[摘要]" SJMHE1是一種源于日本血吸蟲熱休克蛋白60的小分子多肽,包含24個氨基酸。研究表明,SJMHE1通過誘導(dǎo)CD4+CD25+調(diào)節(jié)性T細(xì)胞(Tregs)、調(diào)節(jié)性B細(xì)胞、M2型巨噬細(xì)胞,調(diào)節(jié)輔助性T細(xì)胞1(Th1)/Th2、Th17/Tregs的平衡,抑制哮喘小鼠髓源性抑制細(xì)胞(MDSCs)、2型固有淋巴細(xì)胞(ILC2s)等機(jī)制調(diào)節(jié)炎癥反應(yīng),在哮喘、炎癥性腸病、類風(fēng)濕關(guān)節(jié)炎等多種疾病中發(fā)揮重要的抗炎活性。本文對SJMHE1的免疫調(diào)節(jié)功能及其在炎癥性疾病中的作用進(jìn)行綜述,為炎癥性疾病的治療提供全新思路。
[關(guān)鍵詞]" 血吸蟲多肽SJMHE1;抗炎;免疫調(diào)節(jié);炎癥性疾病
[中圖分類號]" R392" [文獻(xiàn)標(biāo)志碼]" A" [文章編號]" 1671-7783(2025)02-0180-05
DOI: 10.13312/j.issn.1671-7783.y240072
[引用格式]張雪麗, 賈玨, 楊玲, 等. 日本血吸蟲多肽SJMHE1在炎癥性疾病中的作用研究進(jìn)展[J]. 江蘇大學(xué)學(xué)報(醫(yī)學(xué)版), 2025, 35(2): 180-184.
[基金項目]江蘇省自然科學(xué)基金資助項目(BK20231251);江蘇省第六期“333人才”卡脖子技術(shù)攻關(guān)項目[江蘇省人才辦(2022)21號文]
[作者簡介]張雪麗(1994—),女,碩士研究生;汪雪峰(通訊作者),博士生導(dǎo)師,E-mail: xuefengwang@ujs.edu.cn;袁國躍(通訊作者),主任醫(yī)師,博士生導(dǎo)師,E-mail: yuanguoyue@ujs.edu.cn
環(huán)境衛(wèi)生的改善使得處于發(fā)達(dá)國家或地區(qū)的人群感染細(xì)菌、蠕蟲等病原體的概率大幅降低,從而使其自身免疫性疾病、過敏性疾病的發(fā)病率顯著增加[1]。流行病學(xué)的調(diào)查研究以及臨床研究證據(jù)表明,病原體,尤其是蠕蟲感染能夠抑制宿主自身免疫性疾病和過敏性疾病的發(fā)展。蠕蟲感染與自身免疫、過敏等炎癥性疾病的發(fā)病率呈負(fù)相關(guān)[2-3],例如伯氏瘧原蟲感染能抑制小鼠自發(fā)性的全身免疫性疾病[4],血吸蟲感染能抑制小鼠過敏性哮喘的發(fā)展[5]。
近年來的研究發(fā)現(xiàn),蠕蟲以及蠕蟲分子具有預(yù)防或治療炎癥性疾病的作用[6-7]??诜i鞭蟲能夠改善炎性腸病患者的癥狀[8]。來源于棘唇蟲的含磷酰膽堿糖蛋白ES-62在類風(fēng)濕關(guān)節(jié)炎(rheumatoid arthritis,RA)、哮喘和系統(tǒng)性紅斑狼瘡(systemic lupus erythematosus,SLE)小鼠模型中具有疾病預(yù)防作用[9-11]。高壓滅菌的曼氏血吸蟲抗原(autoclaved Schistosoma mansoni antigen,ASMA)能夠緩解大鼠佐劑性關(guān)節(jié)炎的病理進(jìn)展[12]。日本血吸蟲蟲卵抗原p40(egg antigen p40 of Schistosoma japonicum,SJP40)能夠抑制過敏性哮喘小鼠的氣道炎癥[13]。然而,利用蠕蟲活蟲感染進(jìn)行治療存在諸多風(fēng)險,如感染誘導(dǎo)的損傷、疫苗效力降低等[7]。因此,從蠕蟲中篩選并鑒定具有免疫調(diào)節(jié)活性的小分子物質(zhì)更具有應(yīng)用價值。SJMHE1是來源于日本血吸蟲的一種小分子多肽,具有免疫調(diào)節(jié)功能,能夠緩解多種炎癥性疾病的進(jìn)展。本文對SJMHE1的免疫調(diào)節(jié)作用及其在炎癥性疾病中的干預(yù)作用進(jìn)行綜述。
