摘要: 以具有相同結(jié)構(gòu)尺寸的四根多盤轉(zhuǎn)子作為研究對象,利用精密線切割的加工方式分別在四根轉(zhuǎn)子的不同位置預制不同深度的橫向裂紋。對裂紋參數(shù)發(fā)生改變的轉(zhuǎn)子系統(tǒng)展開振動特性測試,并分析裂紋轉(zhuǎn)子的動力學響應特征與裂紋位置和裂紋深度之間的關(guān)系。試驗結(jié)果表明:1/2臨界轉(zhuǎn)速區(qū)的2×共振現(xiàn)象以及1/3臨界轉(zhuǎn)速區(qū)的3×共振現(xiàn)象是轉(zhuǎn)軸裂紋故障的典型特征,其中2×共振峰值會在裂紋深度達到一個臨界點后迅速增加;而區(qū)別于已有研究結(jié)果,3×共振峰值會在裂紋深度達到臨界點后突降;同時,引發(fā)2×和3×共振峰值發(fā)生突變的臨界深度與裂紋位置是否處于輪盤根部存在關(guān)聯(lián)。
關(guān)鍵詞: 轉(zhuǎn)子動力學; 振動特性試驗;裂紋深度; 裂紋位置; 多盤轉(zhuǎn)子系統(tǒng)
中圖分類號: V231.96 " "文獻標志碼: A " " " " "文章編號: 1004-4523(2025)03-0461-08
DOI:10.16385/j.cnki.issn.1004-4523.2025.03.002
Vibration characteristic experiments of rotor system with different crack parameters
HAN Bing, LIU Zhansheng, HE Peng, YAN Peigang
(School of Energy Science and Engineering, Harbin Institute of Technology, Harbin 150001, China)
Abstract: Four multi-disk rotors with the same structure size are used as the research basis. The precision wire cutting method is used to prefabricate transverse cracks of different depths at different positions of the four rotors. The vibration characteristics of the cracked rotor system with changed crack parameters are tested and the relationship between the dynamic response characteristics of the cracked rotor and the crack location and crack depth is analyzed. The test results show that the 2× resonance phenomenon in the 1/2 critical speed zone and the 3× resonance phenomenon in the 1/3 critical speed zone are the typical characteristics of the rotating shaft crack failure. The 2× resonance peak value increases rapidly after the crack depth reached a critical point. While the 3× resonance peak value, which is different from the results of existing studies, drops abruptly after the crack depth reached a critical point. Also, there is a correlation between the critical depth that triggered an abrupt change in the peak 2× and 3× resonance and whether the crack location is at the root of the disc.
