"S"J,"CHUCK"G,"DENGLER"R"E,"PELECANDA"L,"RIGGS"C"D."KNAT1"and"ERECTA"regulate"inflorescence"architecture"in"Arabidopsis[J]."Plant"Cell,"2002,"14(3):"547-"558.

        [37]"趙雪雅,"張坤鵬,"張匯東,"畢夢希,"齊明芳."ERECTA基因家族調(diào)控植物形態(tài)發(fā)育機制研究進展[J]."沈陽農(nóng)業(yè)大學學報,"2023,"54(2):"231-238."ZHAO"X"Y,"ZHANG"K"P,"ZHANG"H"D,"Bl"M"X,"QI"M"F."Research"progress"on"the"mechanism"of"ERECTA"gene"family"regulating"plant"morphological"development[J]."Journal"of"Shenyang"Agricultural"University,"2023,"54(2):"231-238."(in"Chinese)

        [38]"ZIK"M,"IRISH"V"F."Global"identification"of"target"genes"regulated"by"APETALA3"and"PISTILLATA"floral"homeotic"gene"action[J]."Plant"Cell,"2003,"15(1):"207-222.

        猜你喜歡
        鐵皮石斛花瓣
        花瓣數(shù)一數(shù)
        飛鼠與石斛
        鐵皮俠的裝備
        鐵皮園
        趣味(語文)(2020年4期)2020-07-27 01:43:14
        35 種石斛蘭觀賞價值評價
        金釵石斛化學成分的研究
        中成藥(2018年5期)2018-06-06 03:11:56
        鐵皮石斛家庭種植技術探索
        花瓣報
        天上的花瓣雨旋落
        學生天地(2016年16期)2016-05-17 05:46:02
        正交設計在觀賞石斛種胚離體培養(yǎng)中的應用
        国产盗摄XXXX视频XXXX| 亚洲av无码电影在线播放| 亚洲亚洲人成综合网络| 亚洲熟妇少妇69| 久久久9色精品国产一区二区三区 国产三级黄色片子看曰逼大片 | 国产丝袜长腿美臀在线观看| 午夜精品射精入后重之免费观看| 久久日本三级韩国三级| 久久精品成人亚洲另类欧美| 亚洲国产一区一区毛片a| 五十六十日本老熟妇乱| 日本乱人伦在线观看| 在线国产视频精品视频| 麻豆国产精品久久天堂 | 免费无遮挡无码视频在线观看| 国产精品亚洲一区二区三区妖精| 强d乱码中文字幕熟女免费| a级毛片免费观看网站| 午夜视频网址| 日本女同性恋一区二区三区网站| 精品视频一区二区三区在线观看| 丰满人妻妇伦又伦精品国产 | 亚洲一区精品无码色成人| 亚洲成a人片在线观看中文!!!| 91久久精品一区二区| 精品久久久久久无码人妻蜜桃| 亚洲男人的天堂网站| 黑人一区二区三区啪啪网站| 亚洲麻豆视频免费观看| 婷婷中文字幕综合在线| 91精品91| av免费在线国语对白| 狠狠色噜噜狠狠狠777米奇小说| 国内精品一区视频在线播放| 一区二区三区在线观看高清视频| 久久天天躁狠狠躁夜夜av浪潮| 国产精品美女一区二区三区| 亚洲AV无码日韩综合欧亚| 国产传媒精品成人自拍| 免费无遮挡禁18污污网站| 日本手机在线|