紀(jì)榮林 江龍 石學(xué)軍
摘 要 在倒向隨機(jī)微分方程生成元滿足基本假設(shè)的前提下,通過次線性g期望所控制的一族概率測度,得到了受控于該次線性g期望的凸g期望的一個新的表示.進(jìn)一步地,對任意給定的凸g期望,證明了控制該凸g期望的極小次線性g期望的存在性.
關(guān)鍵詞 倒向隨機(jī)微分方程;凸g期望;表示;極小元
中圖分類號 O21163文獻(xiàn)標(biāo)識碼 A文章編號 10002537(2016)02007205
Some Results on the Representation of Convex gExpectations
JI Ronglin, JIANG Long*, SHI Xuejun
(School of Sciences, China University of Mining and Technology, Xuzhou 221116, China)
Abstract Under the basic assumptions on generators that for any convex gexpectation dominated by some sublinear gexpectation, there exists a set of probability measures controlled by the sublinear gexpectation, a new representation of these convex gexpectations has been obtained in this work. Furthermore, for any given convex gexpectation, we show the existence of the minimal sublinear gexpectations dominating the convex gexpectation from above.
Key words backward stochastic differential equation; convex gexpectation; representation; minimal member
考慮如下形式的一維倒向隨機(jī)微分方程(簡記為BSDE):
yt+ξ+∫Ttg(s,ys,zs)ds-∫Ttzs·dBs,t∈[0,T].(1)
由PardouxPeng[1]知只要函數(shù)g關(guān)于變量y和z是Lipschitz的,ξ和g(·,0,0)是平方可積的,則BSDE(1)有唯一一對平方可積的適應(yīng)解.g被稱之為BSDE(1)的生成元,ξ被稱之為BSDE(1)的終端條件.將BSDE(1)的唯一一對平方可積的適應(yīng)解記為(Yt(g,T,ξ),Zt(g,T,ξ))t∈[0,T].如果g還滿足g(t,y,0)≡0,用εg[ξ]表示Y0(g,T,ξ),并稱εg[ξ]為ξ的g期望.
g期望的概念可以看成是著名的Girsanov變換的非線性推廣.自從g期望的概念提出以來,研究者已經(jīng)得到了g期望的很多性質(zhì)及應(yīng)用,如Peng[2]給出了關(guān)于g期望的一系列基本性質(zhì),ChenEpstein[3]則利用g期望研究了遞歸效用.對于凸g期望而言,Rosazza[4]首次考慮了凸g期望與凸風(fēng)險度量之間的關(guān)系,并從凸風(fēng)險度量的角度初步地給出了凸g期望的表示;Jiang[5]則建立了凸g期望(g期望誘導(dǎo)的凸風(fēng)險度量)與生成元g之間的一一對應(yīng)關(guān)系.
由g期望的時間相容性知,凸g期望誘導(dǎo)的風(fēng)險度量是一類特殊的凸風(fēng)險度量,且由FenchelLegendre變換知,凸g期望的表示與其最小懲罰函數(shù)的表示是一一對應(yīng)的.進(jìn)一步地,結(jié)合g期望的相關(guān)理論知,g期望算子與生成元函數(shù)g之間存在某種一一對應(yīng)的關(guān)系.因此,一個自然的問題是:在g期望的框架下,如何從生成元的角度,給出凸g期望一個更精確的表示?
受Rosazza[4]及Jiang[5]工作啟發(fā),本文獲得了關(guān)于凸g期望的表示一些結(jié)果,如下:設(shè)εg0為次線性g期望,則對任意的受控于εg0的凸g期望εg,即εg0≥εg,存在由εg0控制的(Ω,F(xiàn)T)上的一族概率測度,使得凸g期望εg的最小懲罰函數(shù)在此概率測度族上有定義,從而得到了該凸g期望的一個新的表示.進(jìn)一步地,對任意給定的凸g期望,證明了控制該凸g期望的極小次線性g期望的存在性.本文組織如下:第二節(jié)給出一些準(zhǔn)備知識和必要的引理,第三節(jié)給出主要結(jié)果及證明.
1 預(yù)備知識
設(shè)T是一個給定的正實(shí)數(shù),(Bt)t≥0是概率空間(Ω,F(xiàn),P)上的d維標(biāo)準(zhǔn)布朗運(yùn)動,(Ft)t≥0是由該布朗運(yùn)動生成的完備的σ域流.對每一個正整數(shù)n,記|·|為Rn中的Euclid范數(shù);對任意的z1,z2∈Rd,記z1·z2為向量z1與z2的內(nèi)積;記L2(Ft)為Ft-可測且平方可積的隨機(jī)變量全體.
對于BSDE(1),其生成元g是一個定義在[0,T]×Ω×R×Rd上的實(shí)值函數(shù),對任意給定的(y,z)∈R×Rd,(g(t,y,z))0≤t≤T是一個Ft-循序可測過程且滿足如下基本假設(shè)條件(A1)和(A2):
參考文獻(xiàn):
[1] PARDOUX E, PENG S G. Adapted solution of a backward stochastic differential equation[J]. Syst Contr Lett, 1990,14(1):5561.
[2] PENG S G. BSDE and related gexpectation[J].Pitman Res Notes Math Ser, 1997,364(3):141159.
[3] CHEN Z J, EPSTEIN L. Ambiguity, risk and asset returns in continuous time[J]. Econometrica, 2002,70(4):14031444.
[4] ROSAZZA G E. Risk measures via gexpectations[J]. Insur Math Econ, 2006,39(1):1934.
[5] JIANG L. Convexity, translation invariance and subadditivity for gexpectations and related risk measures[J].Ann Appl Prob, 2008,18(1):245258.
[6] JIANG L. A necessary and sucient condition for probability measures dominated by gexpectation[J]. Stat Prob Lett, 2009,79(2):196201.
[7] COQUET F, HU Y, MEMIN J, et al. Filtration consistent nonlinear expectations and related gexpectation[J].Prob Theor Rel, 2002,123(1):127.
[8] CHEN Z J, KULPERGER R. Minimax pricing and Choquet pricing[J]. Insur Math Econ, 2006,38(3):518528.
[9] CHEN Z J, CHEN T, DAVISON M. Choquet expectation and Pengs gexpectation[J]. Ann Prob, 2005,33(3):11791199.
[10] HE K, HU M S, CHEN Z J. The relationship between risk measures and choquet expectations in the framework of gexpectations[J]. Stat Prob Lett, 2009,79(4):508512.
[11] GUO D M, CHEN Z J. A property of gprobabilities[J]. Acta Math Sin, 2010,26(4):567574.
[12] JIANG L. A note on gexpectation with comonotonic additivity[J]. Stat Prob Lett, 2006,76(17):18951903.
[13] CHEN Z J, KULPERGER R. Inequalities for upper and lower probabilities[J]. Stat Prob Lett, 2005,73(3):233241.
[14] DETLEFSEN K, SCANDOLO G. Conditional and dynamic convex risk measures[J]. Financ Stoch, 2005,9(4):539561.
[15] BION NADAL J. Time consistent dynamic risk processes[J]. Stoch Proc Appl, 2009,119(2):633654.
[16] DELBAEN F, PENG S G, ROSAZZA GIANIN E. Representation of the penalty term of dynamic concave utilities[J]. Financ Stoch, 2010,14(3):449472.
(編輯 HWJ)