摘 要:熱帶地區(qū)植物資源種類(lèi)豐富,有極大的種質(zhì)資源安全保存需求。超低溫(液氮)凍存是植物種質(zhì)資源長(zhǎng)期保存的重要手段,雖需針對(duì)特定物種進(jìn)行技術(shù)優(yōu)化,但在實(shí)際應(yīng)用后最為節(jié)省空間,且只需定期補(bǔ)充液氮,極大降低了種質(zhì)資源長(zhǎng)期保存過(guò)程中的人力物力投入。經(jīng)過(guò)半個(gè)多世紀(jì)的發(fā)展,植物超低溫保存技術(shù)現(xiàn)已在種子、莖尖、花粉等多種類(lèi)型材料上實(shí)現(xiàn)冷凍后成活與再生。為系統(tǒng)總結(jié)并全面介紹超低溫保存技術(shù)在熱帶作物種質(zhì)資源安全保存和農(nóng)業(yè)科技發(fā)展中的應(yīng)用,本綜述以休眠莖段和試管苗莖尖的超低溫保存為主線(xiàn),回顧了植物超低溫保存的研究歷史與技術(shù)發(fā)展,側(cè)重介紹了超低溫保存技術(shù)在熱帶作物莖尖、種子(胚)、花粉、細(xì)胞懸浮系和愈傷組織中的研究進(jìn)展;同時(shí)也對(duì)熱帶作物超低溫保存后遺傳穩(wěn)定性評(píng)價(jià)研究進(jìn)行介紹,展望了超低溫保存在熱帶作物莖尖、頑拗性種子和胚性愈傷組織和細(xì)胞等材料長(zhǎng)期保存中的重要作用。
關(guān)鍵詞:熱帶作物;超低溫保存;種質(zhì)資源;遺傳穩(wěn)定性
中圖分類(lèi)號(hào):S432.1 文獻(xiàn)標(biāo)志碼:A
植物種質(zhì)資源保存是種質(zhì)創(chuàng)制和作物育種工作的基礎(chǔ),目前主要有棲息地原位保存、種質(zhì)圃和種子庫(kù)保存、離體試管保存和離體超低溫保存等方式[1-3]。我國(guó)十分重視作物種質(zhì)資源的安全保存工作,現(xiàn)已建立一系列的國(guó)家級(jí)自然保護(hù)區(qū)、植物園和種質(zhì)資源圃(庫(kù))以安全保存作物及其野生資源[3]。熱帶地區(qū)植物遺傳多樣性豐富,其多樣的種質(zhì)資源經(jīng)過(guò)人類(lèi)數(shù)千年的馴化和傳播,形成眾多全球性的重要作物。2022 年全球產(chǎn)量最高的十大作物中有6 種(甘蔗、玉米、水稻、油棕、木薯和番茄)起源于熱帶地區(qū)[4]。這些作物的產(chǎn)業(yè)發(fā)展在保障全球糧食安全和助力消除貧困上具有極大的發(fā)展前景[5-6]。然而傳統(tǒng)的熱帶作物資源田間保存受到極端天氣和病蟲(chóng)害的威脅;其野生資源也受到耕地開(kāi)墾和土地開(kāi)發(fā)等人為因素的影響,亟需加強(qiáng)重要熱帶作物資源的離體保存工作[1]。
種子凍存是最為簡(jiǎn)單的作物離體資源保存方式[7]。然而多數(shù)熱帶作物種子不耐低溫和脫水干燥,無(wú)法干燥后直接凍存;甘蔗、香蕉和甘薯等重要熱帶作物資源主要依賴(lài)無(wú)性繁殖,難以獲得種子進(jìn)行凍存[8],因此,試管苗保存和超低溫保存是熱帶作物資源離體保存的2 種主要方式[8-9]。
超低溫保存技術(shù)可將種質(zhì)資源凍存在液氮(?196 ℃)或液氮蒸汽(?196~?150 ℃)中,該溫度下細(xì)胞分裂和代謝等生命活動(dòng)停滯,由此降低離體組織培養(yǎng)長(zhǎng)期繼代導(dǎo)致的遺傳變異風(fēng)險(xiǎn),是長(zhǎng)期保存種質(zhì)資源的理想方式[7-8, 10]。植物離體材料超低溫保存工作開(kāi)展前需要建立和優(yōu)化超低溫冷凍再生體系,經(jīng)過(guò)60 余年的發(fā)展,目前已在植物上實(shí)現(xiàn)種子(胚)、冬季休眠莖段、莖尖、花粉、懸浮細(xì)胞和胚性愈傷組織等材料的冷凍后再生[11]。超低溫保存體系主要依賴(lài)于植物組織培養(yǎng),雖體系優(yōu)化耗費(fèi)一定時(shí)間和人力物力,但體系建立后只需定期補(bǔ)充液氮,可大大降低后續(xù)人力物力投入,是國(guó)際公認(rèn)最為經(jīng)濟(jì)的種質(zhì)資源長(zhǎng)期保存方式[8]。
面對(duì)種質(zhì)資源安全保存技術(shù)的實(shí)際需求,本研究將對(duì)植物超低溫保存技術(shù)的發(fā)展與應(yīng)用進(jìn)行綜述,并介紹該技術(shù)在重要熱帶作物種質(zhì)資源安全保存的研究和實(shí)際應(yīng)用,有利于促進(jìn)超低溫保存技術(shù)更好地服務(wù)于熱帶作物種質(zhì)資源安全保存和科研育種工作。
1 植物超低溫保存技術(shù)的歷史與發(fā)展
20 世紀(jì)中葉,溫帶木本作物冬季休眠枝條的液氮超低溫保存首次獲得成功[12]。隨后超低溫保存技術(shù)在試管苗莖尖上的發(fā)展極大地促進(jìn)了植物無(wú)性繁殖材料的超低溫保存,也影響了其他類(lèi)型植物材料的超低溫保存方式。
1.1 休眠莖段的超低溫保存
20 世紀(jì)50 年代末,超低溫保存首先在溫帶桑樹(shù)冬季休眠枝條上開(kāi)展優(yōu)化[12]。該研究切取直徑0.8 cm、長(zhǎng)度為2~15 cm 的休眠莖段,在程序降溫儀中以0.5 ℃/min 的速率降溫至?30 ℃后迅速投入液氮中進(jìn)行保存。莖段超低溫保存結(jié)束后移入?30 ℃保持4 h,隨后轉(zhuǎn)入0 ℃環(huán)境進(jìn)一步恢復(fù)[12]。該體系應(yīng)用扦插技術(shù)對(duì)莖段恢復(fù)培養(yǎng),并成功獲得柳樹(shù)(Salix sp.)和楊樹(shù)(Populus sp.)的超低溫保存再生植株[12]。該技術(shù)后續(xù)應(yīng)用芽接等技術(shù)對(duì)超低溫保存后的休眠莖段進(jìn)行恢復(fù)再生,并在蘋(píng)果、梨、樹(shù)莓等木本作物的超低溫保存中獲得成功[13]。美國(guó)農(nóng)業(yè)部的作物種質(zhì)資源保存中心應(yīng)用超低溫保存技術(shù)保存超過(guò)2100 份的蘋(píng)果資源(Malus spp.),超過(guò)90%的基因型材料能夠達(dá)到40%的再生率[14]。然而該技術(shù)僅適用于溫帶耐寒作物的超低溫保存,且需要在休眠期取材,無(wú)法應(yīng)用于熱帶作物的安全保存。
1.2 早期試管苗莖尖一步與兩步冷凍法
基于植物組織培養(yǎng)技術(shù)的發(fā)展,20 世紀(jì)70年代后期有學(xué)者開(kāi)始研究植物離體資源的超低溫保存,并在馬鈴薯(Solanum goniocalyx)試管苗莖尖上獲得植株再生[15]。該方法切取馬鈴薯帶2~4 片葉原基的試管苗莖尖,在含有1.0 mg/LBenzyladenien(BA)的培養(yǎng)基上穩(wěn)定培養(yǎng)3 d 后置于10%的二甲基亞砜(dimethyl sulfoxide,DMSO)溶液進(jìn)行1 h 冷凍保護(hù),隨后投入液氮進(jìn)行冷凍保存。解凍時(shí)將莖尖快速轉(zhuǎn)入35 ℃的液體培養(yǎng)基中浸沒(méi)1 min,隨后轉(zhuǎn)入再生培養(yǎng)基中恢復(fù)培養(yǎng),得到11%的莖尖再生率。早期的試管苗莖尖超低溫保存體系多用DMSO 進(jìn)行冷凍保護(hù),且多參照休眠莖段超低溫保存方法應(yīng)用兩步法進(jìn)行冷凍,在馬鈴薯[16]、草莓(Fragaria×ananassaDuch. cv. Redcoat)[17]和木薯(Manihot esculentaCrantz)[18]等作物上獲得冷凍后再生。然而兩步冷凍法需將莖尖緩慢降溫至-30~-20 ℃,會(huì)給非休眠狀態(tài)的莖尖組織帶來(lái)極大的低溫傷害,因此,在熱帶作物超低溫保存中的實(shí)際應(yīng)用極其有限。
1.3 包埋干燥法
受20 世紀(jì)80 年代應(yīng)用海藻酸鈣包埋植物組織制作人工種子的啟示[19],F(xiàn)ABRE 等[20]在馬鈴薯莖尖超低溫保存中先將浸有莖尖的3%海藻酸鈉溶液滴入0.1 mol/L 的氯化鈣溶液,生成包裹著莖尖的海藻酸鈣小球。隨后應(yīng)用0.5 mol/L 蔗糖對(duì)包埋后的莖尖進(jìn)行預(yù)培養(yǎng),接著在無(wú)菌空氣流中干燥4 h 后將包埋有莖尖的小球轉(zhuǎn)入冷凍管中投入液氮進(jìn)行凍存,由此建立包埋干燥法。在隨后的十多年間,此方法在蘋(píng)果、柑橘(Citrus spp.)、葡萄(Vitis spp.)和菊花(Chrysanthemum morifolium)等作物的莖尖、愈傷組織、體胚等材料上獲得成功[21]。該方法應(yīng)用物理干燥的方式對(duì)材料進(jìn)行冷凍保護(hù),不適合對(duì)脫水干燥敏感的物種。包埋干燥法在熱帶作物如木薯[22]和咖啡(Coffeaspp.)[23]莖尖的超低溫保存中也有報(bào)道,但獲得較低再生率并表現(xiàn)很強(qiáng)的基因型差異性。
1.4 玻璃化法與包埋玻璃化法
1990 年,一種名為植物玻璃化溶液(plantvitrification solution, PVS)的冷凍保護(hù)劑首次應(yīng)用于柑橘懸浮細(xì)胞的超低溫保存[24]。該溶液包含有甘油(30%,W/V)、乙二醇(15%,W/V)、二甲基亞砜(15%,W/V)和0.4 mol/L 的蔗糖,且冷凍和解凍過(guò)程中在?115 ℃附近表現(xiàn)明顯的玻璃態(tài)轉(zhuǎn)變[24]。應(yīng)用該溶液作為冷凍保護(hù)劑可極大地減少冷凍和解凍中植物細(xì)胞內(nèi)外的自由水結(jié)晶,降低冷凍傷害[24]。在莖尖超低溫保存中,PVS2溶液于1991 年首次應(yīng)用于康乃馨(Diathus caryophyllusL.)的莖尖,該方法將莖尖使用海藻酸鈣包埋后進(jìn)行PVS2 冷凍保護(hù),被稱(chēng)為包埋玻璃化法(encapsulation-vitrification)[25]。一年后,PVS2溶液成功應(yīng)用于甘薯[Ipomoea batatas (L.) Lam.]非包埋莖尖的超低溫保存中并獲得64%的再生率,該方法被稱(chēng)為玻璃化法(vitrification)[26]。
CHAROENSUB 等[27]在木薯上建立了較為成熟的玻璃化法莖尖超低溫保存體系。該體系在冷凍保護(hù)前首先將莖尖預(yù)培養(yǎng)在含有0.3 mol/L 蔗糖的固體培養(yǎng)基上16 h,隨后使用含2 mol/L 甘油和0.4 mol/L 蔗糖的加載液處理莖尖20 min。冷凍保護(hù)應(yīng)用PVS2 溶液在常溫下進(jìn)行45 min 的處理,該方法在木薯莖尖超低溫保存后獲得75%的再生率。CHAROENSUB 等[28]還建立了包埋玻璃化法木薯莖尖超低溫保存體系。包埋后的莖尖較直接處理相比,往往需要更長(zhǎng)的預(yù)培養(yǎng)和冷凍保護(hù)時(shí)間,對(duì)于PVS2 耐受性差的莖尖,延緩PVS2的滲透速率有助于減輕冷凍保護(hù)時(shí)所受的滲透脅迫。
