摘要:單倍體育種能有效縮短育種年限,不但從本質上提高作物新品種選育進程,而且在雜合二倍體中不表達的一些隱性基因可以在雙單倍體(DH)中表達,有利于發(fā)現(xiàn)作物的優(yōu)良性狀,提高育種效率。此外,單倍體對分子遺傳學、細胞生物學、作物進化等基礎研究也具有非常重要的作用。亞麻作為重要的油料及經(jīng)濟作物,需求量日益增多,單倍體育種能有效加快亞麻育種進程,促進亞麻產(chǎn)業(yè)發(fā)展。本文總結了作物單倍體獲得方法、單倍體誘導基因研究、亞麻單倍體育種等方面的進展,以期為作物DH育種提供一定參考。
關鍵詞:雙單倍體育種;活體單倍體;DMP;PLA1;亞麻
中圖分類號:S33;S563.2" " " "文獻標志碼:A" " " 文章編號:2097-2172(2025)02-0099-06
doi:10.3969/j.issn.2097-2172.2025.02.001
Research Progress on Haploid Breeding and Its Application in
Flax Breeding
QI Yanni, WANG Limin, LI Wenjuan, DANG Zhao, WANG Ping, ZHAO Wei, XIE Yaping,
XU Chenmeng, WANG Yan, ZHANG Jianping
(Institute of Crops, Gansu Academy of Agricultural Sciences, Lanzhou Gansu 730070, China)
Abstract:" Haploid breeding could effectively shorten the breeding cycle and essentially improve the breeding process of new varieties. Moreover, some recessive genes that are not expressed in heterozygous diploids could be expressed in double haploid (DH) lines, which is helpful to discover the beneficial traits of crops and improve breeding efficiency. Additionally, haploids play a crucial role in basic research fields such as molecular genetics, cell biology, and crop evolution. As an important oil and cash crop, the demand of flax is increasing day by day. Haploid breeding can effectively accelerate the process of flax breeding and promote the development of flax industry. This paper summarizes the progress of haploid acquisition method for crops, haploid induction gene and flax haploid breeding, which could provide certain reference for crop double haploid breeding.
Key words:" Double haploid breeding; In vivo haploid; DMP; PLA1; Flax
