摘要 鎘(Cd)污染是全球面臨的嚴(yán)重環(huán)境問(wèn)題,對(duì)人類健康和生態(tài)系統(tǒng)構(gòu)成威脅。探討了植物對(duì)Cd脅迫的分子響應(yīng)機(jī)制,特別是水稻作為重要糧食作物對(duì)Cd的吸收、轉(zhuǎn)運(yùn)和耐受性。研究表明,Cd主要通過(guò)植物根系吸收進(jìn)入體內(nèi),并在根部積累,有部分轉(zhuǎn)運(yùn)到地上部分。植物體內(nèi)的Cd主要通過(guò)OsNramp5、OsIRT1、OsHMA3、OsHMA2等轉(zhuǎn)運(yùn)蛋白進(jìn)行吸收和轉(zhuǎn)運(yùn)。轉(zhuǎn)錄因子如WRKY、ERF、HSF、NAC和MYB家族成員在Cd脅迫下調(diào)節(jié)相關(guān)基因表達(dá),影響植物對(duì)Cd的吸收和耐性。此外,植物激素和小分子效應(yīng)物如生長(zhǎng)素、茉莉酸、脫落酸、水楊酸等在Cd脅迫響應(yīng)中起到調(diào)控作用。含巰基分子如谷胱甘肽、植物螯合肽和金屬硫蛋白在Cd解毒中發(fā)揮關(guān)鍵作用??寡趸到y(tǒng),包括抗氧化酶和非酶促系統(tǒng),有助于植物抵御Cd引起的氧化應(yīng)激。為理解植物對(duì)Cd脅迫的分子機(jī)制提供了重要信息,并為開(kāi)發(fā)低Cd積累作物品種提供了理論基礎(chǔ)。
關(guān)鍵詞 鎘污染;分子機(jī)制;轉(zhuǎn)運(yùn)蛋白;轉(zhuǎn)錄因子;植物激素;抗氧化系統(tǒng);水稻
中圖分類號(hào) Q943" 文獻(xiàn)標(biāo)識(shí)碼 A" 文章編號(hào) 0517-6611(2025)03-0001-09
doi:10.3969/j.issn.0517-6611.2025.03.001
開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):
Research Progress on the Molecular Mechanism of Plant Response to Cadmium Stress
CHEN Jin fen, HU Shu bao, QIN Yi ming et al
(College of Life Sciences, Anqing Normal University / Province Key laboratory of the Biodiversity Study and Ecology Conservation in Southwest Anhui, Anqing, Anhui 246133)
Abstract Cadmium (Cd) pollution poses a severe global environmental challenge, threatening human health and ecosystems. This paper explores the molecular response mechanisms of plant responses to Cd stress, with a focus on rice as a crucial food crop, examining its absorption, translocation, and tolerance to Cd. Studies indicate that Cd primarily enters the plant body through the roots, where it accumulates, with only a small fraction being transported to the aerial parts. The absorption and translocation of Cd within plants are mainly facilitated by transporters such as OsNramp5, OsIRT1, OsHMA3, and OsHMA2. Transcription factors from the WRKY, ERF, HSF, NAC, and MYB families regulate gene expression under Cd stress, affecting plant absorption and tolerance to Cd. Additionally, plant hormones and small molecular effectors, including auxin, jasmonic acid, abscisic acid, and salicylic acid, play regulatory roles in the response to Cd stress. Thiol containing molecules like glutathione, phytochelatins, and metallothioneins are crucial for Cd detoxification in plants. The antioxidant system, comprising enzymatic and non enzymatic components, helps plants combat oxidative stress induced by Cd. This paper provides essential insights into the molecular mechanisms of plant response to Cd stress and lays a theoretical foundation for developing rice varieties with low Cd accumulation.
Key words Cadmium pollution;Molecular mechanisms;Transport proteins;Transcription factors;Plant hormones;Antioxidant system;Rice