1" SJMHE1的結(jié)構(gòu)與功能
SJMHE1是來源于日本血吸蟲熱休克蛋白60(Schistosoma japonicum heat shock protein 60,SJHSP60)的小分子多肽,含24個氨基酸,其序列為VPGGGTALLRCIPVLDTLSTKNED,位于SJHSP60(GenBank Accession No: AAW24883)aa437-460[14-15]。研究表明[14],來源于日本血吸蟲蟲卵抗原及成蟲的抗原組分SJHSP60能夠誘導(dǎo)CD4+CD25+Tregs,具有免疫抑制作用。SJMHE1含有人和小鼠共同的T細(xì)胞表位,在體內(nèi)、體外也能誘導(dǎo)CD4+CD25+Tregs細(xì)胞,具有免疫調(diào)節(jié)活性。此外,SJMHE1在多種炎癥性疾病中表現(xiàn)出抗炎活性,有望發(fā)展為炎癥性疾病的治療藥物。
2" SJMHE1在炎癥性疾病中的抗炎作用
2.1" SJMHE1抑制哮喘小鼠的氣道炎癥
哮喘是一種慢性炎癥性氣道疾病,其臨床特征主要為氣道高反應(yīng)性、氣道狹窄等[16]。哮喘的發(fā)病機(jī)制尚不完全清楚,涉及多種免疫細(xì)胞、炎癥細(xì)胞因子以及炎癥通路[17]。Th1/Th2、Th17/Tregs的失衡被認(rèn)為與哮喘的氣道炎癥密切相關(guān)[18-19]。在卵清蛋白構(gòu)建的小鼠哮喘模型中,哮喘小鼠肺臟血管周圍嗜酸粒細(xì)胞增多、上皮損傷和水腫,而SJMHE1處理后,其炎癥評分降低;SJMHE1處理減少哮喘小鼠肺臟炎性細(xì)胞的浸潤,降低炎癥指數(shù),減少哮喘小鼠肺泡灌洗液中嗜酸粒細(xì)胞的數(shù)量[20-25]。SJMHE1處理可有效抑制哮喘小鼠的氣道炎癥。
2.2" SJMHE1抑制變應(yīng)性鼻炎的炎癥反應(yīng)
變應(yīng)性鼻炎是一種常見的鼻呼吸道過敏性炎癥疾病,主要表現(xiàn)為打噴嚏、鼻塞、清鼻涕和鼻瘙癢等癥狀。Gao等[26]研究發(fā)現(xiàn),SJMHE1處理可改善變應(yīng)性鼻炎小鼠的多種臨床癥狀。與變應(yīng)性鼻炎小鼠模型組相比,SJMHE1處理可降低變應(yīng)性鼻炎小鼠撓鼻和打噴嚏的次數(shù),減輕由撓鼻所造成的皮膚損傷,減少鼻黏膜組織中嗜酸粒細(xì)胞的數(shù)量,緩解鼻黏膜炎癥細(xì)胞浸潤及纖維化進(jìn)展,降低鼻灌洗液、脾臟和血清中炎性細(xì)胞因子水平,從而有效抑制變應(yīng)性鼻炎小鼠的炎癥反應(yīng)。
2.3" SJMHE1抑制急、慢性腸炎小鼠的炎癥反應(yīng)
炎癥性腸?。↖BD)是以慢性復(fù)發(fā)性腸道炎癥為特征的消化系統(tǒng)疾病,包括克羅恩病和潰瘍性結(jié)腸炎。研究發(fā)現(xiàn)蠕蟲誘導(dǎo)的免疫調(diào)節(jié)可用于IBD的治療,譬如:口服日本血吸蟲卵能夠減輕三硝基苯磺酸誘導(dǎo)的小鼠結(jié)腸炎[27-28]。Shan等[29]報道,SJMHE1可顯著抑制葡聚糖硫酸鈉誘導(dǎo)的急、慢性結(jié)腸炎,改善疾病癥狀和結(jié)腸病理損傷。在葡聚糖硫酸鈉構(gòu)建的急、慢性結(jié)腸炎小鼠模型中,腸炎小鼠表現(xiàn)出體重減輕、便血、腹瀉、結(jié)腸縮短等癥狀;疾病活動指數(shù)、中性粒細(xì)胞數(shù)量及活性、炎性細(xì)胞浸潤顯著增加。SJMHE1處理后小鼠體重與結(jié)腸長度增加,疾病活動指數(shù)及結(jié)腸炎性細(xì)胞浸潤降低。SJMHE1處理可有效抑制急、慢性腸炎小鼠的炎癥反應(yīng)。