玻璃化法克服了許多物種不耐物理干燥的缺點(diǎn),至今仍是種子、愈傷組織和胚性細(xì)胞懸浮系等材料超低溫保存的主要方法之一[10]。
1.5 小滴玻璃化法
由于玻璃化溶液在莖尖超低溫保存獲得巨大成功,加之應(yīng)用鋁箔條為載體實(shí)現(xiàn)快速“冷凍—解凍”能夠獲得更高的莖尖冷凍后再生率,PANIS等[29]以鋁箔條為載體與PVS2 冷凍保護(hù)相結(jié)合,在香蕉(Musa spp.)上優(yōu)化建立了廣譜性更高的香蕉超低溫保存體系,并將其命名為小滴玻璃化法(droplet vitrification)。該方法應(yīng)用1.0 mm 的香蕉試管苗莖尖為材料,經(jīng)過(guò)30 min 含有2 mol/L甘油和0.4 mol/L 蔗糖的加載液預(yù)處理后,在冰上應(yīng)用PVS2 進(jìn)行30 min 冷凍保護(hù),隨后將莖尖轉(zhuǎn)至鋁箔條上預(yù)先準(zhǔn)備好的PVS2 小液滴中并快速投入液氮進(jìn)行冷凍[29]。冷凍保存結(jié)束后將莖尖同鋁箔條一起快速裝入充分預(yù)冷的冷凍管后在液氮中進(jìn)行長(zhǎng)期保存[29]。解凍時(shí)在液氮表面擰開(kāi)冷凍管后將帶有莖尖的鋁箔條快速轉(zhuǎn)入預(yù)先備好的1.2 mol/L 蔗糖卸載液中快速解凍,并短暫浸泡20 min 以稀釋莖尖中的PVS2 冷凍保護(hù)劑,之后將莖尖轉(zhuǎn)至恢復(fù)培養(yǎng)基上再生培養(yǎng)[29]。小滴玻璃化法可基于已有的玻璃化和包埋玻璃化體系進(jìn)行快速優(yōu)化,操作簡(jiǎn)便,現(xiàn)已廣泛應(yīng)用于馬鈴薯、大蒜(Allium sativum)、蘋(píng)果等試管苗莖尖的超低溫保存[30],在熱帶作物木薯、甘蔗(Saccharumspp.)、菠蘿(Ananas comosus)等作物也有研究和應(yīng)用[31-32]。
1.6 鋁盤(pán)玻璃化法/干燥法
為提高莖尖冷凍保護(hù)過(guò)程的簡(jiǎn)便性,降低冷凍保護(hù)操作中對(duì)莖尖造成的機(jī)械損傷,HIRAI[33]將莖尖應(yīng)用海藻酸鈣包埋的技術(shù)粘附在鋁箔條上,隨后進(jìn)行冷凍保護(hù)的各項(xiàng)操作,該方法被命名為gelled droplet-vitrification。該研究團(tuán)隊(duì)隨后定制有凹槽的鋁片,以方便莖尖更好地粘附在鋁盤(pán)上。莖尖粘附后可參照小滴玻璃化和包埋玻璃化法的體系進(jìn)行冷凍保護(hù),并由此建立鋁盤(pán)玻璃化法(vitrification Cryo-plate,V Cryo-plate)[34];也可冷凍保護(hù)時(shí)采用空氣流干燥的方式,由此建立了鋁盤(pán)干燥法(dehydration Cryo-plate,D Cryoplate)[35]。2 種方法都能實(shí)現(xiàn)快速冷凍和解凍操作,并在馬鈴薯上獲得80%~100%的超低溫保存再生率[36]。熱帶作物莖尖超低溫保存主要應(yīng)用VCryo-plate 的方式進(jìn)行。VIANNA 等[37]應(yīng)用鋁盤(pán)玻璃化法建立了細(xì)柱西番蓮(Passiflora suberosa)的莖尖超低溫保存體系:該方法從萌發(fā)40 d 腋芽上切取莖尖,經(jīng)過(guò)0.3 mol/L 蔗糖預(yù)培養(yǎng)對(duì)莖尖進(jìn)行粘附。莖尖先轉(zhuǎn)入添加有3%海藻酸鈉溶液的凹槽中,隨后在凹槽中滴入0.1 mol/L 的氯化鈣溶液與海藻酸鈉發(fā)生反應(yīng),由此完成粘附并進(jìn)行后續(xù)的冷凍保護(hù)操作[37]。經(jīng)過(guò)優(yōu)化,該研究在PVS3溶液常溫下冷凍保護(hù)45~90 min 后獲得最高再生率(50%~60%)[37]。
鋁盤(pán)玻璃化法可基于小滴玻璃化法進(jìn)行建立,且能獲得更加一致的再生率[38]。包埋干燥和應(yīng)用玻璃化溶液進(jìn)行冷凍保護(hù)和莖尖超低溫保存的主要流程見(jiàn)圖1。
2 重要熱帶作物莖尖超低溫保存研究進(jìn)展
植物莖尖是植物生長(zhǎng)與發(fā)育的重要器官,具有較高的遺傳穩(wěn)定性,保存有特定的植物性狀,是植物開(kāi)展超低溫保存的重要材料來(lái)源,尤其適用于以無(wú)性繁殖為主作物的超低溫保存。莖尖超低溫保存依賴(lài)成熟的莖尖離體培養(yǎng)和再生體系,目前已在香蕉、木薯、菠蘿、甘蔗等重要熱帶作物上獲得成功應(yīng)用。
2.1 香蕉
香蕉是目前開(kāi)展超低溫保存最為成功的熱帶作物。早期香蕉莖尖的冷凍保護(hù)主要在高濃度蔗糖預(yù)培養(yǎng)后通過(guò)空氣流干燥進(jìn)行[39]。隨后有研究者將此方法與PVS2 冷凍保護(hù)做對(duì)比,結(jié)果表明結(jié)合PVS2 冷凍保護(hù)與快速冷凍/解凍的操作步驟獲得最高的再生率[40]。該方法隨后經(jīng)過(guò)優(yōu)化并命名為小滴玻璃化法[29],并在香蕉種質(zhì)資源的實(shí)際保存中獲得極大成功[41]。國(guó)際香蕉交換中心(International Musa Transit Center)應(yīng)用小滴玻璃化法開(kāi)展香蕉莖尖超低溫保存工作近20 年,截至2020 年已成功保存1100 份香蕉資源[8]。
2.2 木薯
木薯是開(kāi)展莖尖超低溫保存研究最早的作物之一,早期先后試驗(yàn)了DMSO 兩步冷凍法[18]和包埋干燥法[22],在部分木薯基因型上獲得冷凍后再生。隨著玻璃化溶液在香蕉莖尖超低溫保存上的成功應(yīng)用,DUMET 等[42]參照香蕉小滴玻璃化體系,應(yīng)用PVS2 冰上處理30 min 對(duì)木薯試管苗莖尖進(jìn)行“快速冷凍—超低溫保存—快速解凍”試驗(yàn),獲得38%~48%再生率,高于包埋干燥法7%~14%的再生率。國(guó)際熱帶農(nóng)業(yè)研究中心CIAT隨后應(yīng)用小滴玻璃化法對(duì)100 份經(jīng)包埋干燥法冷凍再生率低于30%的基因型進(jìn)行超低溫保存,超過(guò)70 個(gè)木薯基因型材料獲得高于30%的再生率[43]。上述研究表明小滴玻璃化法在木薯莖尖超低溫保存上有極大的應(yīng)用潛力。然而上述方法借鑒香蕉莖尖超低溫保存技術(shù),并未針對(duì)木薯進(jìn)行優(yōu)化,在木薯上還有極大的提升潛力。
2.3 菠蘿
莖尖超低溫保存對(duì)菠蘿的特異種質(zhì)保存具有重要的意義。GONZáLEZ-ARNAO 等[44]于20 世紀(jì)90 年代末對(duì)比了包埋干燥法與PVS2 玻璃化法對(duì)菠蘿莖尖的保存效果,結(jié)果表明只有玻璃化法能夠獲得穩(wěn)定的莖尖再生。隨后冷凍保護(hù)液PVS3也成功應(yīng)用于菠蘿莖尖的超低溫保存[45],且應(yīng)用PVS3 建立的包埋玻璃化法在菠蘿上獲得更高的超低溫保存再生率[46]。應(yīng)用最新的小滴玻璃化超低溫保存方法,SOUZA 等[31]應(yīng)用0.5~1 mm 的菠蘿莖尖為外植體,在共計(jì)16 個(gè)菠蘿栽培和野生種中得到90%的平均再生率,表明小滴玻璃化法在菠蘿莖尖超低溫保存中具有廣譜性,可以應(yīng)用于菠蘿種質(zhì)資源的實(shí)際保存[31]。
2.4 甘蔗
20 世紀(jì)90 年代初,在法國(guó)、意大利和古巴等國(guó)家科研人員的合作下,應(yīng)用包埋干燥法的甘蔗莖尖在超低溫保存中獲得成功再生[47-48]。該體系應(yīng)用3%的海藻酸鈉包埋莖尖,在5 個(gè)基因型上獲得38%~91%的再生率[47-48]。參照香蕉小滴玻璃化法的流程,BARRACO 等[49]在2 份甘蔗資源上對(duì)PVS2 和PVS3 的冷凍保護(hù)時(shí)間進(jìn)行優(yōu)化后獲得20%~37%的再生率,低于包埋干燥法的53%~60%。為了提高小滴玻璃化法甘蔗莖尖超低溫保存后的再生率,VOLK 等[50]在冷凍保護(hù)中添加谷胱甘肽、抗壞血酸等物質(zhì),但沒(méi)有進(jìn)一步提升再生率。KAYA 等[51]在甘蔗莖尖超低溫保存上對(duì)比了包埋玻璃化法與小滴玻璃化法,結(jié)果表明小滴玻璃化法能夠獲得更高的再生率。VOLK 等[50]還應(yīng)用包埋干燥法[49]和鋁盤(pán)玻璃化法對(duì)甘蔗莖尖進(jìn)行超低溫保存試驗(yàn),獲得0~50%的再生率。上述研究表明現(xiàn)有的甘蔗莖尖超低溫保存體系存在明顯的基因型差異性,除繼續(xù)對(duì)冷凍保護(hù)步驟進(jìn)行優(yōu)化外,還需加強(qiáng)在蔗糖預(yù)培養(yǎng)、加載等步驟的優(yōu)化工作。
2.5 其他熱帶作物
甘薯主要依賴(lài)無(wú)性繁殖,也是開(kāi)展莖尖超低溫保存研究最早的作物之一。最新的甘薯莖尖超低溫保存主要應(yīng)用小滴玻璃化法[52]:國(guó)際馬鈴薯中心的研究團(tuán)隊(duì)在2014 年首次報(bào)道了甘薯小滴玻璃化法超低溫保存體系的構(gòu)建與優(yōu)化,該體系應(yīng)用30~45 min PVS2 冰上冷凍保護(hù),在24 份甘薯資源中獲得1.7%~66%的再生率[53]。WILMS 等[54]應(yīng)用甘薯誘導(dǎo)的腋芽進(jìn)行體系優(yōu)化,莖尖在短暫加載液(2 mol/L 甘油+0.4 mol/L蔗糖)處理后,進(jìn)行PVS2 冷凍保護(hù),在10 個(gè)甘薯基因型上獲得10%~84%的再生率,其中7 份資源的冷凍后再生率達(dá)到40%以上[54]。小滴玻璃化法由于其操作更為簡(jiǎn)便,是熱帶作物莖尖超低溫保存應(yīng)用最多的技術(shù)手段,已在山藥、芋頭等根莖類(lèi)作物[52],牛大力(Millettia speciosa Champ.)[55]、巴戟天(Morinda officinalis How.)[56]等熱帶藥用和瀕危物種, 蘭花( Orchidaceae ) [57] 、巢蕨(Neottopteris nidus)[58]和紅掌(Anthurium andraeanumLind.)[59-60]等熱帶花卉資源,油梨等熱帶木本作物[61]上獲得成功。小滴玻璃化法和鋁盤(pán)玻璃化法在重要熱帶作物莖尖超低溫保存中的主要步驟詳見(jiàn)表1。
3 熱帶作物種子超低溫保存研究進(jìn)展
3.1 種子