基金項(xiàng)目 皖西南生物多樣性研究與生態(tài)保護(hù)安徽省重點(diǎn)實(shí)驗(yàn)室項(xiàng)目(FCZ202001001)。
作者簡(jiǎn)介 陳瑾芬(1998—),女,云南紅河人,碩士研究生,研究方向:植物生態(tài)學(xué)。
*通信作者,教授,從事植物生態(tài)學(xué)研究。
收稿日期 2024-03-26;修回日期 2024-06-06
鎘(cadmium,Cd)污染已成為全球面臨的一項(xiàng)嚴(yán)峻環(huán)境問(wèn)題,對(duì)人類健康及生態(tài)系統(tǒng)構(gòu)成了嚴(yán)重威脅[1]。作為環(huán)境中的主要污染源之一,Cd釋放主要源于工業(yè)采礦、農(nóng)業(yè)化肥使用以及城市生活污水排放等活動(dòng)[2]。在土壤和水環(huán)境中,Cd以多種形態(tài)存在,如游離態(tài)、無(wú)機(jī)絡(luò)合態(tài)或與有機(jī)物結(jié)合態(tài);在植物體內(nèi),Cd主要以無(wú)機(jī)離子形式、磷酸鹽絡(luò)合物以及與果膠和蛋白質(zhì)結(jié)合的形式進(jìn)行累積[3-4]。研究數(shù)據(jù)顯示,自1990年以來(lái),中國(guó)土壤中Cd含量呈現(xiàn)出顯著的上升趨勢(shì),特別是在農(nóng)田和城市周邊地區(qū),其含量大幅增加,暗示著環(huán)境風(fēng)險(xiǎn)正逐步加劇[5-6]。
Cd生物累積特性導(dǎo)致其能夠在食物鏈中逐級(jí)富集,進(jìn)而威脅人類健康[2]。而作為一種劇毒重金屬,Cd在人體內(nèi)的半衰期長(zhǎng)達(dá)20~30 a。長(zhǎng)期接觸高濃度Cd的人群可能會(huì)受到包括呼吸系統(tǒng)損害、腎臟功能障礙、免疫功能低下、代謝失調(diào)、骨質(zhì)疏松癥以及內(nèi)分泌系統(tǒng)紊亂等多種傷害[1,7]。研究表明,日本“痛痛病”是由于攝入了受Cd污染的稻米而引發(fā)的一種骨質(zhì)軟化癥狀[8]。此外,Cd對(duì)遺傳物質(zhì)具有致突變性,能夠?qū)е氯思?xì)胞和酵母中DNA錯(cuò)配修復(fù)機(jī)制的失效,從而增加罹患癌癥的風(fēng)險(xiǎn)[9]。即便是長(zhǎng)期接觸低濃度Cd,也可能導(dǎo)致其在乳腺細(xì)胞中的積累[10]。特別是,研究發(fā)現(xiàn)女性吸煙者的卵巢卵泡液中Cd濃度升高,這可能會(huì)毒害女性生殖細(xì)胞[11]。
在植物體內(nèi),基因表達(dá)調(diào)控對(duì)于響應(yīng)環(huán)境脅迫、控制代謝途徑和防御病原體侵襲等方面起著至關(guān)重要的作用[7]。已有研究揭示,Cd脅迫能夠干擾植物對(duì)多種必需元素(Ca、Zn、Fe、Mn等)的吸收與轉(zhuǎn)運(yùn),這些植物包括擬南芥[Arabidopsis thaliana(L.)Heynh]、水稻(Oryza sativa L.)和小麥(Triticum aestivum L.)[1,12-13]。然而,植物在轉(zhuǎn)錄水平上如何調(diào)節(jié)對(duì)Cd脅迫的響應(yīng)機(jī)制尚不完全明了[7]。深入探究植物對(duì)Cd積累過(guò)程及其調(diào)控機(jī)制對(duì)于保護(hù)人類健康、開(kāi)發(fā)植物修復(fù)Cd污染土壤的策略具有至關(guān)重要的意義。這些機(jī)制的闡明不僅深化了人們對(duì)植物體內(nèi)金屬離子平衡調(diào)控機(jī)制的認(rèn)識(shí),而且為開(kāi)發(fā)高效的生物技術(shù)手段以去除土壤中的重金屬污染提供了堅(jiān)實(shí)的理論支撐。進(jìn)一步地,這些研究成果對(duì)于指導(dǎo)抗重金屬污染農(nóng)作物品種的選育具有重要的指導(dǎo)意義,有助于提升農(nóng)作物對(duì)重金屬脅迫的適應(yīng)能力和耐受性,從而增強(qiáng)食品安全性,保障公眾健康。
1 Cd脅迫對(duì)植物的影響
Cd脅迫作為一種重要的非生物脅迫因素,會(huì)對(duì)植物的生長(zhǎng)發(fā)育造成顯著不良影響。Cd毒害的具體表現(xiàn)為葉綠素含量下降、葉片發(fā)黃、生長(zhǎng)速度減緩以及產(chǎn)量降低等癥狀[11]。Cd在植物體內(nèi)的分布和定位因植物種類及其生長(zhǎng)階段的不同而存在差異。植物如水稻通過(guò)細(xì)胞壁中Cd的沉積等機(jī)制來(lái)限制Cd進(jìn)入細(xì)胞質(zhì)[14]。此外,Cd脅迫還會(huì)導(dǎo)致植物細(xì)胞內(nèi)產(chǎn)生過(guò)量的活性氧,這些活性氧會(huì)破壞很多生物活性大分子如DNA和蛋白質(zhì)的結(jié)構(gòu),進(jìn)而對(duì)植物的代謝和生理功能造成不利的影響[15]。Cd還可能干擾植物對(duì)Zn和Fe等營(yíng)養(yǎng)元素的吸收與利用,抑制植物的正常生長(zhǎng)[16]。深入理解Cd在植物體內(nèi)的積累機(jī)制對(duì)于制定有效的環(huán)境保護(hù)策略和提升食品安全至關(guān)重要。
2 植物Cd的吸收與轉(zhuǎn)運(yùn)
Cd主要通過(guò)植物根的吸收進(jìn)入植物體,而大部分Cd被截留在根中,只有一小部分Cd被轉(zhuǎn)運(yùn)到地上部分[17-18]。相對(duì)于其他重金屬如Cu、Pb、Zn,Cd更容易被植物的根系吸收[19]。植物中參與Cd吸收與轉(zhuǎn)運(yùn)過(guò)程的轉(zhuǎn)運(yùn)體有很多種,包括OsNramp5(Oryza sativa natural resistance-associated macrophage protein 5)、OsHMA3(Oryza sativa P1B-type heavy metal ATPases3)、OsHMA2(Oryza sativa P1B-type heavy metal ATPases2)和OsLCT1(Oryza sativa low-affinity cation transporter 1)等[20-24]。