2.4" SJMHE1抑制RA小鼠的關(guān)節(jié)炎癥
RA是一種全身性炎癥疾病,也是炎性關(guān)節(jié)炎最常見的形式,其病理表現(xiàn)為免疫細(xì)胞浸潤、滑膜襯里增生、血管翳形成以及關(guān)節(jié)軟骨和骨破壞[30]。血吸蟲感染引起的免疫反應(yīng)對關(guān)節(jié)炎的治療作用已有報道[31]。在膠原蛋白誘導(dǎo)的關(guān)節(jié)炎(collagen-induced arthritis,CIA)小鼠模型中,CIA小鼠關(guān)節(jié)出現(xiàn)了炎癥細(xì)胞浸潤、滑膜增生、關(guān)節(jié)間隙變窄、血管翳形成、軟骨破壞等臨床癥狀;SJMHE1處理能改善CIA小鼠關(guān)節(jié)炎癥細(xì)胞浸潤、軟骨破壞、關(guān)節(jié)侵蝕等臨床癥狀,降低CIA臨床評分[32-33]。且SJMHE1治療并未引起CIA小鼠肝、腎等重要臟器的損傷和病理學(xué)變化,具有較好的生物安全性。
2.5" SJMHE1抑制自身免疫性甲狀腺炎的炎癥反應(yīng)
自身免疫性甲狀腺炎(autoimmune thyroiditis,AIT)是一種以橋本甲狀腺炎為代表的、常見的自身免疫性疾病,影響全球3%~5%的患者[34]。AIT的病理特征包括血清中存在甲狀腺特異性自身抗體,淋巴細(xì)胞大量浸潤,甲狀腺內(nèi)濾泡結(jié)構(gòu)破壞[35-36]。最近的研究發(fā)現(xiàn)[37],SJMHE1通過減輕甲狀腺炎癥反應(yīng),緩解小鼠AIT癥狀。與正常小鼠相比,AIT小鼠表現(xiàn)出甲狀腺濾泡結(jié)構(gòu)破壞顯著、大小不均,周邊存在炎癥細(xì)胞浸潤等特征;SJMHE1處理減輕了AIT小鼠的上述癥狀,降低了AIT小鼠甲狀腺組織的炎癥評分。據(jù)報道,濾泡細(xì)胞焦亡可能參與橋本甲狀腺炎發(fā)病[35,38]。Zhang等[19]報道,SJMHE1處理可保護(hù)人甲狀腺濾泡上皮細(xì)胞免受過量碘誘導(dǎo)的焦亡。
3" SJMHE1誘導(dǎo)的抗炎機(jī)制
3.1" SJMHE1誘導(dǎo)CD4+CD25+Tregs
CD4+CD25+Tregs是CD4+T細(xì)胞亞群之一,在維持免疫耐受和免疫穩(wěn)態(tài)、預(yù)防自身免疫性疾病、減少慢性炎癥性疾病中起著重要作用。多種病原體(如瘧原蟲、利什曼原蟲、HBV等)感染通過誘導(dǎo)CD4+CD25+Tregs,直接或間接(分泌IL-10、TGF-β等抗炎細(xì)胞因子)作用于靶細(xì)胞,抑制宿主的免疫應(yīng)答,從而促進(jìn)其自身的生存[39]。汪雪峰[39]使用SJMHE1于尾脊部皮下免疫小鼠或體外與Nave小鼠的脾、淋巴結(jié)細(xì)胞共孵育能顯著增加CD4+CD25+Foxp3+Tregs的數(shù)量,誘導(dǎo)細(xì)胞毒性T淋巴細(xì)胞相關(guān)蛋白4(CTLA4)、IL-10、TGF-β等抑制因子的表達(dá),調(diào)節(jié)CD4+CD25+Tregs免疫抑制功能。