種子是植物種質(zhì)資源保存主要的材料來(lái)源之一[64],根據(jù)種子的貯藏行為可分為3 類(lèi):(1)正常型種子,可干燥至含水量低于7%,并能在?10 ℃下長(zhǎng)期保存[65];(2)頑拗型種子,不耐干燥且對(duì)低溫非常敏感,無(wú)法直接干燥后冷凍保存[66];(3)中間型種子,可以干燥至含水量為6%~12%,但與正常型種子相比,其活力喪失相對(duì)較快[67]。據(jù)估計(jì),全世界8%的開(kāi)花植物的種子為頑拗型種子,但在熱帶地區(qū),這一比例高達(dá)50%[65, 68]。液氮超低溫保存可以延長(zhǎng)傳統(tǒng)型種子的凍存期限,也是目前頑拗性種子長(zhǎng)期保存唯一可行的技術(shù)手段[69]。種子冷凍保存后的存活率與含水量密切相關(guān),因而需在冷凍保存前確定種子的最佳含水量[70]。
咖啡是種子超低溫保存研究較多的熱帶作物,BECWAR 等[71]研究表明咖啡(Coffea arabica)種子能夠耐受8%的水分含量,但直接液氮凍存后無(wú)法萌發(fā)[71]。該研究還表明緩慢冷卻能夠提高咖啡種子超低溫保存后的萌發(fā)率。DUSSERT 等[70]隨后在9 份咖啡資源上開(kāi)展種子保存試驗(yàn),同樣發(fā)現(xiàn)咖啡C. arabica 緩慢冷卻比快速冷卻獲得更高的再生率,而C. racemosa 等3 個(gè)咖啡種應(yīng)用2種冷凍方式均能獲得較高再生率(67%~81%)。該研究還發(fā)現(xiàn)咖啡種子中的結(jié)合水含量與脂質(zhì)含量呈負(fù)相關(guān),脂質(zhì)含量較高的種子更容易在冷凍中受到傷害。針對(duì)咖啡C. arabica 保存需緩慢冷卻帶來(lái)的操作不便,COELHO 等[72]優(yōu)化了該種咖啡種子快速冷凍保存體系,使該種子緩慢干燥至20%含水量后可直接投入液氮保存。
為對(duì)空氣鳳梨資源(Tillandsia spp.)開(kāi)展長(zhǎng)期保存,OLIVEIRA 等[73]將20 種空氣鳳梨種子放入冷凍管中,并于活性硅膠上干燥至7%的種子含水量后快速浸入液氮進(jìn)行450 d 的冷凍保存,13種空氣鳳梨的種子獲得80%的再生率。多數(shù)蘭科植物的種子能夠忍受一定程度的脫水干燥[74],PRITCHARD[75]將蘭花7 個(gè)屬的成熟種子干燥至5%~11%后直接投入液氮冷凍處理,解凍后種子萌發(fā)率沒(méi)有下降,其中Anacamptis morio(藍(lán)紫倒距蘭)的種子超低溫保存后獲得更高的萌發(fā)率[74-78]。此外包埋干燥與玻璃化等莖尖超低溫保存技術(shù)也應(yīng)用于蘭科種子的超低溫保存,為無(wú)法直接干燥的蘭科種子提供了新的冷凍保護(hù)方法[79-80]。HU等[81]將臺(tái)灣本地蘭(Bletilla formosana)的種子應(yīng)用玻璃化法于PVS2 中脫水處理30 min,經(jīng)超低溫保存后獲得91%的萌發(fā)率,且保存1 a 的種子萌發(fā)率維持不變。
3.2 種胚
種胚承載種子的遺傳信息,體積小,與其他材料相比耐脫水和耐低溫能力強(qiáng),是影響種子成功保存的關(guān)鍵[82-84]。一些熱帶作物的種子體積過(guò)大或者種皮過(guò)厚,無(wú)法對(duì)種子內(nèi)的種胚進(jìn)行有效干燥,因而需在凍存前將種胚取出,對(duì)其干燥后冷凍保存。
椰子種子體積過(guò)大,為了長(zhǎng)期保存其種質(zhì)資源,SISUNANDAR 等[85]將其種胚取出,直接干燥后進(jìn)行液氮凍存。該研究表明種胚8 h 快速干燥后經(jīng)快速冷凍—解凍處理獲得最高的萌發(fā)率,此外新鮮種胚的冷凍后萌發(fā)率(40%)也高于與經(jīng)過(guò)12 d 運(yùn)輸?shù)碾x體種胚(20%)?;诖烁稍锓椒ǎ琒ISUNANDAR 等[86]對(duì)不同成熟度的椰子種胚進(jìn)行超低溫保存試驗(yàn),結(jié)果表明11 月齡的種胚冷凍后再生率最高(60%),但椰子采摘后需在3周內(nèi)分離種胚。在咖啡和菠蘿蜜的冷凍保存中,與未成熟或完全成熟的種胚相比,成熟中期收獲的種胚更適合超低溫保存[87-88]。棕櫚科植物的種胚對(duì)直接干燥耐受性較強(qiáng),相似的種胚超低溫保存技術(shù)也實(shí)現(xiàn)了油棕(Elaeis guineensis)和布迪椰屬(Butia capitata)種胚的長(zhǎng)期保存[89-90]。
芭蕉屬植物種皮較為堅(jiān)硬,為更有效地干燥脫水,ESQUIVEL 等[91]將2 種不同基因型的野蕉種胚在超凈工作臺(tái)中干燥后浸入液氮進(jìn)行保存,解凍后得到最低80%的萌發(fā)率。SINGH 等[92]研究了野蕉(Musa balbisiana)種子的冷凍保存特性,結(jié)果表明種胚可以在超低溫保存前干燥脫水至5%~10%的相對(duì)含水量,該研究還發(fā)現(xiàn)種胚離體培養(yǎng)是野蕉種子冷凍后萌發(fā)的必須手段。
對(duì)于種胚無(wú)法直接干燥的頑拗型種子,參照莖尖冷凍保護(hù)方式對(duì)種胚進(jìn)行脫水干燥能夠提高種胚超低溫保存后的成活與萌發(fā)率。在咖啡種胚超低溫保存研究中,VALDéS 等[93]應(yīng)用PVS3 玻璃化冷凍保護(hù)液對(duì)咖啡(Coffea arabica)種胚脫水干燥后進(jìn)行冷凍,獲得了100%的種胚萌發(fā)率。為對(duì)鱗花木屬(Lepisanthes fruticosa)植物種子實(shí)現(xiàn)長(zhǎng)期保存,BUSTAM 等[94]應(yīng)用PVS2 冷凍保護(hù)液優(yōu)化建立了玻璃化法種胚超低溫保存體系,獲得67%的萌發(fā)率。超低溫保存技術(shù)在重要熱帶作物種子(胚)保存中的研究成果見(jiàn)表2。
4 熱帶作物花粉、懸浮細(xì)胞與愈傷組織超低溫保存研究進(jìn)展
4.1 花粉
花粉是單細(xì)胞雄配子體,包含了物種單倍體基因組的所有信息,使其成為種質(zhì)資源保存和交換的重要材料[101]?;ǚ郾4娌粌H有效地克服了親本在不同時(shí)間和不同地理位置雜交的障礙,也是保護(hù)植物遺傳多樣性的有效手段。在各種花粉冷凍保存方法中,含水量高低是影響保存成功的關(guān)鍵要素,且超低溫保存能夠極長(zhǎng)地延長(zhǎng)花粉保存時(shí)間[102]。
在熱帶作物花粉保存中,KARUN 等[103]將椰子2 個(gè)品種的花粉干燥至含水量7.5%后,用鋁箔進(jìn)行包裹直接浸入液氮中,解凍后獲得26%~32%花粉萌發(fā)率;長(zhǎng)期保存試驗(yàn)表明花粉活力連續(xù)3 a保持25%以上,由此驗(yàn)證了椰子花粉超低溫長(zhǎng)期保存的可行性。在重要熱帶油料作物油棕上,TANDON等[104]將新鮮開(kāi)放的雄花序花粉干燥1 h至含水量23.3%后投入液氮進(jìn)行超低溫保存,保存8 a 后解凍獲得54%的花粉萌發(fā)率,與對(duì)照相比沒(méi)有顯著變化?;ǚ鄢蜏乇4娴某晒κ艿交ㄆ诤突ǚ鄣某墒於鹊挠绊憽NILKUMAR 等[105]發(fā)現(xiàn)在火龍果花朵完全開(kāi)放時(shí)采集的新鮮花粉超低溫保存后萌發(fā)率最高,達(dá)到71.26%,而在開(kāi)花前2 h 和開(kāi)花后10 h 采集的花粉冷凍后無(wú)法萌發(fā)。CHAUDHURY 等[106]于晴天上午8:00—10:00間的花藥開(kāi)裂時(shí)收集芒果與荔枝花粉并用環(huán)己烷對(duì)花粉在運(yùn)輸過(guò)程中進(jìn)行短暫保存,超低溫保存前將保存液濾除后進(jìn)行干燥,隨后投入液氮超低溫保存。該方法現(xiàn)已應(yīng)用于180 份芒果資源花粉與19 份荔枝資源花粉的長(zhǎng)期保存,且超低溫保存4 a 后的花粉未發(fā)現(xiàn)活力下降[106]。VEENA 等[107]發(fā)現(xiàn)芒果花粉存活力短、對(duì)干燥敏感性高的特點(diǎn),可考慮到基因型、季節(jié)和區(qū)域的差異,適當(dāng)延長(zhǎng)干燥時(shí)間。超低溫保存技術(shù)在重要熱帶作物花粉保存中的研究成果詳見(jiàn)表3。
4.2 懸浮細(xì)胞
植物懸浮細(xì)胞是一種能夠持續(xù)增殖、保持均一分散的細(xì)胞團(tuán),由多個(gè)未分化的單細(xì)胞組成,是遺傳轉(zhuǎn)化的良好受體[113-114]。細(xì)胞懸浮系的建立花費(fèi)大量時(shí)間,且需不斷地繼代以保持細(xì)胞活力,對(duì)胚性懸浮細(xì)胞開(kāi)展超低溫保存,能夠降低其在長(zhǎng)期繼代培養(yǎng)過(guò)程中導(dǎo)致胚性特征喪失以及發(fā)生遺傳變異的風(fēng)險(xiǎn)[115-116]。懸浮細(xì)胞冷凍保存前主要應(yīng)用冷凍保護(hù)液對(duì)細(xì)胞脫水干燥[117-118]。早期的冷凍保護(hù)液種類(lèi)較多,在甘蔗細(xì)胞懸浮系的低溫保存中FINKLE 等[117]發(fā)現(xiàn)含有8%葡萄糖、10%DMSO 與10% PEG(均為w/V)的冷凍保護(hù)液能使懸浮細(xì)胞忍受冷凍保存。GNANAPRAGASAM等[118]在甘蔗懸浮細(xì)胞超低溫保存研究中發(fā)現(xiàn)細(xì)胞經(jīng)0.33 mol/L 山梨醇預(yù)培養(yǎng)3 d 后,應(yīng)用添加0.5 mol/L 甘油、0.5 mol/L 山梨醇和1.0 mol/L 蔗糖的冷凍保護(hù)劑能夠獲得最高的冷凍后成活率。在香蕉懸浮系的超低溫保存研究中,PANIS 等[119]采用甘油和DMSO 混合液進(jìn)行低溫保護(hù),結(jié)果顯示DMSO 占5%時(shí)效果最好。在此基礎(chǔ)上GEORGET等[120]對(duì)香蕉懸浮系超低溫保存的預(yù)培養(yǎng)步驟進(jìn)行優(yōu)化,最終在冷凍保護(hù)前采用三步蔗糖預(yù)培養(yǎng)。上述香蕉懸浮系的超低溫保存均采用兩步冷凍法進(jìn)行冷凍[119-120]。
目前在植物上冷凍保護(hù)應(yīng)用最廣的PVS2 玻璃化溶液同樣適用于熱帶作物懸浮系超低溫保存。李艷娜等[121]應(yīng)用兩步梯度PVS2 冷凍保護(hù)對(duì)巴西蕉、北大矮蕉和粵優(yōu)抗1 號(hào)的香蕉懸浮細(xì)胞進(jìn)行超低溫保存,獲得較高的再生率。謝玉明等[122]在荔枝上建立了玻璃化法胚性懸浮細(xì)胞超低溫保存體系,該體系采用山梨醇預(yù)培養(yǎng)結(jié)合兩步PVS2冷凍保護(hù),獲得27.1%的超低溫保存成活率。為了對(duì)油棕細(xì)胞懸浮系進(jìn)行超低溫保存,WEI 等[89]應(yīng)用蔗糖預(yù)培養(yǎng)結(jié)合PVS2 冷凍保護(hù)的方式進(jìn)行超低溫保存,獲得68.33%成活率。李運(yùn)合等[123]應(yīng)用30 min PVS3 玻璃化溶液冷凍保護(hù)對(duì)芒果胚性培養(yǎng)物細(xì)胞和愈傷組織細(xì)胞進(jìn)行超低溫保存,存活率分別為94.7%和0,表明胚性培養(yǎng)物細(xì)胞較普通愈傷組織相比具有更強(qiáng)的耐脫水和冷凍能力。