2.1 OsNramp5
OsNramp5是水稻Mn,Cd和Pb吸收的主要轉(zhuǎn)運(yùn)體[21]。OsNramp5在水稻根中組成型表達(dá),編碼一個(gè)細(xì)胞質(zhì)膜定位的蛋白。OsNramp5主要定位于水稻根的內(nèi)皮層和外皮層的細(xì)胞外側(cè)。在Mn供應(yīng)不足條件下,OsNramp5敲除會(huì)導(dǎo)致水稻生長(zhǎng)受抑制和產(chǎn)量降低。吸收動(dòng)力學(xué)試驗(yàn)顯示,OsNramp5轉(zhuǎn)運(yùn)體對(duì)Cd吸收的米氏常數(shù)(Michaelis constant,Km)為0.38 μmol/L遠(yuǎn)低于對(duì)Mn吸收Km 1.08 μmol/L。這暗示著OsNramp5轉(zhuǎn)運(yùn)體對(duì)Cd比對(duì)Mn具有更高的親和性[21]。日本研究人員利用碳離子束輻照誘變?cè)焦馑荆╧oshihikari rice)品種選育出稻米中幾乎不含Cd的突變體,后經(jīng)過(guò)遺傳鑒定發(fā)現(xiàn)為OsNramp5基因第九號(hào)外顯子一個(gè)單堿基對(duì)的缺失突變所致。并且該突變體材料的農(nóng)藝性狀與野生型水稻相比并沒(méi)有顯著性差異[25]。利用Crispr/Cas9技術(shù)敲除秈稻品種(華占和隆科638S)中OsNramp5基因,可以在不損失產(chǎn)量的情況下降低水稻的Cd積累[26]。盡管敲除OsNramp5基因可以顯著地降低水稻籽粒中Cd含量,但種植前需要謹(jǐn)慎考慮農(nóng)田土壤pH和含水量,因?yàn)檫@可能會(huì)影響到產(chǎn)量[27]。在大麥(Hordeum vulgare)中,HvNRAMP5亦顯示出吸收Cd和Mn的能力[28]。水稻比其他禾本科農(nóng)作物吸收Cd的能力更強(qiáng),也是由于水稻中OsNramp5的表達(dá)水平更高,其蛋白對(duì)Cd的轉(zhuǎn)運(yùn)能力更強(qiáng)[29]。然而,用組成型表達(dá)基因(OsActin1和玉米Ubiquitin)的啟動(dòng)子在水稻中過(guò)表達(dá)OsNramp5,會(huì)增強(qiáng)根中Mn和Cd的吸收,并顯著降低水稻地上部分和籽粒中Cd的含量。OsNramp5過(guò)表達(dá)植株由于其向中柱的徑向運(yùn)輸受到干擾,導(dǎo)致從根部到地上部分的Cd轉(zhuǎn)運(yùn)減少,這一結(jié)果表明了OsNramp5轉(zhuǎn)運(yùn)蛋白的定位和極性對(duì)Cd的吸收與轉(zhuǎn)運(yùn)影響較大。Liu等[30]研究發(fā)現(xiàn),低Cd積累品種湘晚秈12號(hào)(Xiangwanxian No.12)通過(guò)在關(guān)鍵部位(如節(jié)點(diǎn)I和穗節(jié))維持OsNramp5和OsIRT1基因的低表達(dá)水平來(lái)限制Cd的吸收,而高Cd積累品種玉針香(Yuzhenxiang)則通過(guò)下調(diào)節(jié)點(diǎn)I中OsNramp5的表達(dá)來(lái)減少Cd的攝取。這種表達(dá)差異可能構(gòu)成了兩個(gè)品種Cd積累差異的分子基礎(chǔ),從而凸顯了OsNramp5和OsIRT1在植物應(yīng)對(duì)Cd脅迫中的重要作用。
2.2 OsHMA3和OsHMA2
P1b型重金屬ATP酶家族(P1B-type heavy metal ATPases,HMAs)是重金屬跨膜的外排轉(zhuǎn)運(yùn)蛋白,被分為2個(gè)亞組:Cu/Ag亞群和Zn/Co/Cd/ Pb亞群[31]。其中OsHMA1~OsHMA3屬于Zn/Co/Cd/Pb亞群,OsHMA2是OsHMA3的近同源物[23,31]。OsHMA3會(huì)影響水稻的Cd轉(zhuǎn)運(yùn)量和地上部分Cd的積累。研究發(fā)現(xiàn),OsHMA3是水稻地上部分和籽粒中Cd濃度的主要QTL和響應(yīng)基因[32]。OsHMA3蛋白中氨基酸替換使得其功能散失,限制液泡Cd隔離,導(dǎo)致細(xì)胞質(zhì)Cd濃度上升,進(jìn)而促進(jìn)Cd向木質(zhì)部和地上部分轉(zhuǎn)運(yùn)[33]。OsHMA3在水稻中嘉早17品種(Zhongjiazao 17)過(guò)表達(dá)顯著降低Cd從根部望地上部轉(zhuǎn)移,并增加了植株對(duì)Cd的耐受性[34]。有報(bào)道稱,OsHMA3啟動(dòng)子序列變異的QTL GCC7是控制9311和PA64s之間差異粒Cd積累的重要決定因素[35]。研究證實(shí),粳稻OsHMA3-OsNramp5-OsNramp1片段可降低秈稻Cd積累,改良9311品種顯著減少稻米Cd含量,不影響產(chǎn)量。所鑒定的新OsHMA3等位基因OsNramp1和OsNramp5在根部的表達(dá)差異與粳稻和秈稻Cd積累差異相關(guān)[36]。OsHMA3編碼序列在水稻品種間存在不同的等位基因,而多個(gè)等位基因的Cd轉(zhuǎn)運(yùn)活性較弱或失活,導(dǎo)致水稻更容易將Cd從根部運(yùn)輸?shù)缴喜拷M織和籽粒,增加了Cd的積累[22,32,37]。OsHMA3功能缺失會(huì)導(dǎo)致水稻地上部分和籽粒中Cd含量增加[38-39]。在水稻中過(guò)表達(dá)OsHMA3可以減少籽粒中九成以上Cd的積累[38]。OsHMA2在維管束中高表達(dá),負(fù)責(zé)將Cd和Zn從根部轉(zhuǎn)運(yùn)至地上部分。OsHMA2對(duì)Cd在木質(zhì)部的裝載起到關(guān)鍵作用,其功能缺失會(huì)導(dǎo)致地上部分和籽粒中Cd濃度降低。然而,過(guò)表達(dá)OsHMA2基因會(huì)導(dǎo)致水稻地上部分和籽粒中Cd的含量顯著降低[23]。OsHMA2突變會(huì)影響Zn向生長(zhǎng)點(diǎn)轉(zhuǎn)運(yùn),降低籽粒產(chǎn)量[40]。表明OsHMA2在整個(gè)植物的所有生長(zhǎng)和發(fā)育階段的Cd/Zn運(yùn)輸中發(fā)揮作用。此外,OsHMA2基因在Capataz水稻中的表達(dá)不受Cd脅迫影響,而在Beiraz水稻中則隨Cd濃度增加而表達(dá)上調(diào),表明在不同品種水稻中OsHMA2的表達(dá)模式存在差異[39]。