抗原遞呈細(xì)胞的成熟狀態(tài)與Tregs的誘導(dǎo)相關(guān)。SJMHE1處理的骨髓來源的樹突狀細(xì)胞(bone marrow-derived dendritic cells,BMDCs)和巨噬細(xì)胞呈現(xiàn)出不成熟狀態(tài),且其處理后的BMDCs和巨噬細(xì)胞能增加共培養(yǎng)體系中CD4+CD25+Tregs的數(shù)量,表明不成熟的BMDCs和巨噬細(xì)胞可能參與了SJMHE1誘導(dǎo)CD4+CD25+Tregs的過程。Toll樣受體(toll-like receptors,TLR)在初始CD4+T細(xì)胞分化中發(fā)揮著重要作用[40-41]。研究表明,選擇性激活CD4+CD25+Tregs的TLR2/4可促進(jìn)其增殖,并加強其免疫抑制活性[42-44]。SJMHE1處理能夠增加TLR2-/-小鼠CD4+CD25+Tregs的數(shù)量,但無法誘導(dǎo)TLR4-/-小鼠CD4+CD25+Tregs的增加,表明TLR2可能介導(dǎo)了SJMHE1對CD4+CD25+Tregs的誘導(dǎo)。綜合以上研究結(jié)果,SJMHE1可能通過抗原遞呈細(xì)胞上的TLR2誘導(dǎo)CD4+CD25+Tregs,增強其免疫抑制功能。
3.2" SJMHE1誘導(dǎo)調(diào)節(jié)性B細(xì)胞、M2型巨噬細(xì)胞
除了對Tregs的調(diào)節(jié)外,Gao等[26]發(fā)現(xiàn)SJMHE1能夠與CD19陽性的B細(xì)胞結(jié)合,增加調(diào)節(jié)性B細(xì)胞和B10細(xì)胞的比例,上調(diào)PR結(jié)構(gòu)域蛋白1(PR domain containing protein 1,PRDM1)的蛋白水平,在緩解變應(yīng)性鼻炎中發(fā)揮作用。Ma等[45]發(fā)現(xiàn)SJMHE1能夠誘導(dǎo)M2型巨噬細(xì)胞,以巨噬細(xì)胞依賴性的方式促進(jìn)外周髓鞘生長和功能再生,促進(jìn)坐骨神經(jīng)損傷大鼠的神經(jīng)再生與修復(fù)。
3.3" SJMHE1調(diào)節(jié)Th1/Th2、Th17/Tregs細(xì)胞的平衡
Th1/Th2細(xì)胞、Th17/Tregs細(xì)胞失衡可導(dǎo)致多種炎癥性疾病的發(fā)生,如哮喘、IBD、RA、SLE等[46-49]。最近的研究發(fā)現(xiàn),SJMHE1在調(diào)節(jié)Th1/Th2、Th17/Tregs細(xì)胞平衡中發(fā)揮作用。SJMHE1處理可降低哮喘小鼠脾細(xì)胞中Th2、Th17細(xì)胞比例,以及Th2、Th17相關(guān)轉(zhuǎn)錄因子、細(xì)胞因子的表達(dá),緩解哮喘小鼠Th1/Th2、Th17/Tregs細(xì)胞失衡[20]。機(jī)制研究發(fā)現(xiàn)SJMHE1通過下調(diào)miR-155、磷酸化信號傳導(dǎo)及轉(zhuǎn)錄活化因子3(p-STAT3)水平,上調(diào)p-STAT5水平,從而調(diào)節(jié)哮喘小鼠Th17/Tregs細(xì)胞的平衡,抑制哮喘小鼠氣道炎癥。Zhang等[21]發(fā)現(xiàn)SJMHE1可抑制過敏性哮喘小鼠的氣道炎癥反應(yīng),主要通過降低Th2細(xì)胞比例,增加Th1和Tregs細(xì)胞比例,調(diào)節(jié)過敏性哮喘小鼠脾細(xì)胞和肺中促炎、抗炎細(xì)胞因子的產(chǎn)生,增加過敏性哮喘小鼠肺組織中Foxp3和T-bet的表達(dá),降低GATA結(jié)合蛋白3(GATA3)和維甲酸相關(guān)孤核受體γT(RORγT)的表達(dá)。鄭玉[50]報道SJMHE1通過miR-21、miR-17調(diào)節(jié)p-STAT3、磷酸酶與張力蛋白同源物(PTEN)的水平進(jìn)而緩解哮喘小鼠脾臟Th1/Th2和Th17/Tregs細(xì)胞的失衡,抑制相關(guān)細(xì)胞因子、轉(zhuǎn)錄因子的表達(dá),改善哮喘小鼠氣道炎癥。