Keywords: rotor dynamics;vibration characteristic experiment; crack depth;crack position; multi-disk rotor system
轉(zhuǎn)子系統(tǒng)作為航空發(fā)動機及燃氣輪機等大型旋轉(zhuǎn)機械的核心,其在工作過程中將長期遭受氣動力、熱應力等多種載荷的反復沖擊,由此極易引發(fā)轉(zhuǎn)子產(chǎn)生疲勞裂紋。若能及時發(fā)現(xiàn)轉(zhuǎn)軸裂紋故障的存在,并大致判斷裂紋故障發(fā)生的位置和故障嚴重程度,可采取有效的防護措施以避免安全事故和經(jīng)濟損失。在眾多裂紋檢測方法中,基于轉(zhuǎn)子振動信號的在線監(jiān)測更具優(yōu)勢[1]。
國內(nèi)外相關(guān)領(lǐng)域的學者長期以來關(guān)注著裂紋轉(zhuǎn)子動力學方向的有關(guān)研究[2?7]。DARPE等[8]和AL?SHUDEIFAT等[9]分別在應變能釋放率和中性軸理論體系下建立了裂紋轉(zhuǎn)子的有限元模型,并指出轉(zhuǎn)軸裂紋將使得轉(zhuǎn)子剛度按照特定規(guī)律變化,由此導致裂紋轉(zhuǎn)子出現(xiàn)亞臨界共振現(xiàn)象。文獻[10?14]也陸續(xù)在各自的研究工作中發(fā)現(xiàn),裂紋轉(zhuǎn)子存在超諧波頻率成分。李常有等[15]和GUO等[16]的研究則表明了超諧波響應成分可作為轉(zhuǎn)子裂紋故障的診斷依據(jù)。
實際生產(chǎn)生活當中一旦監(jiān)測到轉(zhuǎn)軸裂紋故障,應立即對機組進行維修。為避免維修過程中因盲目拆裝機組而帶來額外損失,需要在判斷有無裂紋的基礎(chǔ)上進一步給出裂紋深度和裂紋在轉(zhuǎn)子上的位置。轉(zhuǎn)子裂紋參數(shù)的精確識別具有較大的挑戰(zhàn)性,不同的識別方法都建立在一定數(shù)量的故障樣本基礎(chǔ)之上[17?20],且樣本數(shù)量影響著參數(shù)識別的誤差。因此對于轉(zhuǎn)軸裂紋故障定位、定量識別方法的推廣應用而言,前期不同裂紋參數(shù)下的轉(zhuǎn)子動力學響應數(shù)據(jù)的積累至關(guān)重要。BACHSCHMID等[21]建立了含裂紋的320 MW大型發(fā)電機組轉(zhuǎn)子有限元模型,通過仿真獲得了不同裂紋位置和深度下的轉(zhuǎn)子振動響應數(shù)據(jù)。文獻[22?26]的研究同樣體現(xiàn)了不同裂紋參數(shù)對裂紋轉(zhuǎn)子動力學行為的影響。上述研究結(jié)果對轉(zhuǎn)子裂紋故障參數(shù)的精確識別具有較大的參考意義,但仍有一些問題值得被進一步探討。例如,當油膜力[27?28]、背景環(huán)境噪聲[29]等多重干擾因素共同作用于裂紋轉(zhuǎn)子時,轉(zhuǎn)子的故障振動特征與裂紋參數(shù)之間是否依舊存在較強的關(guān)聯(lián)性。除此之外,對動力設(shè)備性能的特殊需求以及現(xiàn)場工作條件等限制了轉(zhuǎn)子的結(jié)構(gòu)尺寸,這將使得部分裂紋轉(zhuǎn)子的故障振動特征隨裂紋參數(shù)的變化規(guī)律與以往的研究結(jié)果有所不同。
本文以具有相同結(jié)構(gòu)和尺寸的四根多盤轉(zhuǎn)子作為研究對象,利用精密線切割的方式在不同轉(zhuǎn)子的不同位置處預制多個深度的橫向裂紋,并對裂紋轉(zhuǎn)子?滑動軸承系統(tǒng)的振動特性進行測試。大量試驗結(jié)果表明,裂紋轉(zhuǎn)子在亞臨界轉(zhuǎn)速區(qū)的2×和3×超諧波共振峰值與裂紋位置和裂紋深度存在相關(guān)性。同時,3×共振峰值并非隨著裂紋深度的增加而單調(diào)遞增。
1 試驗臺介紹