2.3 其他Cd相關(guān)的轉(zhuǎn)運(yùn)體
OsNramp1參與Cd和Mn等重金屬離子的吸收。敲除OsNramp1后,水稻根部對(duì)Cd和Mn的吸收顯著降低[41]。OsNramp2定位在液泡膜上,具有向液泡外轉(zhuǎn)運(yùn)Fe和Cd的能力。OsNramp2在種子萌發(fā)過(guò)程中重新動(dòng)員液泡Fe具有重要作用,并影響Cd從植物營(yíng)養(yǎng)組織向水稻籽粒的轉(zhuǎn)運(yùn)[42]。OsLCT1在水稻節(jié)的擴(kuò)散維管束中表達(dá),其功能缺失會(huì)降低木質(zhì)部汁液和種子中Cd的濃度[43]。在水稻細(xì)胞中,OsZIP1定位于質(zhì)膜和內(nèi)質(zhì)網(wǎng),其過(guò)表達(dá)能夠限制水稻體內(nèi)Zn、Cu和Cd的積累[44]。OsZIP3的過(guò)表達(dá)顯著降低了水稻根部和地上部分的Cd、Zn含量,而OsZIP7在Zn和Cd從木質(zhì)部轉(zhuǎn)運(yùn)至穗粒中起到關(guān)鍵作用[45-46]。OsLCD基因主要在根的維管組織中表達(dá),功能缺失會(huì)降低水稻籽粒中Cd積累[47]。在水稻中,對(duì)Cd處理后根部基因表達(dá)的分析揭示了金屬耐受蛋白OsMTP(monosaccharide transporters)在應(yīng)對(duì)Cd脅迫中扮演的關(guān)鍵角色[24]。
3 轉(zhuǎn)錄水平調(diào)控參與到植物應(yīng)對(duì)Cd脅迫過(guò)程
轉(zhuǎn)錄調(diào)控在植物響應(yīng)Cd脅迫的過(guò)程中起著至關(guān)重要的作用。相關(guān)研究成果逐漸揭示了植物應(yīng)對(duì)Cd脅迫所涉及的復(fù)雜轉(zhuǎn)錄調(diào)控網(wǎng)絡(luò)。在這一網(wǎng)絡(luò)中,轉(zhuǎn)錄因子作為調(diào)控植物生長(zhǎng)發(fā)育以及應(yīng)對(duì)非生物和生物脅迫的關(guān)鍵分子,發(fā)揮著核心作用[48]。特別是,WRKY、ERF和MTF等轉(zhuǎn)錄因子被證實(shí)參與了植物對(duì)重金屬的吸收、轉(zhuǎn)運(yùn)和耐受性的調(diào)控[49-51]。
3.1 WRKY家族
WRKY轉(zhuǎn)錄因子家族是植物中一個(gè)龐大的轉(zhuǎn)錄因子群體,它們?cè)谥参飸?yīng)對(duì)生物和非生物脅迫反應(yīng)中發(fā)揮核心作用[52]。根據(jù)其結(jié)構(gòu)特征,WRKY蛋白被分為3個(gè)類別:I類含有2個(gè)WRKY結(jié)構(gòu)域,II類和III類各含有一個(gè)WRKY結(jié)構(gòu)域。I類和II類WRKY蛋白含有C2H2型鋅指結(jié)構(gòu),而III類則含有C2HC型鋅指結(jié)構(gòu)[52-53]。WRKY轉(zhuǎn)錄因子通過(guò)識(shí)別并結(jié)合到含有TGAC核心序列的W-box元件,實(shí)現(xiàn)對(duì)下游目標(biāo)基因的調(diào)控[52]。在Cd脅迫條件下,AtWRKY12的表達(dá)受到抑制,而AtWRKY13的表達(dá)升高,后者通過(guò)上調(diào)AtPDR8(Arabidopsis thaliana pleiotropic drug resistance 8)的表達(dá),增強(qiáng)了植物對(duì)Cd的耐受性[54-55]。盡管AtWRKY12和AtWRKY13均屬于WRKY家族,但它們?cè)谏砉δ苌巷@示出相反的作用[49,55]。AtWRKY13還能夠激活D-半胱氨酸脫硫酶(D-cysteine desulfhydrase,DCD),不僅提升了植物對(duì)Cd的耐受性,也影響了Cu和Mg的代謝平衡,其中DCD是其直接調(diào)控靶標(biāo)。Cd誘導(dǎo)的WRKY13轉(zhuǎn)錄因子激活了DCD基因的表達(dá),增加了H2S的產(chǎn)生,提高了植物對(duì)Cd的耐受性[55]。
在擬南芥中,Arabidopsis Tóxicos en Levadura 31(ATL31)基因的突變導(dǎo)致植物對(duì)Cd的超敏反應(yīng)及Cd積累量的增加。AtWRKY33通過(guò)激活A(yù)TL31的轉(zhuǎn)錄,進(jìn)而促進(jìn)AtIRT1的降解,調(diào)控Cd的吸收。此外,AtWRKY33能夠直接結(jié)合到ATL31啟動(dòng)子區(qū)域的W-box(TTGACC)序列,激活A(yù)TL31的表達(dá)。WRKY33-ATL31-IRT1模塊在植物對(duì)Cd耐受性中起關(guān)鍵作用[56]。過(guò)表達(dá)AtWRKY45能增強(qiáng)植株對(duì)Cd的抗性,該基因缺失導(dǎo)致植株對(duì)Cd脅迫更敏感。AtWRKY45則通過(guò)與AtPCS2(Arabidopsis thaliana phytochelatins 2)啟動(dòng)子上的W-box1(TTGACT)區(qū)域結(jié)合,直接調(diào)控AtPCS2的表達(dá)。WRKY45轉(zhuǎn)錄因子則通過(guò)誘導(dǎo)PCS1與PCS2的轉(zhuǎn)錄和表達(dá)上調(diào),增強(qiáng)植物對(duì)Cd的耐受性和積累能力,同時(shí)也參與Fe的轉(zhuǎn)運(yùn),但其對(duì)其他金屬離子的影響尚不明確[57]。在小麥中,TaWRKY74通過(guò)調(diào)節(jié)TaNramp1、TaNramp5、TaIRT2、TaHMA2、TaHMA3和TaLCT1等一系列金屬轉(zhuǎn)運(yùn)蛋白基因的表達(dá),參與調(diào)控小麥對(duì)Cd的耐受性。TaWRKY74轉(zhuǎn)錄因子在小麥中的作用復(fù)雜,它既增強(qiáng)了植物對(duì)Cd脅迫的抗氧化能力,也使植物對(duì)Cd更敏感,這表明TaWRKY74在調(diào)節(jié)植物對(duì)Cd脅迫的反應(yīng)和基因表達(dá)中扮演著重要角色[58]。綜合上述研究,WRKY蛋白家族在植物應(yīng)對(duì)多種脅迫,包括在調(diào)節(jié)重金屬耐受性方面扮演著不可替代的角色。