馮玎琦等[22]也發(fā)現(xiàn)SJMHE1能夠調(diào)節(jié)哮喘小鼠Th17/Tregs細(xì)胞平衡,抑制哮喘小鼠氣道炎癥。此外,Shan等[29]報道SJMHE1處理可降低急性結(jié)腸炎小鼠脾細(xì)胞和腸系膜淋巴結(jié)中Th1和Th17細(xì)胞比例,增加Th2和Tregs細(xì)胞比例,調(diào)節(jié)脾細(xì)胞和結(jié)腸中促炎和抗炎細(xì)胞因子的表達(dá),調(diào)節(jié)腸炎小鼠的Th細(xì)胞平衡。
3.4" SJMHE1調(diào)節(jié)ILC2、Th2、MDSCs細(xì)胞比例
2型固有淋巴細(xì)胞(ILC2)是ILC家族成員,參與寄生蟲感染的早期免疫應(yīng)答,調(diào)節(jié)其他2型免疫細(xì)胞,如Th2、M2型巨噬細(xì)胞和嗜酸粒細(xì)胞的功能,在組織穩(wěn)態(tài)和修復(fù)的調(diào)節(jié)中具有關(guān)鍵作用[51]。王婷等[25]報道,SJMHE1能夠降低哮喘小鼠肺泡灌洗液中Th2細(xì)胞和ILC2的比例,下調(diào)IL-4、IL-5、IL-13和GATA3的轉(zhuǎn)錄水平,抑制卵清蛋白誘導(dǎo)的過敏性哮喘小鼠氣道炎癥。單文琪等[24]也發(fā)現(xiàn)SJMHE1通過抑制神經(jīng)介素U(NMU)的表達(dá),降低ILC2和Th2細(xì)胞的活化和增殖,下調(diào)2型細(xì)胞因子(IL-4、IL-5、IL-13)的表達(dá),緩解哮喘小鼠的炎癥反應(yīng)。此外,李莉等[23]報道SJMHE1能夠減少卵清蛋白誘導(dǎo)的哮喘小鼠脾臟和肺組織中MDSCs的數(shù)量,抑制哮喘小鼠氣道炎癥。
4" 結(jié)語
炎癥是機(jī)體遭受感染或損傷時產(chǎn)生的一種防御機(jī)制。適當(dāng)、短暫的炎性反應(yīng)通常發(fā)揮有益的作用,而過度、持續(xù)的炎性反應(yīng)會導(dǎo)致組織損傷,引起多種炎癥性疾病。因此,尋找安全、有效的抗炎藥物抑制炎癥反應(yīng)在炎癥性疾病的防治中具有重要意義。來源于日本血吸蟲的小分子多肽SJMHE1具有良好的免疫抑制活性。SJMHE1通過誘導(dǎo)CD4+CD25+Tregs、調(diào)節(jié)性B細(xì)胞、M2型巨噬細(xì)胞,調(diào)節(jié)Th1/Th2、Th17/Tregs細(xì)胞的平衡,降低MDSCs和ILC2細(xì)胞比例,調(diào)節(jié)抗炎和促炎因子的表達(dá),進(jìn)行免疫調(diào)節(jié),并在多種炎癥性疾病中呈現(xiàn)出較好的抗炎活性。而且,作為一種小分子多肽,SJMHE1無免疫原性,具有較好的生物安全性,提示其有望開發(fā)為炎癥性疾病的新型治療藥物。目前,關(guān)于SJMHE1的文獻(xiàn)報道還較少,相關(guān)功能及其在炎癥性疾病中的探究尚在初步階段。因此,深入探究SJMHE1在炎癥性疾病中的防治作用、闡明相關(guān)分子機(jī)制,挖掘關(guān)鍵調(diào)控因子,可為炎癥性疾病的治療提供新的靶點,為炎癥性疾病的藥物研發(fā)提供新的思路。
[參考文獻(xiàn)]
[1]" Bach JF. The hygiene hypothesis in autoimmunity: the role of pathogens and commensals[J]. Nat Rev Immunol, 2018, 18(2): 105-120.