傳統(tǒng)育種需要多個世代的自交和回交才能將有益的等位基因導入目標受體,得到性狀優(yōu)良的純合株系。此方法需要大量篩選遺傳背景,并且需要較大的群體以增加遺傳重組的概率,工作繁瑣、育種周期長、成本高,而且結果不可預測,往往達不到預期目標。此外,當目標性狀與不良性狀連鎖時,此方法會受到連鎖阻力效應的影響,要分離這兩個性狀要么需要特別大的群體,要么因為特定區(qū)域沒有重組事件而無法實現(xiàn)[1 ]。雙單倍體(Doubled haploid,DH)育種是基于體內誘導獲得單倍體植株,再通過加倍使植株獲得正常染色體數(shù)。DH育種能在兩個世代內獲得穩(wěn)定的二倍體純系,即DH系,從本質上加速作物育種進程,而且許多在雜合二倍體中不表達的隱性基因可以在DH系中表達,有利于發(fā)現(xiàn)作物的優(yōu)良性狀,提高作物育種效率[2 ]。此外,DH育種對于分子遺傳學、細胞生物學、作物進化等基礎研究也有相當重要的作用[3 ]。自從Guha等[4 ]通過曼陀羅花藥離體培養(yǎng)獲得單倍體胚胎,越來越多的作物相繼培育出了單倍體植株[5 ],而且已經(jīng)成功應用于玉米、亞麻、油菜等重要農(nóng)作物育種中[6 - 8 ],獲得了顯著的經(jīng)濟效益和社會效益。隨著單倍體技術的廣泛應用,在多種作物中對單倍體獲得方法進行了深入研究,并且相繼培育出單倍體植株[9 ]。
亞麻(Linum usitatissimum L, 2n=2x=30)屬于亞麻科亞麻屬,一年生,是一種古老的油用和纖維作物,早在一萬年以前的古埃及和古蘇美爾,人類就開始利用其油用和纖維價值[10 ]。亞麻籽富含α-亞麻酸(55%左右)、木酚素、膳食纖維及蛋白質等多種營養(yǎng)成分,在抗癌、增強智力、預防和治療心腦血管疾病等方面具有重要作用[11 - 12 ]。隨著人們健康觀念的日益增強,亞麻成為備受喜愛的油料作物之一,亞麻籽需求量越來越大,并且對亞麻籽品質有了更高的要求。目前,中國亞麻產(chǎn)量占世界總產(chǎn)量的12%,亞麻籽進口量是世界總進口量的31%[13 ]。亞麻纖維具有柔軟、細度好、拉力強等特點,有“纖維皇后”的美稱,是紡織工業(yè)重要的原材料。我國是亞麻制品生產(chǎn)和出口大國,但國內亞麻纖維產(chǎn)量嚴重不足,近年來每年從歐洲進口亞麻纖維11萬t左右,是亞麻紡織原料的進口大國。可見,中國亞麻產(chǎn)需缺口巨大,因此,迫切需要建立一種快速有效的育種方法,加快優(yōu)良亞麻品種培育進程。
1" "作物單倍體獲得方法研究進展
在自然條件下,植物雖然能夠自發(fā)形成單倍體,但頻率極低,僅0.002%~0.020%,無法滿足育種的需求[14 ]。近年來,在單倍體獲得方面進行了大量研究。
1.1" "雄配子體離體培養(yǎng)
1982年,胡道芬等[15 ]首次利用小麥雄配子體離體培養(yǎng)培育出冬小麥品種京花1號。同年,Lichter[16 ]首次利用油菜小孢子成功培養(yǎng)出單倍體。1991年,杭玲等[17 ]以花藥為材料首次培育出玉米雜交種。此外,大麥、水稻、白菜等多種作物也通過雄配子體離體培養(yǎng)獲得了單倍體植株[18 - 20 ]。
1.2" "未受精雌核離體培養(yǎng)
未受精子房或胚珠離體培養(yǎng)也可獲得單倍體植株。San[21 ]首次利用未受精子房培養(yǎng)出大麥單倍體植株,隨后在水稻、小麥、玉米等多個作物中也取得了成功[22 ]。然而,體外獲得單倍體的方法具有高度的基因型依賴性,在多種作物中的應用受到限制[2," 23 ]。
1.3" "孤雌生殖
孤雌生殖是獲得單倍體的另一種方式。2006年,雷春等[24 ]利用γ射線輻射黃花雄花,之后進行授粉成功獲得了黃瓜單倍體植株。用激動素、甲苯胺藍、油菜素內酯等化學藥物處理去雄后的柱頭或未授粉的花序也可誘導孤雌生殖,已在小麥、玉米等作物中獲得了單倍體植株[25 - 26 ]。此外,通過遠源花粉刺激也可誘導孤雌生殖,從而獲得單倍體植株,這種方法在小麥、大麥等作物中的應用比較廣泛。1984年,Zenkteler[27 ]最早利用玉米花粉對小麥進行授粉獲得了小麥單倍體植株,將小麥與高粱、大麥分別進行遠緣雜交也可產(chǎn)生小麥單倍體[28 - 29 ]。盡管如此,利用輻射或化學藥物誘導單倍體操作復雜、成本高,且誘導率較低,而遠緣雜交則存在誘導效率低、依賴遺傳背景等問題,且目前主要應用于禾本科作物。