試驗過程中所使用的多盤轉(zhuǎn)子系統(tǒng)動力學特性測試試驗臺如圖1所示。制造轉(zhuǎn)子所用金屬材料為40Cr合金鋼,轉(zhuǎn)子的幾何結(jié)構(gòu)參數(shù)及物性參數(shù)如表1所示。已有文獻指出橫向裂紋較為常見,同時橫向裂紋對轉(zhuǎn)子的破壞性較大且嚴重影響著動力設(shè)備運行的安全性與可靠性[30],故對裂紋參數(shù)不斷變化的橫向裂紋轉(zhuǎn)子系統(tǒng)的振動行為展開測試。
如圖2所示,本次試驗共制造了四根相同規(guī)格尺寸的多盤轉(zhuǎn)子。采用精密線切割的加工方式分別在四根轉(zhuǎn)子的不同位置加工不同深度的橫向裂紋,裂紋寬度為0.07 mm,裂紋具體位置以及與試驗臺相關(guān)的更多細節(jié)被展示在圖3中。
2 試驗過程
完成試驗臺的搭建工作后,接通潤滑油供油管路。380 V交流電機驅(qū)動轉(zhuǎn)子均勻升速,整個升速階段持續(xù)5 min,轉(zhuǎn)子的最高轉(zhuǎn)速為4000 r/min,采集轉(zhuǎn)子整個升速階段1#軸承座附近的振動位移信號。參考圖2和3,雖然四根轉(zhuǎn)子的結(jié)構(gòu)尺寸是相同的,但所有轉(zhuǎn)子的初始振動狀態(tài)仍然無法保持一致。因為實際運行環(huán)境中存在大量的不確定干擾,同時制造轉(zhuǎn)子的過程中也將產(chǎn)生一定的加工誤差。為解決這一問題,所有的轉(zhuǎn)子在被植入裂紋故障前都進行了動平衡,由此使得四根轉(zhuǎn)子的初始振動大致保持在同一數(shù)量級。此外,在對每一根裂紋轉(zhuǎn)子的振動特性展開測試的過程中,保持裂紋位置不變且裂紋深度逐漸增加。不同裂紋參數(shù)下轉(zhuǎn)子的振動測試數(shù)據(jù)采集分析流程如圖4所示。
3 試驗結(jié)果分析與討論
裂紋局部截面如圖5所示,定義無量綱裂紋相對深度α ?(α ? "=a/(2R)),其中a為實際裂紋切割深度,2R為軸徑,軸徑取值如表1所示。圖6給出了四根轉(zhuǎn)子裂紋深度逐漸增加時,1×振動幅值隨轉(zhuǎn)速的變化情況。顯然,1×響應在臨界轉(zhuǎn)速處出現(xiàn)峰值。依據(jù)經(jīng)典有限元理論[31?33],若裂紋深度不斷增加,則裂紋轉(zhuǎn)子在臨界轉(zhuǎn)速處的1×共振峰值隨之增加且臨界轉(zhuǎn)速略有提前。然而從圖6中可以看出,臨界轉(zhuǎn)速大致分布在2900~3300 r/min且隨裂紋深度的變化具有一定的隨機性。雖然圖6(a)和(b)表明,裂紋產(chǎn)生后臨界轉(zhuǎn)速處的1×響應峰值隨裂紋深度的增加而單調(diào)遞增,但圖6(c)和(d)中卻呈現(xiàn)出不一樣的結(jié)果。由此可見,轉(zhuǎn)子在實際運行過程中將面臨油膜力、背景環(huán)境噪聲、制造加工誤差、材料物性分布不均以及其他無法確定的外部激勵等多重因素的干擾,進而導致裂紋轉(zhuǎn)子的臨界轉(zhuǎn)速和相應的1×共振峰值隨裂紋參數(shù)的變化趨勢與理論計算結(jié)果存在差別?;诖?,無法將臨界轉(zhuǎn)速和相應的1×共振峰值作為轉(zhuǎn)軸裂紋故障精確識別的指標。
圖7展示了不同裂紋位置、不同裂紋深度工況下,裂紋轉(zhuǎn)子的2×振動幅值隨轉(zhuǎn)速的變化規(guī)律。作為轉(zhuǎn)軸裂紋故障的動力學特征之一,1/2臨界轉(zhuǎn)速區(qū)存在2×共振現(xiàn)象。盡管無裂紋狀態(tài)下轉(zhuǎn)子本身含有2×超諧波頻率成分,但隨著裂紋深度的增加,1/2臨界轉(zhuǎn)速區(qū)的2×振動幅值仍出現(xiàn)顯著變化[34]。
圖8進一步給出不同轉(zhuǎn)子在1/2臨界轉(zhuǎn)速區(qū)2×共振峰值隨裂紋相對深度的變化情況。當裂紋深度較淺時,2×共振峰值在較小的范圍內(nèi)隨機波動,裂紋深度的增加幾乎很難對其造成影響。在裂紋深度達到某一個臨界點后,2×共振峰值將進入快速增長階段。然而,該臨界深度對于裂紋位置不同的四根轉(zhuǎn)子而言有所區(qū)別。如圖8所示,裂紋位置1的臨界點為裂紋深度超過轉(zhuǎn)軸直徑的20%,裂紋位置2、3、4的臨界點為裂紋深度超過轉(zhuǎn)軸直徑的30%。參考圖2和3,裂紋位置2、3、4處于輪盤根部,裂紋位置1則處在距離輪盤較遠的軸段處。由于輪盤所在部位質(zhì)量較為集中,相比于軸段部分輪盤根部不易變形,故裂紋處在位置1時轉(zhuǎn)子的2×故障特征對裂紋深度的持續(xù)增加更敏感,即圖8中黑色曲線更早進入快速增長階段。