4.3 愈傷組織
愈傷組織由薄壁細(xì)胞組成,一般被分為非胚性愈傷和胚性愈傷[124]。胚性愈傷組織可能會(huì)因長(zhǎng)期繼代而造成體細(xì)胞變異,或致使體胚潛力下降甚至徹底喪失[125]。超低溫保存可以有效遏制愈傷組織變異的發(fā)生,降低長(zhǎng)期保存帶來(lái)再生能力喪失的風(fēng)險(xiǎn)。早在1979 年,ULRICH 等[126]已對(duì)甘蔗愈傷組織超低溫保存開(kāi)展研究,發(fā)現(xiàn)復(fù)合冷凍保護(hù)劑(8%葡萄糖+10% DMSO+10% PEG)能夠獲得較好的冷凍保護(hù)作用。簡(jiǎn)令成等[127]將上述冷凍保護(hù)劑與0.5 mol/L 山梨糖醇+10% DMSO 溶液在甘蔗愈傷組織超低溫保存中進(jìn)行對(duì)比,發(fā)現(xiàn)后者冷凍保護(hù)效果更好,這可能與試驗(yàn)材料基因型的不同有關(guān)。MARTíNEZ-MONTERO 等[128]還應(yīng)用0.3~0.75 mol/L 蔗糖+10% DMSO為冷凍保護(hù)劑成功保存了3 個(gè)甘蔗雜交種的胚性愈傷組織。MARTíNEZ-MONTERO 等[129]隨后對(duì)甘蔗胚性愈傷組織誘導(dǎo)的體胚團(tuán)進(jìn)行超低溫保存試驗(yàn),并應(yīng)用小滴玻璃化法獲得了55%的成活率。除甘蔗之外,應(yīng)用PVS2 玻璃化溶液還建立了橡膠[130]、龍眼[131-132]、荔枝[133]等熱帶作物愈傷組織的超低溫保存體系(表4)。
5 遺傳穩(wěn)定性檢測(cè)與農(nóng)藝性狀對(duì)比
莖尖與體胚等無(wú)性繁殖材料攜帶原始母株的遺傳信息,超低溫保存可降低上述材料長(zhǎng)期繼代培養(yǎng)帶來(lái)的遺傳變異風(fēng)險(xiǎn),但保存操作中的脫水干燥和冷凍解凍分別給細(xì)胞帶來(lái)滲透脅迫和冷凍傷害,給DNA 帶來(lái)?yè)p傷,對(duì)再生植株的遺傳穩(wěn)定性造成不利影響[134]。因而對(duì)超低溫保存后的再生植株開(kāi)展遺傳穩(wěn)定性檢測(cè)十分必要。
由于莖尖的遺傳穩(wěn)定性強(qiáng),目前絕大多數(shù)經(jīng)過(guò)優(yōu)化的莖尖超低溫保存體系能夠維持凍存資源的遺傳穩(wěn)定性[30, 135]。AGRAWAL 等[136]對(duì)超低溫保存后的香蕉Sommarani Monthan(AAB 基因型)開(kāi)展農(nóng)藝性狀評(píng)價(jià)和遺傳穩(wěn)定性檢測(cè),研究表明除1 棵再生植株果皮顏色更綠外,其余植株與對(duì)照相比表現(xiàn)相同的生長(zhǎng)和產(chǎn)量特性;同時(shí)應(yīng)用SSR 分子標(biāo)記進(jìn)行遺傳穩(wěn)定性檢測(cè)并未發(fā)現(xiàn)多態(tài)性位點(diǎn)。AGRAWAL 等[137]隨后還對(duì)香蕉田間吸芽、試管苗單芽和叢芽超低溫保存后的再生植株應(yīng)用SSR 分子標(biāo)記進(jìn)行遺傳穩(wěn)定性檢測(cè),并未發(fā)現(xiàn)超低溫保存過(guò)程帶來(lái)的變異率增加。在菠蘿和三角葉薯蕷(Dioscorea deltoidea)上應(yīng)用分子標(biāo)記技術(shù)進(jìn)行遺傳穩(wěn)定性檢測(cè)同樣表明玻璃化法超低溫保存體系能夠保持資源的遺傳穩(wěn)定性[63, 138]。然而在甘蔗中的研究表明莖尖超低溫保存獲得的再生植株遺傳穩(wěn)定性存在基因型差異,其中基因型NG 57-024 超低溫冷凍后表現(xiàn)98.5%的基因一致性,且變異差異發(fā)生在PVS2 冷凍保護(hù)之后,而其余兩份甘蔗基因型Halaii 與H83-6179 中未檢測(cè)到DNA 多態(tài)性[51]。
胚性愈傷組織的誘導(dǎo)經(jīng)歷脫分化過(guò)程,該過(guò)程可能給組織帶來(lái)更高的遺傳變異風(fēng)險(xiǎn)[139],因而更需關(guān)注其超低溫保存后的遺傳穩(wěn)定性。GANTAIT等[140]對(duì)油棕胚性懸浮系誘導(dǎo)獲得的多胚體超低溫保存后,應(yīng)用RAPD 和ISSR 分子標(biāo)記進(jìn)行遺傳穩(wěn)定性測(cè)定,未發(fā)現(xiàn)多態(tài)性條帶。WELEWANNI等[141]對(duì)椰子花序誘導(dǎo)所得的胚性愈傷組織在超低溫保存前后進(jìn)行遺傳穩(wěn)定性評(píng)估,該研究對(duì)11個(gè)SSR 分子標(biāo)記的位點(diǎn)進(jìn)行檢測(cè),同樣未發(fā)現(xiàn)變異位點(diǎn)。SISUNANDAR 等[142]還對(duì)4 個(gè)椰子品種的合子胚進(jìn)行超低溫保存,并對(duì)保存后得到的再生植株與保存前后的材料進(jìn)行對(duì)比,未發(fā)現(xiàn)在形態(tài)學(xué)和染色體數(shù)上的變異;應(yīng)用SSR 分子標(biāo)記和基因組甲基化水平檢測(cè)同樣未發(fā)現(xiàn)保存前后的明顯差異。
然而超低溫保存過(guò)程中脅迫處理會(huì)給組織帶來(lái)表觀遺傳水平的變化,且變化具有一定的可逆性[135],可能會(huì)對(duì)再生植株性狀產(chǎn)生影響[143],但在熱帶作物的研究上十分缺乏。ADU-GYAMFI 等[144]在可可(Theobroma cacao L.)上的研究發(fā)現(xiàn)其體胚經(jīng)超低溫保存后得到的再生植株形態(tài)發(fā)生變化,且該變化與表觀遺傳水平的變化有關(guān),但其變化部分可逆。綜上所述,雖然超低溫保存不會(huì)明顯提高保存材料的遺傳變異水平,但其帶來(lái)的表觀遺傳變化值得深入研究。
6 展望
隨著國(guó)家對(duì)植物種質(zhì)資源安全保存的重視和種業(yè)振興工作的開(kāi)展,植物野生資源、作物育種中間材料和優(yōu)良商業(yè)品種的安全保存變得尤為重要。許多發(fā)達(dá)國(guó)家的農(nóng)業(yè)科研單位和重要國(guó)際農(nóng)業(yè)組織已經(jīng)開(kāi)展植物資源的超低溫保存工作,以減少種質(zhì)資源長(zhǎng)期保存的人力物力投入。熱帶作物與溫帶作物相比耐冷性和干燥耐受性較差,超低溫保存體系建立的難度更大。
莖尖由于遺傳穩(wěn)定性高,取材較為方便,是香蕉、甘蔗、木薯等以無(wú)性繁殖為主的熱帶作物開(kāi)展超低溫保存的重要材料來(lái)源。目前最有效的莖尖超低溫保存技術(shù)應(yīng)用PVS2 等冷凍保護(hù)液進(jìn)行脫水干燥,并結(jié)合小滴玻璃化、鋁盤(pán)玻璃化法等快速冷凍—解凍手段冷凍保存。莖尖超低溫保存體系依賴(lài)成熟的莖尖和莖段組織培養(yǎng)再生技術(shù)(圖2),雖然在香蕉和菠蘿等作物上獲得成功,但在甘蔗、木薯等重要熱帶作物上還需優(yōu)化。此外咖啡、可可和芒果等熱帶木本作物超低溫保存工作的開(kāi)展還需克服組織離體再生困難帶來(lái)的挑戰(zhàn)。
超低溫保存是熱帶植物頑拗型種子實(shí)現(xiàn)長(zhǎng)期保存的唯一手段,為更有效地對(duì)種子進(jìn)行冷凍保護(hù),往往需將種胚取出進(jìn)行干燥后和超低溫保存。許多熱帶作物的種胚能夠耐受直接空氣干燥后超低溫保存。當(dāng)種胚無(wú)法直接干燥時(shí),可參照莖尖應(yīng)用玻璃化溶液進(jìn)行冷凍保護(hù)。目前種胚超低溫保存技術(shù)已在咖啡、野蕉和棕櫚科等植物上建立,在橡膠、可可等重要熱帶木本作物長(zhǎng)期安全保存和育種上還有更廣闊的研究應(yīng)用前景。種胚超低溫保存同樣依賴(lài)種胚離體培養(yǎng)技術(shù),以促進(jìn)種胚解凍后的萌發(fā)生長(zhǎng)。
超低溫保存還可應(yīng)用于熱帶作物花粉、胚性懸浮系、愈傷組織等高價(jià)值組織細(xì)胞的長(zhǎng)期保存。熱帶作物花粉可直接干燥后超低溫保存,操作較為簡(jiǎn)單;而胚性愈傷組織、懸浮系和普通愈傷的超低溫保存依賴(lài)?yán)鋬霰Wo(hù)溶液進(jìn)行脫水干燥(圖2)。胚性愈傷組織和懸浮系的超低溫保存技術(shù)已在香蕉、甘蔗、荔枝等熱帶作物上成功建立,可降低上述材料長(zhǎng)期繼代導(dǎo)致的變異和活力下降問(wèn)題,在其他重要熱帶作物上也有極高的研究?jī)r(jià)值。
綜上所述,超低溫保存技術(shù)雖然需要根據(jù)不同材料類(lèi)型選用不同的方案進(jìn)行優(yōu)化,但體系建立后是最有效的種質(zhì)資源長(zhǎng)期保存手段。熱帶地區(qū)作為全球生物多樣性水平最高的區(qū)域,有更多植物種質(zhì)安全保存的實(shí)際需求。超低溫保存體系在熱帶作物上的研究和應(yīng)用能更好地支持熱帶作物品種、野生瀕危資源和高價(jià)值組織細(xì)胞長(zhǎng)期安全保存,支撐熱帶農(nóng)業(yè)產(chǎn)業(yè)和科技的可持續(xù)發(fā)展。
參考文獻(xiàn)
[1] SALGOTRA R K, CHAUHAN B S. Genetic diversity, conservation,and utilization of plant genetic resources[J]. Genes,2023, 14(1): 174.
[2] VOLK G M, CARVER D, IRISH B M, MAREK L, FRANCESA, GREENE S, KHOURY C K, BAMBERG J, DELRIO A, WARBURTON M L, BRETTING P K. Safeguardingplant genetic resources in the United States during global climatechange[J]. Crop Science, 2023, 63(4): 2274-2296.
[3] 辛霞, 尹廣鹍, 張金梅, 陳曉玲, 何娟娟, 劉運(yùn)霞, 黃雪琦,盧新雄. 作物種質(zhì)資源整體保護(hù)策略與實(shí)踐[J]. 植物遺傳資源學(xué)報(bào), 2022, 23(3): 636-643.