3.2 ERF家族
AP2/ERF(APETALA2/ethylene-responsive element binding factors)轉(zhuǎn)錄因子家族是植物中一個(gè)重要的轉(zhuǎn)錄因子超家族,包括DREB(dehydration responsive element-binding)、ERF(ethylene-responsive-element-binding protein)、AP2(APETALA2)、RAV(related to ABI3/VP)和Soloists(few unclassified factors)5個(gè)亞家族,它們?cè)谥参飳?duì)干旱、乙烯響應(yīng)、花器官發(fā)育、種子發(fā)育以及其他未明確分類的功能中發(fā)揮作用[59]。AP2/ERF家族成員通常通過(guò)結(jié)合GCC-box啟動(dòng)子來(lái)調(diào)控基因表達(dá),但不同亞家族成員在激活程度上存在差異[60]。ERF轉(zhuǎn)錄因子根據(jù)其與順式作用元件的結(jié)合特性被分為兩類:一類與GCC盒結(jié)合,另一類與DRE//C-repeat element(CRT)結(jié)合。GCC盒主要存在于乙烯響應(yīng)基因的啟動(dòng)子中,而DRE/CRT則與低溫和干旱應(yīng)答基因相關(guān)[59]。Xie等[61]通過(guò)對(duì)擬南芥進(jìn)行正向遺傳篩選,發(fā)現(xiàn)ERF34和ERF35 2個(gè)轉(zhuǎn)錄因子能夠調(diào)節(jié)植物對(duì)Cd脅迫的敏感性。在菜豆(Phaseolus vulgaris)中,ERF家族成員PvERF104作為金屬響應(yīng)元件(metal-responsive element,MRE)結(jié)合的轉(zhuǎn)錄抑制因子,通過(guò)調(diào)節(jié)相關(guān)基因的表達(dá)來(lái)降低Cd敏感性,提高植物的Cd耐受性。PvERF104還可能通過(guò)調(diào)控MYBS1(MYB transcription factor gene)基因表達(dá)參與植物對(duì)Cd脅迫的適應(yīng)機(jī)制[62]。在擬南芥中,Cd或鹽等脅迫條件下誘導(dǎo)乙烯(ethylene,ET/ETH)和茉莉酸(jasmonic acid,JA)的產(chǎn)生,這些信號(hào)分子進(jìn)一步激活相應(yīng)的信號(hào)通路。ethylene insensitive3(EIN3)/ EIN3-like1(EIL1)作為ETH和JA信號(hào)通路的交匯點(diǎn),能夠調(diào)節(jié)下游效應(yīng)分子ERF,影響nitrate transporters(NRT)1.8的表達(dá)。同時(shí),EIN3/EIL1通過(guò)結(jié)合NRT1.5的啟動(dòng)子抑制其表達(dá),而JA信號(hào)通路中的COI1(coronatine insensitive1)參與NRT1.5的下調(diào)。這些調(diào)節(jié)機(jī)制通過(guò)改變硝酸鹽分布來(lái)適應(yīng)Cd脅迫條件[63]。研究發(fā)現(xiàn),在Cd脅迫下,水稻中編碼ERF的OsERF83以及編碼ZIP的OsbZIP49和OsbZIP17/ OsTGA4基因表達(dá)下調(diào)[7]。在馬鈴薯(Solanum tuberosum L.)中,StAP2/ERF基因家族共鑒定出181個(gè)基因,這些基因被分為3類:Cd積累型(CdD型)、Cd還原型(CdA型)和Cd解毒型(CdR型)。CdR型基因可能通過(guò)減少Cd吸收來(lái)抵抗Cd毒性[51]。此外,納米零價(jià)鐵(nZVI)通過(guò)激活番茄(Solanum lycopersicum L.)中SlERF1的表達(dá),提高了植物對(duì)Cd脅迫的耐受性[64]。硬粒小麥(Triticum turgidum L.subsp.durum)中SHINE型ERF轉(zhuǎn)錄因子1(SHINE-type ERF transcription factors,TdSHN1)在提高酵母和轉(zhuǎn)基因煙草對(duì)重金屬(Cd、Cu和Zn)耐受性方面也顯示出顯著效果[65]。綜上所述,ERF轉(zhuǎn)錄因子在植物應(yīng)對(duì)Cd脅迫中扮演著重要角色,這些研究成果為通過(guò)遺傳工程手段提高作物的Cd耐受性提供了潛在的分子靶點(diǎn)。
3.3 MTF家族