綜合圖7和8可知,如果對轉(zhuǎn)子的振動行為進行在線監(jiān)測的過程中發(fā)現(xiàn)轉(zhuǎn)子在1/2臨界轉(zhuǎn)速區(qū)附近存在明顯的2×共振現(xiàn)象,表明轉(zhuǎn)軸含有裂紋故障且裂紋深度至少超過轉(zhuǎn)軸直徑的20%。同時,若2×共振峰值持續(xù)大幅度增長,則裂紋故障正在逐漸惡化且裂紋大致位于遠離輪盤根部的軸段處。相反,若2×共振峰值處于持續(xù)小幅度增長,則裂紋大致位于輪盤根部,此時裂紋故障已至少惡化到轉(zhuǎn)軸直徑的30%。所以,通過分析表明轉(zhuǎn)子在1/2臨界轉(zhuǎn)速區(qū)的2×共振現(xiàn)象不僅可用于識別轉(zhuǎn)軸裂紋故障,其2×共振峰值還可作為裂紋故障定位、定量精確識別的指標。
圖9給出了不同裂紋深度下,四根裂紋轉(zhuǎn)子的3×振動幅值隨轉(zhuǎn)速變化的情況。通常,轉(zhuǎn)子發(fā)生軸裂紋故障將引發(fā)1/3臨界轉(zhuǎn)速區(qū)的3×共振現(xiàn)象[34?36]。雖然無裂紋時轉(zhuǎn)子存在3×超諧波頻率成分,但裂紋深度的增加對1/3臨界轉(zhuǎn)速區(qū)的3×振動幅值仍然產(chǎn)生了一定的影響。然而3×成分本身是一個弱信號,極易被雜波所干擾。如圖9(a)~(c)所示,裂紋轉(zhuǎn)子在1/3臨界轉(zhuǎn)速區(qū)的3×共振特征不明顯,甚至該轉(zhuǎn)速區(qū)附近其他轉(zhuǎn)速處的3×振幅都要大于此3×共振峰值。不同于圖9(a)~(c)所代表的三根轉(zhuǎn)子,圖9(d)表明若裂紋處于位置4,則轉(zhuǎn)子在1/3臨界轉(zhuǎn)速區(qū)存在明顯的3×共振特征。
四根轉(zhuǎn)子在1/3臨界轉(zhuǎn)速區(qū)的3×共振峰值隨裂紋深度變化的差別被進一步反映在圖10中,從中可以看出所有轉(zhuǎn)子的3×共振峰值并未隨裂紋深度的增加而單調(diào)遞增,轉(zhuǎn)子結(jié)構(gòu)形式的不同以及外部干擾的綜合作用使得當前研究結(jié)果與以往有所區(qū)別[21,33?34,37?38]。3×振動信號在裂紋故障早期不穩(wěn)定,在裂紋深度達到一個臨界點后,所有轉(zhuǎn)子在1/3臨界轉(zhuǎn)速區(qū)的3×共振幅值發(fā)生突降。對于裂紋位置2、3、4而言,這一臨界點為裂紋深度超過轉(zhuǎn)軸直徑的25%。區(qū)別于這三根轉(zhuǎn)子,當裂紋處在位置1時,這一臨界點為裂紋深度超過轉(zhuǎn)軸直徑的30%。如前所述,裂紋位置2、3、4位于輪盤根部,裂紋位置1位于遠離輪盤的軸段處。顯然,產(chǎn)生這一現(xiàn)象的原因類似于2×,即四根轉(zhuǎn)子在1/2臨界轉(zhuǎn)速區(qū)的2×共振峰值進入快速增長階段的臨界深度不同。
由此可見,裂紋轉(zhuǎn)子在亞臨界轉(zhuǎn)速區(qū)的3×超諧波響應峰值也可作為轉(zhuǎn)軸裂紋故障定位、定量識別的參考指標。但在裂紋故障早期,3×信號不穩(wěn)定,故利用1/3臨界轉(zhuǎn)速區(qū)的3×共振幅值較難識別微小裂紋。如果在對裂紋轉(zhuǎn)子振動行為在線監(jiān)測的過程中發(fā)現(xiàn),1/3臨界轉(zhuǎn)速區(qū)的3×共振現(xiàn)象逐漸明顯且3×共振幅值發(fā)生突降,則裂紋深度至少超過轉(zhuǎn)軸直徑的25%。此外圖10中還表明,若達到突降點前3×共振幅值持續(xù)增加,則裂紋位于遠離輪盤的軸段處,反之裂紋部位在輪盤根部。然而1/3臨界轉(zhuǎn)速區(qū)的3×超諧波響應成分是一個弱信號,故在裂紋故障診斷的過程中需綜合1/2臨界轉(zhuǎn)速區(qū)的2×響應做出判斷,以此提高診斷的精確度。