XIN X, YIN G K, ZHANG J M, CHEN X L, HE J J, LIU YX, HUANG X Q, LU X X. Strategies and practices of theintegrated conservation system for crop germplasm resources[J]. Journal of Plant Genetic Resources, 2022, 23(3):636-643. (in Chinese)
[4] Food and Agriculture Organization of the United Nations.FAOSTAT 2022[EB/OL]. (2024-04-12)[2024-09-05]. https://www.fao.org/faostat/en/#data/QC.
[5] TURNER W R, BRANDON K, BROOKS T M, GASCON C,GIBBS H K, LAWRENCE K S, MITTERMEIER R A,SELIG E R. Global biodiversity conservation and the alleviationof poverty[J]. BioScience, 2012, 62(1): 85-92.
[6] TSCHARNTKE T, CLOUGH Y, WANGER T C, JACKSONL, MOTZKE I, PERFECTO I, VANDERMEER J, WHITBREADA. Global food security, biodiversity conservationand the future of agricultural intensification[J]. BiologicalConservation, 2012, 151(1): 53-59.
[7] WALTERS C, PENCE V C. The unique role of seed bankingand cryobiotechnologies in plant conservation[J]. PlantsPeople Planet, 2020, 3(1): 83-91.
[8] PANIS B, NAGEL M, VAN DEN HOUWE I. Challengesand prospects for the conservation of crop genetic resourcesin field genebanks, in in vitro collections and/or in liquid nitrogen[J]. Plants, 2020, 9(12): 1634.
[9] NORMAH M N, SULONG N, REED B M. Cryopreservationof shoot tips of recalcitrant and tropical species: advancesand strategies[J]. Cryobiology, 2019, 87: 1-14.
[10] SAKAI A, ENGELMANN F. Vitrification, encapsulationvitrificationand droplet-vitrification: a review[J]. Cryo-Letters,2007, 28(3): 151-172.
[11] PANIS B. Sixty years of plant cryopreservation: from freezinghardy mulberry twigs to establishing reference crop collectionsfor future generations[J]. Acta Horticulturae, 2019,1234: 1-7.
[12] SAKAI A. Survival of the twig of woody plants at ?196 ℃[J].Nature, 1960, 185: 393-394.
[13] SAKAI A, NISHIYAMA Y. Cryopreservation of wintervegetative buds of hardy fruit trees in liquid nitrogen[J].HortScience, 1978, 13(3): 225-227.。
[14] JENDEREK M M, REED B M. Cryopreserved storage ofclonal germplasm in the USDA National Plant GermplasmSystem[J]. In Vitro Cellular amp; Developmental Biology-Plant,2017, 53: 299-308.
[15] GROUT B W W, HENSHAW G G. Freeze preservation ofpotato shoot-tip cultures[J]. Annals of Botany, 1978, 42(181):1227-1229.
[16] TOWILL L E. Improved survival after cryogenic exposure ofshoot tips derived from in vitro plantlet cultures of potato[J].Cryobiology, 1983, 20(5): 567-573.
[17] KARTHA K K, LEUNG N L, PAHL K. Cryopreservation ofstrawberry meristems and mass propagation of plantlets[J].Journal of the American Society for Horticultural Science,1980, 105(4): 481-484.。
[18] KARTHA K K, LEUNG N L, MROGINSKI L A. In vitrogrowth responses and plant regeneration from cryopreservedmeristems of cassava (Manihot esculenta Crantz)[J]. Zeitschriftfür Pflanzenphysiologie, 1982, 107(2): 133-140.
[19] REDENBAUGH K, PAASCH B D, NICHOL J W, KOSSLERM E, VISS P R, WALKER K A. Somatic seeds: encapsulationof asexual plant embryos[J]. Nature Biotechnology,1986, 4(9): 797-801.
[20] FABRE J, DEREUDDRE J. Encapsulation dehydration anew approach to cryopreservation of Solanum shoot-tips[J].Cryo-Letters, 1990, 11: 413-426.
[21] ENGELMANN F, ARNAO M T G, WU Y, ESCOBAR R.Development of encapsulation dehydration[M]. New York:Springer, 2008: 59-75.
[22] ENGELMANN F, BENSON E E, CHABRILLANGE N,GONZALEZ ARNAO M T, MARI S, MICHAUX-FERRIEREN, PAULET F, GLASZMANN J C, CHARRIER A.Cryopreservation of several tropical plant species using encapsulation/dehydration of apices[M]. Dordrecht, The Netherlands:Springer, 1995: 315-320.
[23] MARI S, ENGELMANN F, CHABRILLANGE N, HUET C,MICHAUX-FERRIèRE N. Histo-cytological study of apicesof coffee (Coffea racemose and C. sessiliflora) in vitro plantletsduring their cryopreservation using the encapsulationdehydrationtechnique[J]. Cryo-Letters, 1995, 16: 289-298.
[24] SAKAI A, KOBAYASHI S, OIYAMA I. Cryopreservationof nucellar cells of navel orange (Citrus sinensis Osb. Var.brasiliensis Tanaka) by vitrification[J]. Plant Cell Reports,1990, 9: 30-33.
[25] TANNOURY M, RALAMBOSOA J, KAMINSKI M,DEREUDDRE J. Cryopreservation by vitrification of coatedshoot tips of carnation (Diathus caryophyllus L.) cultured invitro[J]. Comptes Rendus de l'Académie des Sciences, 1991,313(13): 633-638.
[26] TOWILL L E, JARRETT R L. Cryopreservation of sweetpotato [Ipomoea batatas (L.) Lam] shoot tips by vitrification[J]. Plant Cell Reports, 1992, 11: 175-178.
[27] CHAROENSUB R, PHANSIRI S, SAKAI A, YONGMANITCHAIW. Cryopreservation of cassava in vitro-grown shoottips cooled to ?196 ℃ by vitrification[J]. Cryo-Letters, 1999,20(2): 89-94.
[28] CHAROENSUB R, HIRAI D, SAKAI A. Cryopreservationof in vitro-grown shoot tips of cassava by encapsulation-vitrificationmethod[J]. Cryo-Letters, 2004, 25(1): 51-58.
[29] PANIS B, PIETTE B, SWENNEN R. Droplet vitrification ofapical meristems: a cryopreservation protocol applicable toall Musaceae[J]. Plant Science, 2005, 168(1): 45-55.