1.4" "母本單倍體誘導系
母本單倍體誘導系誘導單倍體操作簡單、成本低、不依賴遺傳背景、誘導效率高,是目前獲得玉米單倍體的主要方法之一,該方法主要在單子葉作物中得到了商業(yè)化應用。Stock6是最早發(fā)現(xiàn)的活體單倍體誘導系,也是世界上第一個被廣泛應用的誘導系,單倍體誘導率(Haploid induction rate, HIR)達2.3%[30 ]。隨后以Stock6為基礎進行改良及選育,選育出ZMs、SW14等多個新單倍體誘導系,誘導率可達8%~12%[31 ]。目前,玉米活體單倍體誘導系統(tǒng)(Haploid induction,HI)已經(jīng)成功應用于水稻、小麥、油菜、苜蓿、馬鈴薯等物種[32 - 36 ]。此外,將HI系統(tǒng)與CRISPR/Cas9(Clustered regularly interspaced short palindromic repeats/ CRISPR-associated protein 9)基因編輯技術相結合,建立了單倍體誘導系介導的基因組編輯(Haploid-inducer mediated genome editing, IMGE)方法,可以在不同遺傳背景下實現(xiàn)基因編輯,而不會導入父本基因組,兩代內即可獲得目標性狀改良的DH系[37 - 38 ]。此方法克服了許多具有商業(yè)價值的品種性狀改良費時費力和遺傳轉化困難的問題,可以在很大程度上加速作物育種進程。在雙子葉植物中也有關于活體單倍體誘導系統(tǒng)的報道,但絕大多數(shù)雙子葉活體HI系統(tǒng)效率極低或是無法應用于其他雙子葉作物[39 ]。
2" "單倍體誘導基因研究進展
雖然早在六十多年前就發(fā)現(xiàn)玉米Stock6可誘導單倍體的產(chǎn)生,但在近幾年才對玉米活體HI背后的遺傳機制有了比較深入的了解。QTL定位結果表明,玉米單倍體誘導主要由qhir1和qhir8兩個位點控制,對單倍體誘導率遺傳變異的作用分別為66%、20%[40 - 41 ]。qhir1位點觸發(fā)HI的原因是ZmPLA1/MATL/NLD(patatin-like phospho-lipaseA1/MATRILINEAL/NOT LIKE DAD)基因編碼區(qū)C端有4 bp的插入[42 - 44 ],此基因編碼在精細胞中特異表達的磷脂酶;而qhir8位點觸發(fā)HI的原因是ZmDMP(DOMAIN OF UNKNOWN FUNCTION 679 membrane protein)基因發(fā)生了單核苷酸突變,引起第一個跨膜結構域中一個氨基酸的替換[45 ]。
2.1" "PLA1基因克隆及功能解析
2017年,3個研究團隊同時對ZmPLA1/MTL/NLD基因進行了克隆與功能驗證。Gilles等[43 ]的研究證實,所研究的誘導系材料中,所有NLD基因都有一個4 bp的插入,引起蛋白編碼提前終止,與野生型NLD蛋白相比,突變型NLD蛋白無法定位在精細胞膜上;而且NLD啟動子僅在成熟花粉及花粉管中有活性。Liu等[42 ]的研究表明,ZmPLA1基因在花粉中特異表達,在三核期其mRNA水平最高;利用CRISPR對ZmPLA1進行敲除,不同類型突變體的HIR最高可達6.67%,平均值為2.00%,與Stock6的HIR接近[30 ];同時還發(fā)現(xiàn),以zmpla1突變體為父本進行雜交時,胚乳敗育率為9.05%~10.25%。Kelliher等[44 ]利用TALEN技術對MTL進行編輯,以mtl突變株作為父本與野生型進行雜交,HIR達6.70%。