4 結(jié) "論
本文以具有相同規(guī)格尺寸的四根多盤轉(zhuǎn)子作為研究對象,采用精密線切割的方法在各個轉(zhuǎn)子的不同位置處預制不同深度的橫向裂紋,并測量轉(zhuǎn)子升速階段的動力學特性。主要結(jié)論如下:
(1) 轉(zhuǎn)子的臨界轉(zhuǎn)速以及臨界轉(zhuǎn)速處的1×共振幅值隨裂紋參數(shù)的變化過程呈現(xiàn)出一定的隨機性,無法將其作為轉(zhuǎn)軸裂紋故障精確定位、定量識別的參照指標。
(2) 如果存在軸裂紋故障,則轉(zhuǎn)子在經(jīng)過1/2臨界轉(zhuǎn)速區(qū)時出現(xiàn)2×共振現(xiàn)象。在裂紋故障早期2×共振幅值隨裂紋深度的變化表現(xiàn)出隨機性,若裂紋深度達到臨界點后2×共振幅值將進入快速增長期。當裂紋位置處在輪盤根部時,該臨界深度為轉(zhuǎn)軸直徑的30%。當裂紋位置處在遠離輪盤根部的軸段時,該臨界深度為轉(zhuǎn)軸直徑的20%。據(jù)此,1/2臨界轉(zhuǎn)速區(qū)的2×共振幅值可作為轉(zhuǎn)軸裂紋故障精確定位、定量識別的參考指標。
(3) 軸裂紋故障將導致轉(zhuǎn)子在經(jīng)過1/3臨界轉(zhuǎn)速區(qū)時出現(xiàn)3×共振現(xiàn)象,3×信號較弱且在故障早期不穩(wěn)定。隨著裂紋深度逐漸增加至臨界點,3×共振現(xiàn)象趨于明顯。而區(qū)別于已有研究結(jié)果,3×共振幅值在裂紋深度達到臨界點后發(fā)生突降。當裂紋位置處在輪盤根部時,該臨界深度為轉(zhuǎn)軸直徑的25%。當裂紋位置處在遠離輪盤根部的軸段時,該臨界深度為轉(zhuǎn)軸直徑的30%。基于此,3×共振幅值可作為轉(zhuǎn)軸裂紋故障精確定位、定量識別的參考指標。但3×振動信號屬于弱信號,在判定故障時需結(jié)合1/2臨界轉(zhuǎn)速區(qū)的2×共振現(xiàn)象以提高精確度。
參考文獻:
[1] KUSHWAHA N, PATEL V N. Modelling and analysis of a cracked rotor: a review of the literature and its implications[J]. Archive of Applied Mechanics, 2020, 90(6): 1215-1245.
[2] 路振勇,陳予恕,侯磊,等.常開空心軸裂紋轉(zhuǎn)子系統(tǒng)的動力學特性[J]. 航空動力學報,2015, 30(2): 422-430.
LU Zhenyong, CHEN Yushu, HOU Lei, et al. Dynamic characteristics of an open crack in hollow shaft rotor system[J]. Journal of Aerospace Power, 2015, 30(2): 422-430.
[3] 于海,陳予恕,曹慶杰.多自由度裂紋轉(zhuǎn)子系統(tǒng)非線性動力學特性分析[J]. 振動與沖擊, 2014, 33(7): 92-98.
YU Hai, CHEN Yushu, CAO Qingjie. Nonlinear dynamic behavior analysis for a cracked multi-DOF rotor system[J]. Journal of Vibration and Shock, 2014, 33(7): 92-98.
[4] 李志農(nóng),王海峰,肖堯先. 基于分數(shù)階微積分的裂紋轉(zhuǎn)子系統(tǒng)非線性動力學特性研究[J]. 兵工學報,2015, 36(9): 1790-1798.
LI Zhinong, WANG Haifeng, XIAO Yaoxian. Nonlinear dynamic characteristics of cracked rotor system based on fractional order calculus[J]. Acta Armamentarii, 2015, 36(9): 1790-1798.