[30] WANG M R, LAMBARDI M, ENGELMANN F, PATHIRANAR, PANIS B, VOLK G M, WANG Q C. Advances incryopreservation of in vitro-derived propagules: technologiesand explant sources[J]. Plant Cell Tissue and Organ Culture,2021, 144: 7-20.
[31] SOUZA F V D, KAYA E, DE JESUS VIEIRA L, DESOUZA E H, DE OLIVEIRA AMORIM B, SKOGERBOED, MATSUMOTO T, ALVES A A C, DA SILVA LEDO A,JENDEREK M M. Droplet-vitrification and morphohistologicalstudies of cryopreserved shoot tips of cultivated andwild pineapple genotypes[J]. Plant Cell Tissue and OrganCulture, 2016, 124: 351-360.
[32] KAVIANI B, KULUS D. Cryopreservation of endangeredornamental plants and fruit crops from tropical and subtropicalregions[J]. Biology, 2022, 11(6): 847.
[33] HIRAI D. Gelled droplet vitrification improves recovery ofcryopreserved potato germplasm[J]. Cryo-Letters, 2011,32(4): 287-296.
[34] YAMAMOTO S, RAFIQUE T, PRIYANTHA W S, FUKUIK, MATSUMOTO T, NIINO T. Development of a cryopreservationprocedure using aluminum cryo-plates[J]. Cryo-Letters, 2011, 32(3): 256-265.
[35] NIINO T, WUNNA, WATANABE K, NOHARA N, RAFIQUET, YAMAMOTO S, FUKUI K, VALLE ARIZAGAM, MARTINEZ C R C, MATSUMOTO T, ENGELMANNF. Cryopreservation of mat rush lateral buds by air dehydrationusing aluminum cryo-plate[J]. Plant Biotechnology, 2014,31(3): 281-287.
[36] YAMAMOTO S, WUNNA, RAFIQUE T, VALLE ARIZAGAM, FUKUI K, GUTIERREZ E J C, MARTINEZ C RC, WATANABE K, NIINO T. The aluminium cryo-plate increasesefficiency of cryopreservation protocols for potatoshoot tips[J]. American Journal of Potato Research, 2015, 92:250-257.
[37] VIANNA M G, GARCIA R O, MANSUR E, ENGELMANNF, PACHECO G. Oxidative stress during the cryopreservationof Passiflora suberosa L. shoot tips using the V-cryoplatetechnique: determination of the critical stages of theprotocol[J]. Plant Cell Tissue and Organ Culture, 2019, 139:369-379.
[38] BENELLI C, CARVALHO L S O, EL MERZOUGUI S,PETRUCCELLI R. Two advanced cryogenic procedures forimproving Stevia rebaudiana (Bertoni) cryopreservation[J].Plants, 2021, 10(2): 277.
[39] PANIS B, TOTTé N, VAN NIMMEN K, WITHERS L A,SWENNEN R. Cryopreservation of banana (Musa spp.)meristem cultures after preculture on sucrose[J]. Plant Science,1996, 121(1): 95-106.
[40] AGRAWAL A, SWENNEN R, PANIS B. A comparison offour methods for cryopreservation of meristems in banana(Musa spp.)[J]. Cryo-Letters, 2004, 25(2): 101-110.
[41] 李建國(guó), 張守梅, 陳厚彬, 徐春香, 王澤槐. 應(yīng)用莖尖滴凍法超低溫保存香蕉資源研究[J]. 果樹(shù)學(xué)報(bào), 2010, 27(5):745-751.
LI J G, ZHANG S M, CHEN H B, XU C X, WANG Z H.Study on the cryopreservation of in vitro shoot tips of Musagermplasm by droplet vitrification[J]. Journal of Fruit Science,2010, 27(5): 745-751. (in Chinese)
[42] DUMET D, DIEBIRU E, ADEYEMI A, AKINYEMI O,GUEYE B, FRANCO J. Cryopreservation for the ‘in perpetuity’conservation of yam and cassava genetic resources[J].Cryo-Letters, 2013, 34(2): 107-118.
[43] ESCOBAR R H, MU?OZ L, RIOS A, Nú?EZ A, TOHME J. Using a droplet-vitrification method to partially overcomethe recalcitrance of cassava to cryostorage[J]. Acta Horticulturae,2014, 1039: 227-232.
[44] GONZáLEZ-ARNAO M T, RAVELO M M, VILLAVICENCIOC U, MARTINEZ-MONTERO M E, ENGELMANNF. Cryopreservation of pineapple (Ananas comosus) apices[J].Cryo-Letters, 1998, 19: 375-382.
[45] MARTíNEZ-MONTERO M E, MARTíNEZ J, ENGELMANNF, GONZALEZ-ARNAO M T. Cryopreservation ofpineapple [Ananas comosus (L.) Merr] apices and calluses[J].Acta Horticulturae, 2005, 666: 127-131.
[46] GáMEZ-PASTRANA R, MARTíNEZ-OCAMPO Y, BERISTAINC I, GONZáLEZ-ARNAO M T. An improved cryopreservationprotocol for pineapple apices using encapsulation-vitrification[J]. Cryo-Letters, 2004, 25(6): 405-414.
[47] GONZáLEZ-ARNAO M T, ENGELMANN F, HUET C,URRA C. Cryopreservation of encapsulated apices of sugarcane:effect of freezing procedure and histology[J]. Cryo-Letters, 1993, 14: 303-308.
[48] PAULET F, ENGELMANN F, GLASZMANN J C. Cryopreservationof apices of in vitro plantlets of sugarcane (Saccharumsp. hybrids) using encapsulation/dehydration[J].Plant Cell Reports, 1993, 12: 525-529.
[49] BARRACO G, SYLVESTRE I, ENGELMANN F. Comparingencapsulation-dehydration and droplet-vitrification forcryopreservation of sugarcane (Saccharum spp.) shoot tips[J].Scientia Horticulturae, 2011, 130(1): 320-324.
[50] VOLK G M, JENDEREK M M, STATTS E, SHEPHERD A,BONNART R, LEDO A, AYALA-SILVA T. Challenges inthe development of a widely applicable method for sugarcane(Saccharum spp.) shoot tip cryopreservation[J]. ActaHorticulturae, 2019, 1234: 335-342.
[51] KAYA E, SOUZA F V D. Comparison of two PVS2-basedprocedures for cryopreservation of commercial sugarcane(Saccharum spp.) germplasm and confirmation of geneticstability after cryopreservation using ISSR markers[J]. InVitro Cellular amp; Developmental Biology-Plant, 2017, 53:410- 417.
[52] ZHANG A L, WANG M R, LI Z, PANIS B, BETTONI J C,VOLLMER R, XU L, WANG Q C. Overcoming challengesfor shoot tip cryopreservation of root and tuber crops[J].Agronomy, 2023, 13(1): 219.
[53] VOLLMER R, PANTA A, TAY D, ROCA W, ELLIS D.Effect of sucrose preculture and PVS2 exposure on the cryopreservationof sweet potato shoot tips [Ipomoea batatas (L.)Lam.] using the PVS2 droplet vitrification[J]. Acta Horticulturae,2014, 1039: 265-272.
[54] WILMS H, SLEZIAK N F, VAN DER AUWERAER M,BRANDS M, VERLEIJE M, HARDEMAN D, ANDRE E,PANIS B. Development of a fast and user-friendly cryopreservationprotocol for sweet potato genetic resources[J]. ScientificReports, 2020, 10: 14674.
[55] LI Z, LI T, XU L, PANIS B. Cryopreservation of Calleryaspeciosa (Champ.) schot through droplet-vitrification[J].Propagation of Ornamental Plants, 2013, 13(4): 189-195.
[56] 顏航, 李春燕, 李志英, 王敏瑞, 荊永琳, 王小冰, 李玉蓮,陳浪欣, 徐立. 巴戟天離體保存與莖尖小滴玻璃化法超低溫保存體系的構(gòu)建[J]. 分子植物育種, 2024, 22(19): 6477-6484.
YAN H, LI C Y, LI Z Y, WANG M R, JING Y L, WANG XB, LI L Y, CHEN L X, XU L. Construction of in vitro preservationand shoot tips droplet-vitrification cryopreservationsystem of Morinda officinalis how[J]. Molecular PlantBreeding, 2024, 22(19): 6477-6484. (in Chinese)
[57] DAS C M, DEVI S D, KUMARIA S, REED B M. Lookingfor a way forward for the cryopreservation of orchid diversity[J]. Cryobiology, 2021, 102: 1-14.
[58] LI T, XU L, LI Z, PANIS B. Cryopreservation of Neottopterisnidus prothallus and green globular bodies by droplet-vitrification[J]. Cryo-Letters, 2013, 34(5): 481-489.
[59] KHOR S P, YEOW L C, POOBATHY R, ZAKARIA R,CHEW B L, SUBRAMANIAM S. Droplet-vitrification ofAranda Broga Blue orchid: role of ascorbic acid on the antioxidantsystem and genetic fidelity assessments via RAPD andScoT markers[J]. Biotechnology Reports, 2020, 26: e00448.
[60] 高潔, 李志英, 張玄兵, 謝龍海, 陳瑩, 朱振芬, 符運(yùn)柳,徐立. 紅掌小滴玻璃化法超低溫保存研究[J]. 熱帶作物學(xué)報(bào), 2023, 44(9): 1909-1916.
GAO J, LI Z Y, ZHANG X B, XIE L H, CHEN Y, ZHU Z F,F(xiàn)U Y L, XU L. Cryopreservation of Anthurium andraeanumby droplet vitrification[J]. Chinese Journal of Tropical Crops,2023, 44(9): 1909-1916. (in Chinese)
[61] O’BRIEN C, HITI-BANDARALAGE J C A, FOLGADO R,LAHMEYER S, HAYWARD A, FOLSOM J, MITTER N.First report on cryopreservation of mature shoot tips of twoavocado (Persea americana Mill.) rootstocks[J]. Plant CellTissue and Organ Culture, 2021, 144: 103-113.
[62] RAFIQUE T, YAMAMOTO S, FUKUI K, MAHMOOD Z,TAKAO N. Cryopreservation of sugarcane using the V cryoplatetechnique[J]. Cryo-Letters, 2015, 36(1): 51-59.
[63] SHARMA N, MALHOTRA EV, CHANDRA R, GOWTHAMIR, SULTAN S M, BANSAL S, SHANKAR M, AGRAWALA. Cryopreservation and genetic stability assessmentof regenerants of the critically endangered medicinalplant Dioscorea deltoidea Wall. ex Griseb. for cryobankingof germplasm[J]. In Vitro Cellular amp; Developmental Biology-Plant, 2022, 58: 521-529.
[64] LININGTON S H, PRITCHARD H W. Encyclopedia ofbiodiversity[M]. San Diego: Academic Press, 2001: 165-181.
[65] TWEDDLE J C, DICKIE J B, BASKIN C C, BASKIN J M.Ecological aspects of seed desiccation sensitivity[J]. Journalof Ecology, 2003, 91(2): 294-304.
[66] SERSHEN, PERUMAL A, VARGHESE B, GOVENDER P,RAMDHANI S, BERJAK P. Effects of elevated temperatureson germination and subsequent seedling vigour in recalcitrantTrichilia emetica seeds[J]. South African Journal ofBotany, 2014, 90: 153-162.
