亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        分?jǐn)?shù)階微分方程邊值問(wèn)題的Picards迭代方法

        2016-04-23 10:42:45孫宇鋒曾廣釗

        孫宇鋒 曾廣釗

        摘 要 從分?jǐn)?shù)階微分方程邊值問(wèn)題的近似解出發(fā),應(yīng)用Picards迭代方法證明了其存在唯一解;研究了非線(xiàn)性函數(shù)f(t;x(t),x′(t))由一個(gè)函數(shù)序列{fm(t;x(t),x′(t))}近似代替時(shí),邊值問(wèn)題解的Picards迭代序列滿(mǎn)足的形式及其存在唯一解的充要條件;討論了這類(lèi)邊值問(wèn)題不考慮近似解以及非線(xiàn)性函數(shù)Lipschitz類(lèi)的因素時(shí),其解的一般性存在條件;最后通過(guò)兩個(gè)數(shù)值算例驗(yàn)證了這類(lèi)邊值問(wèn)題解的存在性以及解與其迭代序列的誤差估計(jì).

        關(guān)鍵詞 分?jǐn)?shù)階微分方程;迭代方法;近似解;誤差估計(jì)

        中圖分類(lèi)號(hào) O175.8,O241.81文獻(xiàn)標(biāo)識(shí)碼 A文章編號(hào) 10002537(2016)02008208

        Picards Iterative Method for the Boundary Value Problem of

        a Class of the Fractional Order Differential Equation

        SUN Yufeng*, ZENG Guangzhao

        (College of Mathematics and Statistics, Shaoguan University, Shaoguan 512005, China)

        Abstract In this article the existence and uniqueness of the solution for the boundary value problem of a class of fractional differential equations is proved by the Picards iterative method starting form the approximate solution of boundary value problems of these equations. We also proved the existence and uniqueners of the solution and provided the sufficient conditions for the boundary value problem by the Picards iterative methods when the nonlinear function f(t;x(t),x′(t)) is approximated instead of by a sequence of functions {fm(t;x(t),x′(t))}. The general condition for the existence of its solution is discussed without considering factors like the approximate solution of such boundary value problems and nonlinear function Lipschitzclass. Finally, the existence of the solution of such boundary value problems and the estimation of error between the accurate solution and the solution of iterative sequence are verified by two numerical examples.

        Key words fractional differential equations; iterative method; approximate solution; estimation of error

        本文在文獻(xiàn)[1~7]的基礎(chǔ)上,討論基于Caputos分?jǐn)?shù)導(dǎo)數(shù)的一類(lèi)分?jǐn)?shù)階微分方程的邊值問(wèn)題, 并通過(guò)其近似解的Picards迭代序列,得到相應(yīng)的解的存在性和唯一性定理.

        考慮如下分?jǐn)?shù)階微分方程的邊值問(wèn)題

        致謝 感謝安徽大學(xué)鄭祖庥教授、中科院俞元洪研究員的教誨和指導(dǎo)!

        參考文獻(xiàn):

        [1] AGARWAL R P, BENCHOHRA M, HAMANI S. Boundary value problems for fractional differential equations[J].J Georgian Math, 2009,16(3):401411.

        [2] BENCHOHRA M, HAMANI S, NTOUYAS S K. Boundary value problems for differential equations with fractional order[J]. Surv Math Appl, 2008,3(3):112.

        [3] BENCHOHRA M, HAMANI S, NTOUYAS S K. Boundary value problems for differential equations with fractional order and nonlocal conditions[J]. Nonlinear Anal, 2009,71(5):23912396.

        [4] ZHANG S Q. Positive solutions for boundaryvalue problems of nonlinear fractional differential equations[J]. Electron J Diff Equ, 2006,36(2):112.

        [5] SUN Y F, WANG P G. Quasilinear iterative scheme for a fourthorder differential equation with retardation and anticipation[J]. Appl Math Comput, 2010,217(4):34423452.

        [6] WANG P G. Iterative methods for the boundary value problem of a fourth order DDE[J]. Appl Math Comput, 1995,73(2):257270.

        [7] SUN Y F, WANG P G. Iterative methods for a fourthorder differential equations with retardation and anticipation[J]. Dyn Cont Disc Impuls Syst, Series B, 2010,17(1):487500.

        [8] PODLUBNY I. Fractional Differential equations[M]. New York: Academic Press, 1999.

        [9] RALL L B. Computational Solutions of Nonlinear Operator[M]. New York:John Wiley,1969.

        [10] GRANAS A, DUGUNDJI J. Fixed point theory[M].New York:SpringerVerlag,2003.

        [11] SUN Y F, LI T S. Quasilinearization methods for a fourthorder differential difference equations[J]. J. Biomath, 2007,22(5):840846.

        [12] 孫宇鋒.一類(lèi)四階微分差分方程的邊值問(wèn)題[D].保定:河北大學(xué)碩士論文, 2008.

        [13] 鄭祖庥.分?jǐn)?shù)微分方程的發(fā)展和應(yīng)用[J].徐州師范大學(xué)學(xué)報(bào):自然科學(xué)版, 2008,26(2):110.

        [14] 薛定宇,陳陽(yáng)泉.高等應(yīng)用數(shù)學(xué)問(wèn)題的MATLAB 求解[M].北京:清華大學(xué)出版社, 2004.

        [15] 陳 文,孫洪廣.力學(xué)與工程問(wèn)題的分?jǐn)?shù)階導(dǎo)數(shù)建模[M].北京:科學(xué)出版社,2010.

        [16] 程金發(fā).分?jǐn)?shù)階差分方程理論[M].廈門(mén):廈門(mén)大學(xué)出版社,2011.

        (編輯 HWJ)

        人妻无码αv中文字幕久久琪琪布| 国产三级av在线精品| 性av一区二区三区免费| 一本大道无码人妻精品专区| 欧美极品少妇性运交| 伊人狠狠色j香婷婷综合| 久久精品国产亚洲av四区| 色老板美国在线观看| 少妇人妻真实偷人精品视频| 亚欧免费视频一区二区三区| 亚洲av手机在线观看| 人妻丰满熟av无码区hd| 亚洲av无码久久寂寞少妇| 久久99精品这里精品动漫6| 国产熟女自拍av网站| 亚洲欧美牲交| 亚洲男人天堂2019| av蜜桃视频在线观看| A亚洲VA欧美VA国产综合| 国产精品自拍视频在线| 国产精品办公室沙发| 黄色成人网站免费无码av| 美女视频永久黄网站免费观看国产| 亚洲成人精品在线一区二区| 日本大骚b视频在线| 亚欧国产女人天堂Av在线播放| 久草国产手机视频在线观看| 免费视频无打码一区二区三区| 亚洲精品suv精品一区二区| 无码人妻专区免费视频| 国产自拍三级黄片视频| 国产精品无码av无码| 国产成人精品三级麻豆| 亚洲天堂免费一二三四区| 一个少妇的淫片免费看 | 亚洲一区二区三区蜜桃| 欧美性猛交xxxx乱大交3| 亚洲是图一区二区视频| 最新69国产精品视频| 国产h视频在线观看| 国产欧美va欧美va香蕉在线观|