MATL在谷類作物中很保守,在水稻中鑒定到了同源基因OsMATL,OsMATL在花粉中特異表達,具有與ZmMATL相同的表達模式,對OsMATL進行敲除會降低結籽率,突變體的HIR為2%~6% [32 ]。在小麥中也鑒定到了ZmPLA1同源基因TaPLA-A、TaPLA-B和TaPLA-D,對這3個基因進行編輯,除了結籽率之外(轉化株系結籽率為30.0%~60.0%,野生株系結籽率平均值為92.6%),轉化株系與野生株系在表型上無明顯差異[33 ]。轉化株系自交可誘導產(chǎn)生單倍體,HIR為5.88%~15.66%,將轉化株系與其他品種進行雜交,HIR可達10.00%以上,由于小麥是六倍體,還產(chǎn)生了非整倍體。盡管如此,MTL/NLD/ZmPLA1在雙子葉植物中并不保守,且未在雙子葉植物中鑒定到ZmPLA1同源基因[32 - 33, 44" ],因此,基于PLA1基因的單倍體誘導系統(tǒng)難以在雙子葉植物中得到應用。
2.2" "DMP基因克隆及功能解析
玉米單倍體誘導系CAU5(具有qhir8位點)的HIR要高于CAUHOI(不存在qhir8位點),在qhir1存在時,qhir8可將HIR提高2~3倍[40 ]。Zhong等[45 ]利用圖位克隆鑒定到玉米DMP基因并利用CRISPR對其進行了功能驗證。結果表明,zmdmp突變體的HIR為0.1%~0.3%,且在zmpla1存在時,ZmDMP的敲除將HIR提高了5~6倍,這說明利用CRISPR對ZmDMP進行編輯可作為創(chuàng)制單倍體誘導系的一種新途徑。此外,該研究還發(fā)現(xiàn)ZmDMP和zmdmp具有相同的表達模式,均在花粉發(fā)育后期表達量較高,且其編碼蛋白都定位在質膜。系統(tǒng)發(fā)育分析表明,DMP在單子葉和雙子葉植物中都相當保守,序列同源性高達74%,而且DUF679結構域中4個跨膜結構域的氨基酸序列也相當保守[45 - 48 ],此外,ZmDMP-like基因的表達模式與ZmDMP一致,在花粉、雄蕊及花蕾等組織中的表達量相對較高,這為在雙子葉植物中建立DMP-HI系統(tǒng)提供了可能。
2020年Zhong等[48 ]在擬南芥中發(fā)現(xiàn),AtDMP8和AtDMP9功能缺失可誘導單倍體的產(chǎn)生,當以dmp8、dmp9和dmp8 dmp9突變株分別作為父本與野生型雜交時,dmp8(0.03%)和dmp9(0.40%)突變株的HIR明顯低于dmp8 dmp9(2.1%±1.1%)突變株。對單倍體植株進行重測序,經(jīng)染色體倍性和SNP分析,所有植株均為純粹的母本單倍體。此外,各類型突變體自交時,只有dmp8 dmp9突變株能誘導產(chǎn)生單倍體。隨后Zhong等[49 ]在異源多倍體甘藍型油菜和普通煙草中建立了基于DMP的母本單倍體誘導系統(tǒng),平均單倍體誘導率分別為2.4%和1.2%。同年,在豆科苜蓿、甘藍、異源四倍體煙草及馬鈴薯中也建立了DMP-HI系統(tǒng)[35 - 36, 50 - 51 ]。這些結果進一步證實了DMP基因在雙子葉植物中具有單倍體誘導能力,DMP-HI系統(tǒng)為加速這些作物育種進程提供了一種新的DH技術。該方法的成功以及DMP基因在雙子葉植物中的保守性,表明DMP-HI系統(tǒng)在其他雙子葉植物中具有廣泛的適用性。
在玉米中已經(jīng)證實了單受精和染色體消除是單倍體胚形成的重要原因[38, 52 - 53 ]。有研究表明,AtDMP8和AtDMP9對卵細胞-精子融合的促進作用大于對中心細胞-精子融合的促進作用,一個dmp8 dmp9突變的精細胞優(yōu)先與中心細胞融合,而另一個精細胞僅僅是附著在卵細胞上,卻無法完成受精,這說明中心細胞的受精與胚乳發(fā)育對產(chǎn)生可育的單倍體種子是必需的[46 - 48 ]。這些研究表明,DMP在雙受精中的功能是保守的,但對DMP誘導單倍體的機制還需要進一步解析。
3" "亞麻單倍體育種研究進展
亞麻單倍體最早于1933年由Kappert[54 ]發(fā)現(xiàn),1979年孫洪濤[55 ]首次在實驗室通過花藥培養(yǎng)獲得了亞麻單倍體植株。建立一種有效且成本較低的亞麻單倍體產(chǎn)生方法,是DH技術在亞麻育種實踐中進行應用的先決條件,而且單倍體和雙單倍體是亞麻細胞培養(yǎng)研究非常重要的材料。因此,國內外許多研究者對亞麻單倍體產(chǎn)生方法、影響因素等相關方面進行了全面系統(tǒng)地研究,并應用到了亞麻育種實踐中[56 - 57 ]。