[2]" Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases[J]. N Engl J Med, 2002, 347(12): 911-920.
[3]" Maizels RM, McSorley HJ. Regulation of the host immune system by helminth parasites[J]. J Allergy Clin Immunol, 2016, 138(3): 666-675.
[4]" Greenwood BM, Herrick EM, Voller A. Suppression of autoimmune disease in NZB and (NZB×NZW) F1 hybrid mice by infection with malaria[J]. Nature, 1970, 226(5242): 266-267.
[5]" Mo HM, Lei JH, Jiang ZW, et al. Schistosoma japonicum infection modulates the development of allergen-induced airway inflammation in mice[J]. Parasitol Res, 2008, 103(5): 1183-1189.
[6]" Buitrago G, Harnett MM, Harnett W. Conquering rheumatic diseases: are parasitic worms the answer?[J]. Trends Parasitol, 2023, 39(9): 739-748.
[7]" Chakraborty P, Aravindhan V, Mukherjee S. Helminth-derived biomacromolecules as therapeutic agents for treating inflammatory and infectious diseases: What lessons do we get from recent findings?[J]. Int J Biol Macromol, 2023, 241: 124649.
[8]" Summers RW, Elliott DE, Qadir K, et al. Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease[J]. Am J Gastroenterol, 2003, 98(9): 2034-2041.
[9]" Pineda MA, Lumb F, Harnett MM, et al. ES-62, a therapeutic anti-inflammatory agent evolved by the filarial nematode acanthocheilonema viteae[J]. Mol Biochem Parasitol, 2014, 194(1/2): 1-8.
[10]" Rodgers DT, McGrath MA, Pineda MA, et al. The parasitic worm product ES-62 targets myeloid differentiation factor 88-dependent effector mechanisms to suppress antinuclear antibody production and proteinuria in MRL/lpr mice[J]. Arthritis Rheumatol, 2015, 67(4): 1023-1035.
[11]" Rzepecka J, Siebeke I, Coltherd JC, et al. The helminth product, ES-62, protects against airway inflammation by resetting the Th cell phenotype[J]. Int J Parasitol, 2013, 43(3/4): 211-223.
[12]" Eissa MM, Mostafa DK, Ghazy AA, et al. Anti-arthritic activity of schistosoma mansoni and trichinella spiralis derived-antigens in adjuvant arthritis in rats: role of FOXP3+ Treg cells[J]. PLoS One, 2016, 11(11): e0165916.
[13]" Ren J, Hu L, Yang J, et al. Novel T-cell epitopes on Schistosoma japonicum SjP40 protein and their preventive effect on allergic asthma in mice[J]. Eur J Immunol, 2016, 46(5): 1203-1213.
[14]" Wang X, Zhou S, Chi Y, et al. CD4+CD25+ Treg induction by an HSP60-derived peptide SJMHE1 from Schistosoma japonicum is TLR2 dependent[J]. Eur J Immunol, 2009, 39(11): 3052-3065.
[15]" 李莉. 日本血吸蟲多肽SJMHE1對小鼠哮喘模型的作用與機(jī)制研究[D]. 鎮(zhèn)江: 江蘇大學(xué), 2019.
[16]" Banno A, Reddy AT, Lakshmi SP, et al. Bidirectional interaction of airway epithelial remodeling and inflammation in asthma[J]. Clin Sci (Lond), 2020, 134(9): 1063-1079.
[17]" Barcik W, Boutin RCT, Sokolowska M, et al. The role of lung and gut microbiota in the pathology of asthma[J]. Immunity, 2020, 52(2): 241-255.
[18]" Shi YH, Shi GC, Wan HY, et al. Coexistence of Th1/Th2 and Th17/Treg imbalances in patients with allergic asthma[J]. Chin Med J (Engl), 2011, 124(13): 1951-1956.