MTF-1(metal-responsive transcription factor-1)是一種在動(dòng)物中發(fā)現(xiàn)的MRE結(jié)合轉(zhuǎn)錄因子,具有6個(gè)Cys2-His2型鋅指結(jié)構(gòu),MTF-1能夠感應(yīng)細(xì)胞內(nèi)鋅離子的變化,并調(diào)節(jié)一系列涉及金屬代謝的基因表達(dá),如金屬硫蛋白(metallothioneins, MTs)基因。在鋅離子或氧化應(yīng)激條件下,MTF-1的活性增加,進(jìn)而增強(qiáng)其與MRE的結(jié)合能力,從而調(diào)控下游基因的表達(dá)[66]。隨著研究的深入,MTF-1在植物中也有被發(fā)現(xiàn),并且顯示出類似的功能,即參與植物對(duì)金屬脅迫的響應(yīng)和金屬離子的穩(wěn)態(tài)調(diào)控。菜豆PvMTF-1雖與動(dòng)物MTF-1序列相似性低,但功能上類似,具有鋅指結(jié)構(gòu),是一種新型的MRE結(jié)合轉(zhuǎn)錄因子,且有助于植物Cd耐受性[67]。Sun等[67]研究發(fā)現(xiàn),PvMTF-1是一種特異性結(jié)合到豆類植物ASA2(a feedback- insensitive form of anthranilate synthase)啟動(dòng)子MRE區(qū)域的核轉(zhuǎn)錄因子,能夠促進(jìn)色氨酸的合成,從而增強(qiáng)植物對(duì)Cd的耐受性,并且在Cd脅迫下其表達(dá)水平上調(diào)。Yang等[68]的研究進(jìn)一步揭示了PvMTF-1通過(guò)與MRE結(jié)合,增強(qiáng)PvSR2(phaseolus vulgaris stress-related gene 2)基因表達(dá),形成正向調(diào)控回路的機(jī)制。Wang等[69]研究表明,ACE(AC-rich element)作為一種新型的乙烯響應(yīng)因子結(jié)合元件(ethylene response factor,ERF),能夠促進(jìn)PvMTF-1的表達(dá),并在擬南芥中作為ET響應(yīng)元件(ethylene-responsive elements,ERE)發(fā)揮作用,從而賦予最小啟動(dòng)子對(duì)乙烯的響應(yīng)能力。ACE的核心序列對(duì)于核蛋白的結(jié)合至關(guān)重要,菜豆中的PvERF15和PvMTF-1在ET誘導(dǎo)下受到ACE激活,提供了新的遺傳和生化證據(jù)。Lin等[51]的研究揭示了ACE在豆類植物中通過(guò)與PvERF15結(jié)合來(lái)增強(qiáng)PvMTF-1表達(dá)的機(jī)制,并在擬南芥中表現(xiàn)為功能性的ERE。MTF及其在植物中的同源物在響應(yīng)金屬脅迫和調(diào)節(jié)金屬離子穩(wěn)態(tài)中發(fā)揮著重要作用,增強(qiáng)植物對(duì)金屬脅迫的耐受性。
3.4 HSF家族
熱休克轉(zhuǎn)錄因子(heat shock transcription factor,HSF)家族在植物對(duì)多種非生物脅迫的響應(yīng)中扮演著關(guān)鍵角色,通過(guò)調(diào)節(jié)熱休克蛋白(heat shock proteins,HSPs)等脅迫響應(yīng)基因的表達(dá)來(lái)增強(qiáng)植物的適應(yīng)性[70-71]。在擬南芥中,HSF家族成員根據(jù)其結(jié)構(gòu)和功能特性被分為HsfA、HsfB和HsfC 3個(gè)亞家族[72]。HsfA1與HsfA2之間的相互作用對(duì)于HSPs基因家族,如HSP70和HSP90的表達(dá)調(diào)控至關(guān)重要[73]。在Cd脅迫條件下,HsfA1a-HsfA1亞家族的一個(gè)變體能夠激活COMT1(O-methyltransferase 1)基因,促進(jìn)褪黑激素的合成。褪黑激素的產(chǎn)生有助于調(diào)控谷胱甘肽(GSH)和PC的合成,進(jìn)而促使Cd被運(yùn)輸至液泡中隔離,以減輕其毒性影響[70,73]。在小麥和水稻等其他植物中,HsfA4a通過(guò)調(diào)節(jié)下游靶基因的表達(dá)參與對(duì)Cd的應(yīng)答。金屬硫蛋白(metallothioneins,MT)基因是HsfA4a的潛在靶標(biāo)之一,由于金屬硫蛋白能夠有效地與Cd和Cu形成螯合物,而對(duì)其他重金屬如Pb和Hg的解毒作用相對(duì)有限[74]。因此,HsfA4a主要影響植物對(duì)Cd和Cu的耐受性,而對(duì)其他重金屬的耐受性影響較小。Chen等[75]發(fā)現(xiàn),景天(Sedum alfredii)中的SaHsfA4c的過(guò)表達(dá)可在酵母中增強(qiáng)Cd耐受性,得益于其在細(xì)胞核的正確定位。這些發(fā)現(xiàn)揭示了HSF家族成員在植物重金屬解毒機(jī)制中的重要作用,并為通過(guò)基因工程手段提高作物對(duì)重金屬污染的耐受性提供了潛在的策略。
3.5 NAC家族
NAC轉(zhuǎn)錄因子家族(NAM、ATAF、CUC)是植物特有的一類多功能基因家族,其成員在植物發(fā)育和多種生物學(xué)過(guò)程中發(fā)揮關(guān)鍵作用。這些轉(zhuǎn)錄因子的N端包含一個(gè)約150氨基酸的高度保守的NAC DNA結(jié)合域以及核定位信號(hào)[73]。NAC基因最初在矮牽牛和擬南芥中的NAM、CUC1/2、ATAF1/2基因中被鑒定,它們主要參與調(diào)控花原基與子葉原基邊界的細(xì)胞分化[76]。在水稻中,OsNAC300基因在Cd脅迫下主要在根部和成熟韌皮部表達(dá),而OsNAC300的敲除導(dǎo)致水稻對(duì)Cd的敏感性增加。此外,Zhan等[46]研究發(fā)現(xiàn),OsNAC15的敲除降低了水稻的Zn耐受性和Cd耐受性,揭示了OsNAC15在調(diào)節(jié)水稻中Zn和Cd積累及其在根與莖間轉(zhuǎn)運(yùn)中的重要作用。通過(guò)酵母單雜交技術(shù)發(fā)現(xiàn),CATGTG序列并非OsNAC15的順式調(diào)控元件。實(shí)際上,OsNAC15能夠識(shí)別并結(jié)合到OsZIP7和OsZIP10啟動(dòng)子中的Zn缺乏響應(yīng)元件(zinc deficiency response element,ZDRE),從而調(diào)控植物對(duì)缺Zn和Cd脅迫的耐受性。進(jìn)一步的研究表明,SNAC1轉(zhuǎn)錄因子在協(xié)調(diào)Cd耐受性方面發(fā)揮作用,與MAPK(mitogen-activated protein kina)信號(hào)傳導(dǎo)級(jí)聯(lián)中的關(guān)鍵基因OsMKK1、OsMKK6和OsMPK3相互作用,這些基因是SNAC1的下游靶標(biāo)。在擬南芥中,AtNAC102轉(zhuǎn)錄因子通過(guò)調(diào)節(jié)WAKL11(walls are thin like 11)基因的表達(dá)和果膠降解過(guò)程,增強(qiáng)了植物對(duì)Cd的耐受性[13]。在小麥中,TaNAC22定位于細(xì)胞核,并通過(guò)增強(qiáng)抗氧化防御機(jī)制,其過(guò)表達(dá)顯著提升了小麥對(duì)Cd脅迫的耐受性,表明其為關(guān)鍵的正向調(diào)節(jié)因子[77]。這些研究成果凸顯了NAC轉(zhuǎn)錄因子家族在植物響應(yīng)Cd脅迫中的重要性,并為通過(guò)基因工程手段提高作物對(duì)重金屬脅迫的耐受性提供了潛在的分子靶點(diǎn)。