[67] JOSHI G, PHARTYAL S S, KHAN M R, ARUNKUMAR AN. Recalcitrant morphological traits and intermediate storagebehaviour in seeds of Mesua ferrea, a tropical evergreen species[J]. Seed Science and Technology, 2015, 43(1): 121-126.
[68] MARQUES A, NIJVEEN H, SOMI C, LIGTERINK W,HILHORST H. Induction of desiccation tolerance in desiccationsensitive Citrus limon seeds[J]. Journal of IntegrativePlant Biology, 2019, 61(5): 624-638.
[69] NAGEL M, PENCE V, BALLESTEROS D, LAMBARDI M,POPOVA E, PANIS B. Plant cryopreservation: principles,applications, and challenges of banking plant diversity at ultralowtemperatures[J]. Annual Review of Plant Biology,2024, 75: 797-824.
[70] DUSSERT S, CHABRILLANGE N, ROCQUELIN G,ENGELMANN F, LOPEZ M, HAMON S. Tolerance of coffee(Coffea spp.) seeds to ultra-low temperature exposure inrelation to calorimetric properties of tissue water, lipidcomposition, and cooling procedure[J]. Physiologia Plantarum,2001, 112(4): 495-504.
[71] BECWAR M R, STANWOOD P C, LEONHARDT K W.Dehydration effects on freezing characteristics and survivalin liquid nitrogen of desiccation-tolerant and desiccation-sensitive seeds[J]. Journal of the American Society forHorticultural Science, 1983, 108(4): 613-618.
[72] COELHO S V B, ROSA S D V F, FERNANDES J S. Cryopreservationof coffee seeds: a simplified method[J]. SeedScience and Technology, 2017, 45(3): 1-12.
[73] OLIVEIRA R S D, SOUZA F V D, SANTOS I L D,SOUZA S O, AONA L Y S, DE SOUZA E H. Cryopreservationand low-temperature storage of seeds of Tillandsiaspecies (Bromeliaceae) with ornamental potential[J]. 3 Biotech,2021, 11(4): 186.
[74] PRITCHARD H W, POYNER A L C, SEATON P T. Interspecificvariation in orchid seed longevity in relation to ultra-dry storage and cryopreservation[J]. Lindleyana, 1999,14(2): 92-101.
[75] PRITCHARD H W. Liquid nitrogen preservation of terrestrialand epiphytic orchid seed[J]. Cryo-Letters, 1984, 5: 295-300.
[76] WANG J H, GE J G, FENG L, BIAN H W, HUANG C N.Cryopreservation of seeds and protocorms of Dendrobiumcandidum[J]. Cryo-Letters, 1998, 19: 123-128.
[77] NIKISHINA T V, POPOV A S, KOLOMEITSEVA G L,GOLOVKIN B N. Effect of cryopreservation on seed germinationof rare tropical orchids[J]. Russian Journal of PlantPhysiology, 2001, 48: 810-815.
[78] POPOV A S, POPOVA E V, NIKISHINA T V, KOLOMEYTSEVAG L. The development of juvenile plants of thehybrid orchid Bratonia after seed cryopreservation[J]. Cryo-Letters, 2004, 25(3): 205-212.
[79] HIRANO T, GODO T, MII M, ISHIKAWA K.Cryopreservation of immature seeds of Bletilla striata byvitrification[J]. Plant Cell Reports, 2005, 23: 534-539.[80] POPOVA E, KIM H H, SAXENA P K, ENGELMANN F,PRITCHARD H W. Frozen beauty: the cryobiotechnology oforchid diversity[J]. Biotechnology Advances, 2016, 34(4):380-403.
[81] HU W H, YANG Y H, LIAW S I, CHANG C. Cryopreservationthe seeds of a Taiwanese terrestrial orchid, Bletillaformosana (Hayata) Schltr. by vitrification[J]. BotanicalStudies, 2013, 54: 33-38.
[82] 李慶榮, 鄭郁善. 頑拗性種子種質(zhì)超低溫保存研究進(jìn)展[J].江西農(nóng)業(yè)大學(xué)學(xué)報(bào), 2003, 25(4): 608-612.
LI Q R, ZHENG Y S. Advances in research on cryopreservationof recalcitrant seeds[J]. Acta Agriculturae UniversitatisJiangxiensis, 2003, 25(4): 608-612. (in Chinese)
[83] CHANDEL K P S, CHAUDURY R, RADHAMANI J, MALIKS K. Desiccation and freezing sensitivity in recalcitrantseeds of tea, cocoa and jackfruit[J]. Annals of Botany, 1995,76(5), 443-450.
[84] GONZáLEZ-BENITO M E, PEREZ C. Cryopreservation ofembryonic axes of two cultivars of hazelnut (Corylus avellalnaL.)[J]. Cryo-letters, 1994, 15(1): 41-46.
[85] SISUNANDAR, SOPADE P A, SAMOSIR Y M S, RIVALA, ADKINS S W. Dehydration improves cryopreservation ofcoconut (Cocos nucifera L.)[J]. Cryobiology, 2010, 61(3):289-296.
[86] SISUNANDAR, NOVARIANTO H, MASHUD N, SAMOSIRY M S, ADKINS S W. Embryo maturity plays an importantrole for the successful cryopreservation of coconut(Cocos nucifera)[J]. In Vitro Cellular amp; Developmental Biology-Plant, 2014, 50: 688-695.
[87] ABDELNOUR-ESQUIVEL A, VILLALOBOS V, ENGELMANNF. Cryopreservation of zygotic embryos of Coffeaspp.[J]. Cryo-Letters, 1992, 13: 297-302.
[88] CHAUDHURY R, MALIK S K. Desiccation and freezingsensitivity during seed development in jackfruit[J]. SeedScience Technology, 2004, 32(3): 785-795.
[89] WEI Q, SHI P, KHAN F S, HTWE Y M, ZHANG D, LI Z,WEI X, YU Q, ZHOU K, WANG Y. Cryopreservation andcryotolerance mechanism in zygotic embryo and embryogeniccallus of oil palm[J]. Forests, 2023, 14(5): 966.
[90] FRUGERI G C, NOGUEIRA G F, DE SOUZA A L X,SCHERWINSKI-PEREIRA J E. Conservation strategies forButia capitata [Mart. (Becc.) Arecaceae], a threatened palmtree from Brazilian savannah biome, through zygotic embryocryopreservation[J]. International Journal of Plant Biology,2023, 14(3): 612-624.
[91] ESQUIVEL A, MORA A, VILLALOBOS V. Cryopreservationof zygotic embryos of Musa acuminata (AA) and Musabalbisiana (BB)[J]. Cryo-Letters, 1992, 13(3): 59-164.
[92] SINGH S, AGRAWAL A, KUMAR R, THANGJAM R,JOHN K J. Seed storage behavior of Musa balbisiana Colla,a wild progenitor of bananas and plantains: implications forex situ germplasm conservation[J]. Scientia Horticulturae,2021, 280: 109926.
[93] VALDéS Y C, SHUKLA M R, GONZáLEZ VEGA M E,SAXENA P K. Improved conservation of coffee (Coffeaarabica L.) germplasm via micropropagation and cryopreservation[J]. Agronomy, 2021, 11(9): 1861.
[94] BUSTAM S, ALI M S M, SINNIAH U R, SHAMSUDDINN, KADIR A M A. Short-term storage of seeds and cryopreservationof embryonic axes of Lepisanthes fruticose[J]. AnnualResearch amp; Review in Biology, 2021, 36(7): 112-123.
[95] GENEROSO A L, GARVALHO V S, WALTER R,CAMPBELL G, DA SILVA ARAúJO L, SANTANA J G S,DA CUNHA M. Mature-embryo culture in the cryopreservationof passion fruit (Passiflora edulis Sims) seeds[J]. ScientiaHorticulturae, 2019, 256: 108638.
[96] SAJINI K K, KARUN A, AMARNATH C H, ENGELMANNF. Cryopreservation of coconut (Cocos nucifera L.) zygoticembryos by vitrification[J]. Cryo-Letters, 2011, 32(4):317-328.
[97] SILVA S S S, SOUZA E H,SOUZA F V D, MAX D A S,ROSSI M L, COSTA M A P C. Post-seminal developmentand cryopreservation of endemic or endangered bromeliads[J]. Anais da Academia Brasileira de Ciências, 2021,93(1): e20191133.
[98] ASHMORE S E, DREW R A, O’BRIEN C, PARISI A.Cryopreservation of papaya (Carica Papaya L.) seed: overcomingdormancy and optimizing seed desiccation and storageconditions[J]. Acta Horticulturae, 2009, 839: 229-236.
[99] THAMMASIRI K. Cryopreservation of seeds of a Thai orchid(Doritis pulcherrima Lindl.) by vitrification[J].Cryo-Letters, 2000, 21(4): 237-244.
[100] JITSOPAKUL N, THAMMASIRI K, ISHIKAWA K. Cryopreservationof Bletilla striata mature seeds, 3-day germinatingseeds and protocorms by droplet-vitrification[J].Cryo-Letters, 2008, 29(6): 517-526.
[101] 陳珊. 花粉超低溫保存的研究和應(yīng)用進(jìn)展[J]. 安徽農(nóng)學(xué)通報(bào), 2007, 13(7): 39-40.
CHEN S. Cryopreservation on pollen[J]. Anhui AgriculturalScience Bulletin, 2007, 13(7): 39-40. (in Chinese)
[102] DINATO N B, IMACULADA SANTOS I R, ZANATTOVIGNA B B, DE PAULA A F, FáVERO A P. Pollen cryopreservationfor plant breeding and genetic resources conservation[J]. Cryo-Letters, 2020, 41(3): 115-127.
[103] KARUN A, SAJINI KK, NIRAL V, AMARNATH C H,REMYA P, RAJESH M K, SAMSUDEEN K, JERARD B A,ENGELMANN F. Coconut (Cocos nucifera L.) pollen cryopreservation[J]. Cryo-Letters, 2014, 35(5): 407-417.
[104] TANDON R, CHAUDHURY R, SHIVANNA K R. Cryopreservationof oil palm pollen[J]. Current Science, 2007,92(2): 182-183.
[105] ANILKUMAR G S, RAJASEKHARAN P E. Pollen cryopreservationprotocol for dragon fruit, pollen cryopreservationprotocols[M]. New York: Springer, 2023: 113-122.
[106] CHAUDHURY R, MALIK, S K, RAJAN S. An improvedpollen collection and cryopreservation method for highly recalcitranttropical fruit species of mango (Mangifera indicaL.) and litchi (Litchi chinensis Soon.)[J]. Cryo-Letters, 2010,31(3): 268-278.
[107] VEENA G L, MASTIHOLI L, RAJASEKHARAN P E.Pollen cryopreservation in mango, pollen cryopreservationprotocols[M]. New York: Springer, 2023: 199-211.
[108] EKARATNE S N R, SENATHIRAJAH S. Viability andstorage of pollen of the oil palm, Elaeis guineensis Jacq[J].Annuals of Botany, 1983, 51(5): 661-668.
[109] VISHWAKARMA P K, VINCENT L, VASUGI C, RAJASEKHARANP E. Effect of cryopreservation on pollen viability,fertility and morphology of different Psidium species[J].Cryobiology, 2021, 98: 112-118.