[19]" Zhang Z, Liu J, Mao C, et al. SJMHE1 protects against excessive iodine-induced pyroptosis in human thyroid follicular epithelial cells through a toll-like receptor 2-dependent pathway[J]. Int J Med Sci, 2022, 19(4): 631-639.
[20]" Li L, Shan W, Zhu H, et al. SJMHE1 peptide from Schistosoma japonicum inhibits asthma in mice by regulating Th17/Treg cell balance via miR-155[J]. J Inflamm Res, 2021, 14: 5305-5318.
[21]" Zhang W, Li L, Zheng Y, et al. Schistosoma japonicum peptide SJMHE1 suppresses airway inflammation of allergic asthma in mice[J]. J Cell Mol Med, 2019, 23(11): 7819-7829.
[22]" 馮玎琦, 單文琪, 毛佳慧, 等. 多肽SJMHE1調(diào)控Th17/Treg細(xì)胞平衡以及對哮喘小鼠治療作用的研究[J]. 醫(yī)學(xué)綜述, 2021, 27(7): 1416-1421.
[23]" 李莉, 張歡妍, 余孟珠, 等. 日本血吸蟲熱激蛋白60來源多肽SJMHE1降低哮喘小鼠脾臟和肺組織髓源性抑制細(xì)胞的數(shù)量[J]. 細(xì)胞與分子免疫學(xué)雜志, 2019, 35(1): 58-62.
[24]" 單文琪, 薛菲, 常明, 等. 血吸蟲多肽SJMHE1對哮喘小鼠IL-25, NMU以及ILC2調(diào)控作用初步研究[J]. 熱帶醫(yī)學(xué)雜志, 2021, 21(9): 1103-1108, 1133, 封4.
[25]" 王婷, 單文琪, 薛菲, 等. 日本血吸蟲多肽SJMHE1通過抑制哮喘小鼠肺組織中Th2細(xì)胞和ILC2反應(yīng)減輕小鼠氣道炎癥[J]. 細(xì)胞與分子免疫學(xué)雜志, 2021, 37(12): 1106-1110.
[26]" Gao X, Mao C, Zheng T, et al. Schistosoma japonicum-derived peptide SJMHE1 ameliorates allergic symptoms and responses in mice with allergic rhinitis[J]. Front Cell Infect Microbiol, 2023, 13: 1143950.
[27]" Abdoli A. Therapeutic potential of helminths and helminth-derived antigens for resolution of inflammation in inflammatory bowel disease[J]. Arch Med Res, 2019, 50(1): 58-59.
[28]" Elliott DE, Urban JJ, Argo CK, et al. Does the failure to acquire helminthic parasites predispose to Crohn′s disease?[J]. FASEB J, 2000, 14(12): 1848-1855.
[29]" Shan W, Zhang W, Xue F, et al. Schistosoma japonicum peptide SJMHE1 inhibits acute and chronic colitis induced by dextran sulfate sodium in mice[J]. Parasit Vectors, 2021, 14(1): 455.
[30]" Huang J, Fu X, Chen X, et al. Promising therapeutic targets for treatment of rheumatoid arthritis[J]. Front Immunol, 2021, 12: 686155.
[31]" Song X, Shen J, Wen H, et al. Impact of Schistosoma japonicum infection on collagen-induced arthritis in DBA/1 mice: a murine model of human rheumatoid arthritis[J]. PLoS One, 2011, 6(8): e23453.
[32]" Wang X, Li L, Wang J, et al. Inhibition of cytokine response to TLR stimulation and alleviation of collagen-induced arthritis in mice by Schistosoma japonicum peptide SJMHE1[J]. J Cell Mol Med, 2017, 21(3): 475-486.
[33]" 王鈞, 汪雪峰. 日本血吸蟲多肽SJMHE1對關(guān)節(jié)炎小鼠的毒副反應(yīng)檢測[J]. 醫(yī)學(xué)綜述, 2019, 25(22): 4540-4545.
[34]" Li Q, Yang W, Li J, et al. Emerging trends and hot spots in autoimmune thyroiditis research from 2000 to 2022: A bibliometric analysis[J]. Front Immunol, 2022, 13: 953465.