3.6 MYB家族
MYB(myeloblastosis virus)轉(zhuǎn)錄因子家族在植物中扮演著重要角色,參與調(diào)控多種生物學(xué)過(guò)程,包括植物對(duì)環(huán)境脅迫的響應(yīng)。根據(jù)MYB結(jié)構(gòu)域中重復(fù)序列的數(shù)量,MYB蛋白被分為4類:1R-MYB/MYB相關(guān)、R2R3-MYB、R1R2R3-MYB和4R-MYB[78-79]。R2R3-MYB基因在植物中的數(shù)量尤為豐富,并在植物對(duì)環(huán)境脅迫的響應(yīng)中發(fā)揮關(guān)鍵作用。在擬南芥中,R2R3-MYB亞家族成員MYB4的過(guò)表達(dá)能夠增強(qiáng)植物對(duì)Cd的耐受性,而atmyb4突變體則表現(xiàn)出對(duì)Cd的敏感性增加。AtMYB4能夠特異性地結(jié)合到PCS1和MT1C基因啟動(dòng)子上的特定基序ACCAACCAA和GGTAGGT,調(diào)控這些基因的表達(dá),從而增強(qiáng)對(duì)Cd的耐受性[80]。Yan等[81]的研究進(jìn)一步發(fā)現(xiàn),AtMYB4通過(guò)調(diào)控MAN3(cloned XCD1 gene)和增強(qiáng)GSH-PC途徑提高了擬南芥對(duì)Cd的耐受性,且AtMYB4影響MNB1(mannose-binding-lectin 1)功能,導(dǎo)致atmyb4-1對(duì)Pb更敏感,與其他金屬敏感性變化不大,顯示MYB4和MNB1在重金屬應(yīng)答中的不同作用。
在水稻中,OsMYB45定位于細(xì)胞核,其突變會(huì)增加水稻對(duì)Cd脅迫的敏感性,并影響過(guò)氧化氫(H2O2)濃度和過(guò)氧化氫酶(CAT)活性。在突變體中回補(bǔ)OsMYB45基因則能夠修復(fù)這些突變體對(duì)Cd脅迫敏感的表型,凸顯了OsMYB45在Cd耐受性中的重要作用[78]。此外,在擬南芥中AtMYB49在調(diào)節(jié)Cd吸收和耐受性方面也發(fā)揮著間接作用。研究表明,MYB49可以通過(guò)2種途徑介導(dǎo)Cd的攝取和耐受性。第一條途徑是通過(guò)AP2/ERF轉(zhuǎn)錄因子家族調(diào)節(jié)ABA水平,進(jìn)而影響MYB49的活性。ABA的作用使得MYB49能夠綁定并激活HIPP22(heavy-metal-associated isoprenylated plant protein 22)和HIPP44基因的啟動(dòng)子,從而提高這些基因的表達(dá)水平,并顯著增加植物體內(nèi)的Cd積累。第二條途徑是ABA直接誘導(dǎo)AtMYB49結(jié)合到bHLH38/bHLH101基因的啟動(dòng)子上,激活這些基因,進(jìn)而促進(jìn)IRT1的表達(dá)[82]。這些研究成果揭示了MYB轉(zhuǎn)錄因子在植物對(duì)重金屬脅迫響應(yīng)中的復(fù)雜調(diào)控網(wǎng)絡(luò),并強(qiáng)調(diào)了MYB轉(zhuǎn)錄因子在調(diào)節(jié)植物對(duì)重金屬脅迫反應(yīng)中的復(fù)雜作用。
3.7 其他轉(zhuǎn)錄因子
bHLH(basic helix-loop-helix)基因家族是真核生物轉(zhuǎn)錄因子(TFs)中最大的家族之一,廣泛參與生理、發(fā)育過(guò)程和應(yīng)激反應(yīng)[83]。一些bHLH蛋白與包含核心元素E-box(5′-ANNTG-3)的序列結(jié)合,最常見(jiàn)的形式是G-box(5′-CACGTG-3′)[84-85]。動(dòng)物bHLH蛋白根據(jù)系統(tǒng)發(fā)育關(guān)系、DNA結(jié)合基序和功能特性可分為A~F六組群[85-86]。在植物中,許多已鑒定的bHLH蛋白屬于B組,主要特征是結(jié)合G-box[4,87]。在bHLH家族中,Solyc01g086870(SlbHLH076)在Cd脅迫期間高度表達(dá),其在擬南芥中的直系同源基因(AT4G29100)與防御反應(yīng)相關(guān)。同樣,Solyc08g062780(SlbHLH089)的直系同源基因AT2G43140(AtbHLH129)在Cd脅迫期間也高度表達(dá)。表明部分番茄bHLH家族參與Cd脅迫,在其他植物中可進(jìn)行同源比對(duì)研究[88]。在擬南芥中,ZAT6轉(zhuǎn)錄因子的過(guò)表達(dá)能夠提高植株對(duì)Cd的耐受性,而ZAT6功能缺失的突變體則表現(xiàn)出降低的耐受性,但這種變化對(duì)其他重金屬的敏感性并沒(méi)有顯著影響[89]。轉(zhuǎn)錄因子AtZAT6和AtMYB4通過(guò)調(diào)節(jié)GSH和PC生物合成途徑的關(guān)鍵基因,提高了植物對(duì)Cd的耐受性[80,89]。
因此,探究這些轉(zhuǎn)錄因子與Cd相互作用的精確分子機(jī)制,以及其如何精確調(diào)控轉(zhuǎn)運(yùn)蛋白的表達(dá),對(duì)于全面理解植物體內(nèi)Cd的吸收、運(yùn)輸和積累過(guò)程,以及開(kāi)發(fā)植物抗重金屬脅迫的策略具有重要的科學(xué)意義和應(yīng)用價(jià)值。