目前,花藥培養(yǎng)是亞麻DH育種中應用最成功的方法,先后育成了Venica、雙亞13號等品種 [7, 58 ]。然而亞麻花藥培養(yǎng)具有很強的基因型依賴性,不同品種的花培反應能力具有顯著差異[59 ]。此外,亞麻花藥培養(yǎng)植株再生效率普遍較低,所以認為亞麻是一種具有花培抗性的作物[60 ]。除花藥培養(yǎng)之外,相繼通過小孢子培養(yǎng)、子房培養(yǎng)、雙胚亞麻獲得了亞麻單倍體植株[61 - 63 ]。小孢子培養(yǎng)比花藥培養(yǎng)難度更大[58 ],國內目前還沒有通過小孢子培養(yǎng)成功獲得亞麻單倍體的報道。通過對未受精子房進行培養(yǎng)也可產(chǎn)生亞麻單倍體植株,但子房培養(yǎng)也具有較強的基因型依賴性,Obert等[62 ]的研究中不同基因型愈傷組織誘導率為4%~64%。雙胚亞麻是產(chǎn)生亞麻單倍體的另一種方式,然而不同基因型間雙生胚產(chǎn)生頻率具有很大差異[63 - 65 ],要在育種中進行應用,需要將易產(chǎn)生雙生胚的材料與其他材料進行雜交,但這需要較長的育種周期。
4" "展望
將單倍體育種技術應用到亞麻育種中是培育優(yōu)良亞麻品種、加速亞麻育種進程的重要途徑。DMP-HI系統(tǒng)不依賴遺傳背景、能快速有效的產(chǎn)生單倍體,是目前應用潛力最大的獲得單倍體的方法。目前DMP-HI系統(tǒng)只在擬南芥、煙草、油菜、甘藍及馬鈴薯等極少數(shù)雙子葉植物中得到了應用[36, 48 - 50 ],亞麻中尚未有相關報道。因此明確DMP基因誘導亞麻單倍體的生物學功能、創(chuàng)制亞麻自有的活體單倍體誘導系并將其應用于亞麻育種具有重要的理論和實踐意義。
參考文獻:
[1] PENG T, SUN X, MUMM R H. Optimized breeding strategies for multiple trait integration: I. Minimizing linkage drag in single event introgression[J]." Molecular Breeding, 2014, 33(1): 89-104.
[2] CHANG M T, COE E H. In molecular genetic approaches to maize improvement(eds Kriz A L amp; Larkins B A)[M]." Heidelberg: Springer Berlin, 2009.
[3] FORSTER B, HEBERLEBORS E, KASHA K, et al. The resurgence of haploids in higher plants[J]." Trends in Plant Science, 2007, 12(8): 368-375.
[4] GUHA S, MAHESHWARI S C. In vitro production of embryos from anthers of Datura[J]." Nature, 1964, 204(4957): 497.
[5] MALUSZYNSKI M, KASHA K J, FORSTER B P, et al.Doubled haploid production in crop plants: A manual[M]." Dordrecht: Kluwer Springer, 2003.
[6] FORSTER B P, THOMAS W T." Doubled haploids in genetics and plant breeding[J]." Plant Breeding Reviews, 2005, 25: 57-88.