[5] SEKHAR A S, MOHANTY A R, PRABHAKAR S. Vibrations of cracked rotor system: transverse crack versus slant crack[J]. Journal of Sound and Vibration, 2005, 279(3-5): 1203-1217.
[6] 羅躍綱,聞邦椿. 雙跨轉(zhuǎn)子系統(tǒng)裂紋-松動耦合故障的非線性響應[J]. 航空動力學報,2007, 22(6): 996-1001.
LUO Yuegang, WEN Bangchun. Nonlinear responses of two-span rotor-bearing system with coupling faults of crack and pedestal looseness[J]. Journal of Aerospace Power, 2007, 22(6): 996-1001.
[7] WANG L, HUANG F, LUO Y, et al. Research on the dynamic characteristics of crack damage of a seal-rotor system[J]. Nonlinear Dynamics, 2022, 109(3): 1851-1876.
[8] DARPE A K, GUPTA K, CHAWLA A. Transient response and breathing behaviour of a cracked Jeffcott rotor[J]. Journal of Sound and Vibration, 2004, 272(1-2): 207-243.
[9] AL-SHUDEIFAT M A, BUTCHER E A. New breathing functions for the transverse breathing crack of the cracked rotor system: approach for critical and subcritical harmonic analysis[J]. Journal of Sound and Vibration, 2011, 330(3): 526-544.
[10] SAWICKI J T, FRISWELL M I, KULESZA Z, et al. Detecting cracked rotors using auxiliary harmonic excitation[J]. Journal of Sound and Vibration, 2011, 330(7): 1365-1381.
[11] 陶海亮,左志濤,高慶,等.基于時頻分析的裂紋轉(zhuǎn)子碰摩故障特征研究[J]. 推進技術(shù),2013, 34(4): 520-528.
TAO Hailiang, ZUO Zhitao, GAO Qing, et al. Fault analysis of rotor with rub-impact and crack based on time-frequency analysis[J]. Journal of Propulsion Technology, 2013, 34(4): 520-528.
[12] HOU L, CHEN Y. Super-harmonic responses analysis for a cracked rotor system considering inertial excitation[J]. Science China Technological Sciences, 2015, 58(11): 1924-1934.
[13] XIE J, ZI Y, CHENG W, et al. Mechanism explanation and experimental verification of a new modulation frequency characteristic in a disturbed crack rotor[J]. Nonlinear Dynamics, 2019, 95(1): 597-616.
[14] PRASAD S R, SEKHAR A S. Detection and localization of fatigue induced transverse crack in a rotor shaft using principal component analysis[J]. Structural Health Monitoring, 2021, 20(2): 513-531.
[15] 李常有,徐敏強,郭聳,等.基于有限元的橫向裂紋轉(zhuǎn)子系統(tǒng)的動力學分析[J]. 振動工程學報,2009, 22(5): 486-491.
LI Changyou, XU Minqiang, GUO Song, et al. Dynamic analysis of rotor system with transverse crack based on finite element[J]. Journal of Vibration Engineering, 2009, 22(5): 486-491.
[16] GUO D, PENG Z K. Vibration analysis of a cracked rotor using Hilbert-Huang transform[J]. Mechanical Systems and Signal Processing, 2007, 21(8): 3030-3041.
[17] ZAPICO-VALLE J L, RODRIGUEZ E, GARCIA-DIEGUEZ M, et al. Rotor crack identification based on neural networks and modal data[J]. Meccanica, 2014, 49(2): 305-324.
[18] SINOU J, DENIMAL E. Reliable crack detection in a rotor system with uncertainties via advanced simulation models based on kriging and polynomial chaos expansion[J]. European Journal of Mechanics-A/Solids, 2022, 92: 104451.
[19] 艾延廷,付琪,田晶,等. 基于融合信息熵距的轉(zhuǎn)子裂紋?碰摩耦合故障診斷方法[J]. 航空動力學報,2013, 28(10): 2161-2166.
AI Yanting, FU Qi, TIAN Jing, et al. Diagnosis method for crack-rubbing coupled fault in rotor system based on integration of information entropy distance[J]. Journal of Aerospace Power, 2013, 28(10): 2161-2166.
[20] 謝平,杜義浩. 基于信息熵的裂紋轉(zhuǎn)子動力特征分析與診斷方法[J]. 機械工程學報,2009, 45(1): 195-199.