[35]" Guo Q, Wu Y, Hou Y, et al. Cytokine secretion and pyroptosis of thyroid follicular cells mediated by enhanced NLRP3, NLRP1, NLRC4, and AIM2 inflammasomes are associated with autoimmune thyroiditis[J]. Front Immunol, 2018, 9: 1197.
[36]" Koehler VF, Bojunga J. Autoimmune thyroid disease[J]. Dtsch Med Wochenschr, 2021, 146(20): 1329-1336.
[37]" 張珊, 毛朝明, 董利陽, 等. 日本血吸蟲源多肽SJMHE1通過調(diào)節(jié)脾臟IFN-γ和IL-10的分泌抑制小鼠自身免疫性甲狀腺炎[J]. 江蘇大學(xué)學(xué)報(醫(yī)學(xué)版), 2023, 33(1): 37-41.
[38]" Liu J, Mao C, Dong L, et al. Excessive iodine promotes pyroptosis of thyroid follicular epithelial cells in Hashimoto′s thyroiditis through the ROS-NF-κB-NLRP3 pathway[J]. Front Endocrinol (Lausanne), 2019, 10: 778.
[39]" 汪雪峰. 日本血吸蟲HSP60來源的肽SJMHE1對CD4+CD25+調(diào)節(jié)性T細(xì)胞的誘導(dǎo)及機(jī)制的研究[D]. 南京: 南京醫(yī)科大學(xué), 2009.
[40]" Duan T, Du Y, Xing C, et al. Toll-like receptor signaling and its role in cell-mediated immunity[J]. Front Immunol, 2022, 13: 812774.
[41]" Lee HG, Cho MJ, Choi JM. Bystander CD4+ T cells: crossroads between innate and adaptive immunity[J]. Exp Mol Med, 2020, 52(8): 1255-1263.
[42]" Caramalho I, Lopes-Carvalho T, Ostler D, et al. Regulatory T cells selectively express toll-like receptors and are activated by lipopolysaccharide[J]. J Exp Med, 2003, 197(4): 403-411.
[43]" Liu H, Komai-Koma M, Xu D, et al. Toll-like receptor 2 signaling modulates the functions of CD4+ CD25+ regulatory T cells[J]. Proc Natl Acad Sci U S A, 2006, 103(18): 7048-7053.
[44]" Nouri Y, Weinkove R, Perret R. T-cell intrinsic Toll-like receptor signaling: implications for cancer immunotherapy and CAR T-cells[J]. J Immunother Cancer, 2021, 9(11): e003065.
[45]" Ma Y, Wei C, Qi X, et al. Schistosoma japonicum-derived peptide SJMHE1 promotes peripheral nerve repair through a macrophage-dependent mechanism[J]. Am J Transl Res, 2021, 13(3): 1290-1306.
[46]" Chen YF, Zheng JJ, Qu C, et al. Inonotus obliquus polysaccharide ameliorates dextran sulphate sodium induced colitis involving modulation of Th1/Th2 and Th17/Treg balance[J]. Artif Cells Nanomed Biotechnol, 2019, 47(1): 757-766.
[47]" Liu Q, Shen J, Wang J, et al. PR-957 retards rheumatoid arthritis progression and inflammation by inhibiting LMP7-mediated CD4+ T cell imbalance[J]. Int Immunopharmacol, 2023, 124(Pt A): 110860.
[48]" Talaat RM, Mohamed SF, Bassyouni IH, et al. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: Correlation with disease activity[J]. Cytokine, 2015, 72(2): 146-153.
[49]" Zhang B, Zeng M, Zhang Q, et al. Ephedrae herba polysaccharides inhibit the inflammation of ovalbumin induced asthma by regulating Th1/Th2 and Th17/Treg cell immune imbalance[J]. Mol Immunol, 2022, 152: 14-26.
[50]" 鄭玉. 血吸蟲多肽SJMHE1通過調(diào)控miRNA-17, miRNA-21表達(dá)抑制哮喘小鼠氣道炎癥的作用及機(jī)制研究[D]. 鎮(zhèn)江: 江蘇大學(xué), 2019.
[51]" Spits H, Mjosberg J. Heterogeneity of type 2 innate lymphoid cells[J]. Nat Rev Immunol, 2022, 22(11): 701-712.
[收稿日期]" 2024-04-07" [編輯]" 何承志