[7] 宋淑敏." 亞麻新品種“雙亞13號”的選育[J]. 中國麻業(yè)科學,2008,30(4):197-198.
[8] THOMPSON K F. Cytoplasmic male-sterility in oil-seed rape[J]." Heredity, 1972, 29(2): 253-257.
[9] KALINOWSKA K, CHAMAS S, UNKEL K, et al. State-of-the-art and novel developments of in vivo haploid technologies[J]." Theoretical and Applied Genetics, 2019,
132(3): 593-605.
[10] ZOHARY D." Monophyletic vs. polyphyletic origin of the crops on which agriculture was founded in the near east[J]." Genetic Resources amp; Crop Evolution, 1999, 46: 133-142.
[11] GOYAL A, SHARMA V, UPADHYAY N, et al. Flax and flaxseed oil: an ancient medicine amp; modernfunctional food[J]." Journal of Food Science and Technology, 2014, 51(9): 1633-1653.
[12] TOLKACHEV O N, ZHUCHENKO A A. Biologically active substances of flax: Medicinal and nutritional properties[J]." Pharmaceutical Chemistry Journal, 2000, 34(7): 360-367.
[13] Food and Agriculture Organization of the United Nations Database[EB/OL]. (2020-10-15). http://www.fao.org/faostat/en/#home.
[14] SAVIN F, DECABLE V, LE C M, et al. The X-ray detection of haploid embryos arisen in muskmelon (Cucumis melo L.) seeds and resulting from a parthenogenetic development induced byirradiated pollen[J]." Cucurb Coop Reports, 1988, 11: 36-40.
[15] 胡道芬,湯云蓮,袁振東,等." 冬小麥花粉孢子體的誘導及“京花1號”的育成[J]." 中國農(nóng)業(yè)科學,1983,16(1):29-35.
[16] LICHTER R." Induction of haploid plants from isolatedpollen of Brassica napus[J]." Zeitschrift Für Pflanzenphysiologie, 1982, 105(5): 427-434.
[17] 杭" "玲,盧衛(wèi)山,羅毓喜." 玉米花培雜交種桂花1號和桂三1號的選育及其利用[J]." 廣西農(nóng)業(yè)科學,1991(4):149-151.
[18] KOHLER F, WENZEL G. Regeneration of isolated barley microspores in conditioned media and trials to characterize the responsible factor[J]." Journal of Plant Physiology, 1985, 121(2): 181-191.
[19] CHOM M S, ZAPATA F J." Callus formation and plant regeneration on isolated pollen culture of rice (Oryza sativa L. cv. Taipei309)[J]." Plant Science, 1988, 58: 239-244.
[20] SATO T, NISHIO T, HIRAI M." Plant regeneration from isolated microspore cultures of Chinese cabbage (Brassica campestris spp. Pekinensis)[J]." Plant Cell Reports, 1989, 8(8): 486-488.
[21] SAN N L H." Haploides of Hordeum vulgare L. from in vitro culture of unfertilized ovaries[J]." Annales de Amelioration des Plantes, 1976, 26: 751-754.
[22] XU Y. Molecular plant breeding[M]." Wallingford, UK: Centre for Agriculture and Biosciences International, 2010.
[23] DWIVEDI S L, BRITT A B, TRIPATHI L, et al." Haploids: constraints and opportunities in plant breeding[J]. Biotechnology Advances, 2015, 33: 812-829.
[24] 雷" "春,陳勁楓,錢春桃,等." 輻射花粉授粉培育單倍體黃瓜研究[J]." 中國農(nóng)業(yè)科學,2006,39(7):1428-1436.
[25] 趙佐宇,明" "光." 藥物誘導玉米孤雌生殖獲得二倍體純系[J]." 遺傳學報,1984,11(1):39-46.
[26] 孫耀中,董洪平." 在隔離區(qū)用藥物誘導顯性核不育小麥孤雌生殖的研究[J]." 華北農(nóng)學報,1995,10(1):11-16.