XIE Ping, DU Yihao. Crack rotor dynamic feature analysis and diagnosis method based on information entropy[J]. Journal of Mechanical Engineering, 2009, 45(1): 195-199.
[21] BACHSCHMID N, PENNACCHI P, TANZI E. A sensitivity analysis of vibrations in cracked turbogenerator units versus crack position and depth[J]. Mechanical Systems and Signal Processing, 2010, 24(3): 844-859.
[22] CHEN C, DAI L, FU Y. Nonlinear response and dynamic stability of a cracked rotor[J]. Communications in Nonlinear Science and Numerical Simulation, 2007, 12(6): 1023-1037.
[23] SEKHAR A S. Crack identification in a rotor system: a model-based approach[J]. Journal of Sound and Vibration, 2004, 270(4-5): 887-902.
[24] GASCH R. Dynamic behaviour of the Laval rotor with a transverse crack[J]. Mechanical Systems and Signal Processing, 2008, 22(4): 790-804.
[25] AL-SHUDEIFAT M A. On the finite element modeling of the asymmetric cracked rotor[J]. Journal of Sound and Vibration, 2013, 332(11): 2795-2807.
[26] CAVALINI A A, SANCHES L, BACHSCHMID N, et al. Crack identification for rotating machines based on a nonlinear approach[J]. Mechanical Systems and Signal Processing, 2016, 79: 72-85.
[27] YANG B, SUH C S. Non-linear characteristics of a cracked rotor-journal bearing system[J]. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2005, 219(1): 87-108.
[28] XIANG L, DENG Z, HU A, et al. Multi-fault coupling study of a rotor system in experimental and numerical analyses[J]. Nonlinear Dynamics, 2019, 97(4): 2607-2625.
[29] 王艷豐,朱靖,滕光蓉,等. 航空發(fā)動機轉(zhuǎn)子早期裂紋故障振動特征的1(1/2)維譜分析[J]. 振動與沖擊,2015, 34(1): 88-93.
WANG Yanfeng, ZHU Jing, TENG Guangrong, et al. 1(1/2) dimension spectrum analysis on early cracked fault characters of aero engine rotors[J]. Journal of Vibration and Shock, 2015, 34(1): 88-93.
[30] XIE J, CHENG W, ZI Y. Modified breathing mechanism model and phase waterfall plot diagnostic method for cracked rotors[J]. Journal of Mechanical Science and Technology, 2018, 32(6): 2527-2539.
[31] SINOU J, LEES A W. A non-linear study of a cracked rotor[J]. European Journal of Mechanics-A/Solids, 2007, 26(1): 152-170.
[32] SINOU J, LEES A W. The influence of cracks in rotating shafts[J]. Journal of Sound and Vibration, 2005, 285(4-5): 1015-1037.
[33] BACHSCHMID N, PENNACCHI P, TANZI E, et al. Identification of transverse crack position and depth in rotor systems[J]. Meccanica, 2000, 35(6): 563-582.
[34] GUO C, AL-SHUDEIFAT M A, YAN J, et al. Application of empirical mode decomposition to a Jeffcott rotor with a breathing crack[J]. Journal of Sound and Vibration, 2013, 332(16): 3881-3892.
[35] ZHU C, ROBB D A, EWINS D J. The dynamics of a cracked rotor with an active magnetic bearing[J]. Journal of Sound and Vibration, 2003, 265(3): 469-487.
[36] SINOU J. Detection of cracks in rotor based on the 2× and 3× super-harmonic frequency components and the crack?unbalance interactions[J]. Communications in Nonlinear Science and Numerical Simulation, 2008, 13(9): 2024-2040.
[37] PENNACCHI P, BACHSCHMID N, VANIA A. A model-based identification method of transverse cracks in rotating shafts suitable for industrial machines[J]. Mechanical Systems and Signal Processing, 2006, 20(8): 2112-2147.
[38] SINOU J. Experimental study on the nonlinear vibrations and n× amplitudes of a rotor with a transverse crack[J]. Journal of Vibration and Acoustics, 2009, 131(4): 041008.
第一作者: 韓 "冰(1993―),男,博士研究生。
E-mail: 18B902051@stu.hit.edu.cn
通信作者: 劉占生(1962—),男,博士,教授。
E-mail: lzs@hit.edu.cn