[110] NAVYA B L, RAJASEKHARAN P E, GUTAM S. PollenCryopreservation in Jackfruit (Artocarpus heterophyllus) forcrop improvement, pollen cryopreservation protocols[M].New York: Springer, 2023: 135-145.
[111] SILVA R L D, SOUZA E H D, DE JESUS VIEIRA L,PELACANI C R, SOUZA F V D. Cryopreservation of pollenof wild pineapple accessions[J]. Scientia Horticulturae,2017, 219: 326-334.
[112] GANESHAN S. Cryogenic preservation of papaya pollen[J].Scientia Horticulturae, 1986, 28: 65-70.
[113] 李丹, 秦青, 趙琪, 戴紹軍. 植物懸浮培養(yǎng)細(xì)胞應(yīng)答非生物脅迫蛋白質(zhì)組學(xué)分析[J]. 現(xiàn)代農(nóng)業(yè)科技, 2016, 3: 225-227.
LI D, QIN Q, ZHAO Q, DAI S J. Abiotic stress-responsiveproteomics in plants suspension cultured cells[J]. ModernAgricultural Science and Technology, 2016, 3: 225-227. (inChinese)
[114] BABICH O, SUKHIKH S, PUNGIN A, IVANOVA S, ASYAKINAL, PROSEKOV A. Modern trends in the in vitroproduction and use of callus, suspension cells and root culturesof medicinal plants[J]. Molecules, 2022, 27(17): 5513.
[115] MUSTAFA N, DE WINTER W, VAN IREN F, VERPOORTER. Initiation, growth and cryopreservation of plant cellsuspension cultures[J]. Nature Protocols, 2011, 6: 715-742.
[116] WANG B, ZHANG Z, YIN Z, FENG C, WANG Q. Noveland potential application of cryopreservation to plant genetictransformation[J]. Biotechnology Advances, 2012, 30(3):604-612.
[117] FINKLE B J, ULRICH J M. Effects of cryoprotectants incombination on the survival of frozen sugarcane cells[J].Plant Physiology, 1979, 63(4): 598-604.
[118] GNANAPRAGASAM S, VASIL I K. Plant regenerationfrom a cryopreserved embryogenic cell suspension of a commercialsugarcane hybrid (Saccharum sp.)[J]. Plant Cell Reports,1990, 9(8): 419-423.
[119] PANIS B, WITHERS L A, LANGHE E D. Cryopreservationof Musa suspension cultures and subsequent regeneration ofplants[J]. Cryo-Letters, 1990, 11: 337-350.
[120] GEORGET F, ENGELMANN F, DOMERGUE R, C?TE F.Morpho-histological study of banana (Musa spp. cv. GrandeNaine [AAA]) cell suspensions during cryopreservation andregeneration[J]. Cryo-Letters, 2009, 30(6): 398-407.
[121] 李艷娜, 尉義明, 胡桂兵, 陳厚彬, 徐春香. 香蕉胚性細(xì)胞懸浮系玻璃化法超低溫保存及再生植株遺傳穩(wěn)定性分析[J]. 園藝學(xué)報(bào), 2010, 37(6): 899-905.
LI Y N, WEI Y M, HU G B, CHEN H B, XU C X. Plant regenerationvia somatic embryogenesis after cryopreservationof embryogenic cell suspensions of banana (Musa spp. AAA)by vitrification and the genetic stability of regenerated plant[J].Acta Horticulturae Sinica, 2010, 37(6): 899-905. (in Chinese)
[122] 謝玉明, 曾繼吾, 張秋明, 易千軍. 玻璃化法超低溫保存荔枝胚性懸浮細(xì)胞[J]. 熱帶作物學(xué)報(bào), 2008, 29(5): 622-625.
XIE Y M, ZENG J W, ZHANG Q M, YI Q J. Cryopreservationof litchi embryogenic suspension cells by vitrificationtechnique[J]. Chinese Journal of Tropical Crops, 2008, 29(5):622-625. (in Chinese)
[123] 李運(yùn)合, 李玉生, 張金梅, 陳曉玲, 趙艷華, 吳永杰. 芒果細(xì)胞超低溫保存存活機(jī)理[J]. 植物生理學(xué)報(bào), 2016, 52(10):1474-1480.
LI Y H, LI Y S, ZHANG J M, CHEN X L, ZHAO Y H, WUY J. The survival mechanism of mango cells duringcryopreservation[J]. Plant Physiology Journal, 2016, 52(10):1474-1480. (in Chinese)
[124] 盛德策, 李鳳蘭, 劉忠華. 植物體細(xì)胞胚發(fā)生的細(xì)胞生物學(xué)研究進(jìn)展[J]. 西北植物學(xué)報(bào), 2008, 28(1): 204-215.
SHENG D C, LI F L, LIU Z H. Advances in the cytobiologyof plant somatic embryogenesis[J]. Acta Botanica Boreali-Occidentalia Sinica, 2008, 28(1): 204-215. (in Chinese)
[125] BRETON D, HARVENGT L, TRONTIN J F O, FAVRE JM. High subculture frequency, maltose-based and hormonefreemedium sustained early development of somatic embryosin maritime pine[J]. In Vitro Cellular amp; DevelopmentalBiology-Plant, 2005, 41(4): 494-504.
[126] ULRICH J M, FINKLE B J, MOORE P H, GINOZA H.Effect of a mixture of cryoprotectants in attaining liquid nitrogensurvival of callus cultures of a tropical plant[J]. Cryobiology,1979, 16(6): 550-556.
[127] 簡(jiǎn)令成, 孫德蘭, 孫龍華. 甘蔗愈傷組織超低溫保存中一些因素的研究[J]. 植物學(xué)報(bào), 1987, 29(2): 123-131.
JIAN L C, SUN D L, SUN L H. Studies on factors in cryopreservationof sugarcane calluses[J]. Acta Botanica Sinica,1987, 29(2): 123-131. (in Chinese)
[128] MARTíNEZ-MONTERO M E, GONZáLEZ-ARNAO M T,BORROTO-NORDELO C, PUENTES-DIAZ C, ENGELMANNF. Cryopreservation of sugarcane embryogenic callususing a simplified freezing process[J]. Cryo-Letters, 1998,19(7): 171-176.
[129] MARTíNEZ-MONTERO M E, MARTíNEZ J, ENGELMANNF. Cryopreservation of sugarcane somatic embryos[J].Cryo-Letters, 2008, 29(3): 229-242.
[130] ZHOU Q N, SUN A H, LI Z, HUA Y W, JIANG Z H, HUANGT D, DAI X M, HUANG H S. Cryopreservation and plantregeneration of anther callus in Hevea by vitrification[J]. AfricanJournal of Biotechnology, 2012, 11: 7212-7217.
[131] 郭玉瓊, 賴(lài)鐘雄, 呂柳新. 玻璃化法超低溫保存龍眼胚性愈傷組織的初步探討[J]. 福建農(nóng)林大學(xué)學(xué)報(bào)(自然科學(xué)版),2006, 35(3): 262-265.
GUO Y Q, LAI Z X, LYU L X. Preliminary study on cryopreservationof longan calli by vitrification[J]. Journal of FujianAgriculture and Forestry University (Natural ScienceEdition), 2006, 35(3): 262-265. (in Chinese)
[132] MATSUMOTO K, RAHARJO S H T, DHEKNEY S,MOON P A, LITZ R E. Cryopreservation and somatic embryogenesis of Dimocarpus longan calli[J]. Pesquisa AgropecuáriaBrasileira, 2004, 39(12): 1261-1263.。
[133] 郭玉瓊, 賴(lài)鐘雄, 呂柳新. 玻璃化法超低溫保存荔枝胚性愈傷組織及其植株再生[J]. 福建農(nóng)林大學(xué)學(xué)報(bào)(自然科學(xué)版), 2007, 36(1): 34-37.
GUO Y Q, LAI Z X, LYU L X. Cryopreservation of embryogeniccalli by vitrification and plant regeneration viasomatic embryogenesis in litchi[J]. Journal of Fujian Agricultureand Forestry University (Natural Science Edition),2007, 36(1): 34-37. (in Chinese)
[134] REN L, WANG M R, WANG Q C. ROS-induced oxidativestress in plant cryopreservation: occurrence and alleviation[J].Planta, 2021, 254(6): 124.
[135] WANG M R, BI W, SHUKLA M R, HAMBORG Z,BLYSTAD D R, SAXENA P K, WANG Q C. Epigeneticand genetic integrity, metabolic stability, and field performanceof cryopreserved plants[J]. Plants, 2021, 10(9): 1889.
[136] AGRAWAL A, TYAGI R K, GOSWAMI R. Cryobankingof banana (Musa sp.) germplasm in India: evaluation of agronomicand molecular traits of cryopreserved plants[J]. ActaHorticulturae, 2011(908): 129-138.
[137] AGRAWAL A, SANAYAIMA R, SINGH R, TANDON R,VERMA S, TYAGI R K. Phenotypic and molecular studiesfor genetic stability assessment of cryopreserved bananameristems derived from field and in vitro explant sources[J].In Vitro Cellular amp; Developmental Biology-Plant, 2014, 50:345-356
[138] LI Y R, SONG X P, WU J M, LI C N, LIANG Q, LIU X H,WANG W Z, TAN H W, YANG L T. Sugar industry andimproved sugarcane farming technologies in China[J]. SugarTech, 2016, 18(6): 603-611.
[139] BAIRU M W, AREMU A O, VAN STADEN J. Somaclonalvariation in plants: causes and detection methods[J]. PlantGrowth Regulation, 2011, 63: 147-173.
[140] GANTAIT S, SINNIAH U R, SURANTHRAN P, PALANYANDYS R, SUBRAMANIAM S. Improved cryopreservationof oil palm (Elaeis guineensis Jacq.) polyembryoids usingdroplet vitrification approach and assessment of geneticfidelity[J]. Protoplasma, 2015, 252: 89-101.
[141] WELEWANNI I, PERERA C, JAYASEKERA A, BANDUPRIYAD. Recovery, histological observations and geneticintegrity in coconut (Cocos nucifera L.) embryogenic callicryopreserved using encapsulation-dehydration procedure[J].Journal of the National Science Foundation of Sri Lanka,2020, 48(2): 175-186.
[142] SISUNANDAR, RIVAL A, TURQUAY P, SAMOSIR Y,ADKINS S W. Cryopreservation of coconut (Cocos nuciferaL.) zygotic embryos does not induce morphological, cytologicalor molecular changes in recovered seedlings[J]. Planta,2010, 232: 435-447.
[143] HARDING K. Genetic integrity of cryopreserved plant cells:a review[J]. Cryo-Letters, 2004, 25(1): 3-22.
[144] ADU-GYAMFI R, WETTEN A, LóPEZ C M R. Effect ofcryopreservation and post-cryopreservation somatic embryogenesison the epigenetic fidelity of cocoa (Thebromacacao L.)[J]. PLoS One, 2016, 11(7): e0158857.
基金項(xiàng)目 國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(No. 2021YFC2600603);中央級(jí)公益性科研院所基本科研業(yè)務(wù)費(fèi)專(zhuān)項(xiàng)(No. 1630032023011)。