[27] ZENKTELER N W." Hybridization experiments in cereals[J]." Theoretical and Applied Genetics, 1984, 68(4):311-315.
[28] LAURIE D A, BENNETT M D." Cytological evidence for fertilization in haploid wheat×sorghumcrosses[J]." Plant Breeding Reviews, 1988, 10: 73-82.
[29] BARLY I R." High frequencies of hold production in wheat by chromosome eliminiation[J]." Nature, 1975, 256: 410-411.
[30] COE E H. A line of maize with high haploid frequency[J]." The American Naturalist, 1959, 93(873): 381-382.
[31] ROBER F K, GORDILLO G A, GEIGER H H. In vivo haploid induction in maize-performance of new inducers and significance of doubled haploid lines in hybrid breeding[J]." Maydica, 2005, 50: 275-283.
[32] YAO L, ZHANG Y, LIU C, et al. OsMATL mutation induces haploid seed formation in indica rice[J]." Nature Plants, 2018, 4(8): 530-533.
[33] LIU C, ZHONG Y, QI X, et al." Extension of the in vivo haploid induction system from maize to hexaploid wheat[J]." Plant Biotechnology Journal, 2020, 18(2): 316-318. [34] ZHONG Y, WANG Y, CHEN B, et al. Establishment of a dmp based maternal haploid induction system for polyploid Brassica napus and Nicotiana tabacum[J]." Journal of Integrative Plant Biology, 2022, 64(6):1281-1294.
[35] WANG N, XIA X, JIANG T, et al. In planta haploid induction by genome editing of DMP in the model legume Medicago truncatula[J]." Plant Biotechnology Journal, 2022, 20(1): 22-24.
[36] ZHANG J, YIN J, LUO J, et al." Construction of homozygous diploid potato through maternal haploid induction[J]." Abiotech, 2022, 3(3): 163-168.
[37] WANG B, ZHU L, ZHAO B, et al. Development of a haploid-inducer mediated genome editing (IMGE) system for accelerating maize breeding[J]." Molecular Plant, 2019, 12(4): 597-602.
[38] KELLIHER T, STARR D, SU X, et al. One-step genome editing of elite crop germplasm during haploid induction[J]." Nature Biotechnology, 2019, 37(3): 287-292.
[39] HOUGAS R W, PELOQUIN S J. A haploid plant of the potato variety Katahdin[J]." Nature, 1957, 180(4596): 1209-1210.
[40] DONG X, XU X, MIAO J, et al. Fine mapping of qhir1 infuencing in vivo haploid induction in maize[J]." Theoretical and Applied Genetics, 2013, 126: 1713-1720.
[41] LIU C, LI W, ZHONG Y, et al. Fine mapping of qhir8 affecting in vivo haploid induction in maize[J]." Theoretical and Applied Genetics, 2015, 128(12): 2507-2515.
[42] LIU C, LI X, MENG D, et al." A 4-bp insertion at ZmPLA1 encoding a putative phospholipase a generates haploid induction in maize[J]." Molecular Plant, 2017, 10(3): 520-522.
[43] GILLES L M, KHALED A, LAFFAIRE J B, et al." Loss of pollen-specifific phospholipase NOT LIKE DAD triggers gynogenesis in maize[J]." The EMBO Journal, 2017, 36(6): 707-717.
[44] KELLIHER T, STARR D, RICHBOURG L, et al. MATRILINEAL, a sperm-specifific phospholipase, triggers maize haploid induction[J]." Nature, 2017, 542(7639): 105-109.
[45] ZHONG Y, LIU C, QI X, et al." Mutation of ZmDMP enhances haploid induction in maize[J]." Nature Plants, 2019, 5(6): 575-580.
[46] TAKAHASHI T, MORI T, UEDA K, et al." The male gamete membrane protein DMP9/DAU2 is required for double fertilization in fowering plants[J]." Development, 2018, 145(23): dev170076.
[47] CYPRYS P, LINDEMEIER M, SPRUNCK S. Gamete fusion is facilitated by two sperm cell-expressed DUF679 membrane proteins[J]." Nature Plants, 2019, 5(3): 253-257.
[48] ZHONG Y, CHEN B, LI M, et al. A DMP-triggered in vivo maternal haploid induction system in the dicotyledonous Arabidopsis[J]." Nature Plants, 2020, 6(5): 466-472.
[49] ZHONG Y, WANG Y, CHEN B, et al. Establishment of a dmp based maternal haploid induction system for polyploid Brassica napus and Nicotiana tabacum[J]. Journal of Integrative Plant Biology, 2022, 64(6): 1281-1294.
[50] ZHAO X, YUAN K, LIU Y, et al. In vivo maternal haploid induction based on genome editing of DMP in Brassica oleracea[J]." Plant Biotechnology Journal, 2022, 20(12): 2242-2244.
[51] ZHANG X, ZHANG L, ZHANG J, et al." Haploid induction in allotetraploid tobacco using DMPs mutation[J]." Planta, 2022, 255(5): 98.
[52] ZHAO X, XU X, XIE H, et al. Fertilization and uniparental chromosome elimination during crosses with maize haploid inducers[J]." Plant Physiology, 2013, 163(2): 721-731.
[53] TIAN X, QIN Y, CHEN B, et al." Hetero-fertilization together with failed egg-sperm cell fusion supports single fertilization involved in in vivo haploid induction in maize[J]." Journal of Experimental Botany, 2018, 69(20):" 4689-4701.
[54] KAPPERT H. Erbliche polyembryonie bei Linum usitatissimum L[J]." Biology Zentbl, 1933, 53: 276-307.
[55] 孫洪濤." 亞麻( Linum usitatissimum)花藥培養(yǎng)研究初報[J]." 科學通報,1979,24(20):948-950.
[56] FRIEDT W, BICKERT C, SCHAUB H. In vitro breeding of high-linolenic, doubled haploid lines of linseed (Linum usitatissimum L.) via androgenesis[J]." Plant Breeding Reviews, 1995, 114(4): 322-326.
[57] OBERT B, ZACKOVA"Z, SAMAJ J, et al. Doubled haploid production in flax (Linum usitatissimum L.)[J]." Biotechnology Advances, 2009, 27(4): 371-375.
[58] TEJKLOVA E. Some factors affecting anther culture in Linum usitatissimum L[J]." Rostlinna Vyroba, 1996, 42: 249-260.
[59] CHEN Y, KENASCHUK E, DRIBNENKI P. Response of flax genotypes to doubled haploid production[J]." "Plant cell, tissue and organ culture, 1999, 57: 195-198.
[60] SPIELMEYER W, LAGUDAH E S, MENDHAM N, et al. Inheritance of resistance to flax wilt (Fusarium oxysporum f. Sp. lini Schlecht) in a doubled haploid population of Linum usitatissimum L[J]." Euphytica, 1998, 101: 287-291.
[61] STEISS R, SCHUSTER A, FRIEDT W." Development of linseed for industrial purposes via pedigree-selection and haploid-technique[J]." Industrial Crops amp; Products, 1998, 7: 303-309.
[62] OBERT B, BARTOSOVA Z, PRETOVA A. Dihaploid production in flax by anther and ovary cultures[J]." Journal of Natural Fibers, 2005, 1(3): 1-14.
[63] NICHTERLEIN K, HORN R. Haploids in the improvement of linaceae and asteraceae haploids[M]." Berlin: Springer, 2005.
[64] 郭" "亮,趙愛萍." 亞麻葉中活性物質提取工藝優(yōu)化研究[J]." 寒旱農(nóng)業(yè)科學,2023,2(6):553-557.
[65] 侯靜靜,趙" "利,王" "斌." 亞麻FAD基因家族的生物信息學鑒定分析[J]." 寒旱農(nóng)業(yè)科學,2023,2(3):246-253.