4 植物激素和小分子效應(yīng)物對(duì)植物Cd吸收和耐性的調(diào)控
轉(zhuǎn)錄因子在Cd脅迫下的轉(zhuǎn)錄調(diào)控中起核心作用,但植物對(duì)Cd的耐性涉及更復(fù)雜的多因素系統(tǒng),包括植物激素和小分子效應(yīng)物,它們協(xié)同調(diào)節(jié)植物的生長(zhǎng)、根系發(fā)育和防御機(jī)制,提升Cd耐性[90]。生長(zhǎng)素(auxin)通過(guò)促進(jìn)細(xì)胞壁半纖維素合成,幫助擬南芥固定Cd,減少其毒性[91]。JA通過(guò)增強(qiáng)根部細(xì)胞壁的隔離作用,降低水稻幼苗的Cd含量,并減少氧化損傷[92]。甲基茉莉酸(methyl jasmonate,Me-JA)減輕Cd對(duì)豇豆(Cajanus cajan)的毒性,增強(qiáng)其抗氧化系統(tǒng),調(diào)節(jié)信號(hào)傳導(dǎo)基因表達(dá),降低金屬轉(zhuǎn)運(yùn)蛋白表達(dá),減少Cd吸收,對(duì)降低食物鏈中Cd風(fēng)險(xiǎn)具有潛在意義[93]。這些結(jié)果表明,生長(zhǎng)素和JA能減輕Cd對(duì)擬南芥的毒性。ABA作為一種關(guān)鍵的植物激素,在植物發(fā)育和應(yīng)對(duì)脅迫中發(fā)揮調(diào)節(jié)作用。在擬南芥中,ABI5與MYB49相互作用,通過(guò)ABA信號(hào)途徑抑制Cd吸收[82]。此外,ABA降低擬南芥(Col-0)Cd積累,需AIT1(ABA-importing transporter 1)介導(dǎo)的ABA輸入活性抑制AtIRT1表達(dá),ABI4(abscisic acid insensitive 4)轉(zhuǎn)錄因子可能在ABA調(diào)控Cd脅迫反應(yīng)中起關(guān)鍵作用,其突變體對(duì)Cd更敏感,且外源ABA無(wú)法緩解這一現(xiàn)象[94]。赤霉酸(GA)在植物對(duì)Cd脅迫的反應(yīng)中發(fā)揮作用,能降低Cd依賴性的NO積累和Cd吸收相關(guān)基因AtIRT1的表達(dá),從而減輕Cd毒性[95]。因此,AtIRT1可能與激素相互作用,參與Cd的吸收和積累過(guò)程。ABA還能通過(guò)增加GSH和PC的合成,促進(jìn)Cd螯合至液泡以減輕毒性,并增強(qiáng)超氧化物歧化酶(SOD)、過(guò)氧化物酶(POD)、抗壞血酸過(guò)氧化物酶(APX)和谷胱甘肽還原酶(GR)的活性提高植物的耐受性[50]。水楊酸(SA)作為植物源酚類化合物,在植物對(duì)Cd脅迫的耐受性中起重要作用[96]。SA水平下降會(huì)增加擬南芥對(duì)Cd的敏感性,而SA在水稻中應(yīng)用可增強(qiáng)耐受性,提升產(chǎn)量,降低Cd健康風(fēng)險(xiǎn)。研究發(fā)現(xiàn),SA通過(guò)強(qiáng)化細(xì)胞壁結(jié)構(gòu),限制Cd進(jìn)入細(xì)胞,NO作為信號(hào)分子參與SA誘導(dǎo)的細(xì)胞壁調(diào)節(jié),減少Cd積累[97-98]。番茄中SlWRKY76可能調(diào)節(jié)多種生物和非生物脅迫反應(yīng)。SlWRKY46抑制SA和JA基因表達(dá),而SlWRKY3在Cd脅迫下表達(dá)下調(diào),與SA含量減少一致。提高SA水平的擬南芥對(duì)Cd脅迫有不同響應(yīng),SA積累增加與特定基因表達(dá)正相關(guān),揭示其在Cd耐受性中的調(diào)控作用。SA還通過(guò)促進(jìn)果膠合成等過(guò)程,限制Cd進(jìn)入細(xì)胞,減少積累。這些研究為減少作物Cd吸收提供了策略,也為理解SA在植物抵抗Cd脅迫中的作用提供了新視角[88,99]。
植物激素在植物適應(yīng)脅迫環(huán)境中發(fā)揮關(guān)鍵作用,作為第一信使調(diào)節(jié)應(yīng)激反應(yīng)。除了激素,小分子代謝物如Ca2+、NO、H2O2、富氫水(hydrogen-rich water,HRW)和H2S等也作為第二信使,在植物生長(zhǎng)和發(fā)育中迅速變化,影響對(duì)非生物脅迫的反應(yīng),并參與復(fù)雜生理過(guò)程的調(diào)控,顯示植物信號(hào)網(wǎng)絡(luò)的復(fù)雜性和精細(xì)調(diào)控機(jī)制[100-101]。Ca2+在植物體內(nèi)扮演多種生理角色,包括信號(hào)傳遞和細(xì)胞壁穩(wěn)定性維持。Cd2+因化學(xué)性質(zhì)與Ca2+相似,可模仿其進(jìn)入植物細(xì)胞,干擾生長(zhǎng)和代謝。適量Ca2+可減輕Cd2+毒性,如增加Ca2+供應(yīng)可降低小麥對(duì)Cd2+吸收,提高耐受性[102]。土壤Cd增加時(shí),水稻中Cd與其他元素比例上升,Ca通道和谷氨酸受體通道(glutamate receptor channels,GLR)表達(dá)降低。fc8(fragile-culm mutant)突變體表現(xiàn)出更高的Ca、Fe、Zn含量及GLR表達(dá),Cd比值低,說(shuō)明Cd影響GLR功能,增加Cd吸收[101]。NO作為植物生理關(guān)鍵信號(hào)分子,影響種子萌發(fā)、生長(zhǎng)和脅迫響應(yīng)。NO能激活抗氧化系統(tǒng),減輕Cd氧化應(yīng)激,提高耐受性,但也可能增強(qiáng)Cd毒性[103]。外源性NO和H2S供體如SNP(sodium nitroprusside)和NaHS(sodium hydrosulfide)能提高植株生長(zhǎng)和葉綠素含量,降低氧化應(yīng)激,減少Cd吸收,提高必需礦物質(zhì)營(yíng)養(yǎng)素水平,增強(qiáng)植物對(duì)Cd毒性的抵抗力[103]。H2S作為SA信號(hào)下游,通過(guò)增強(qiáng)脯氨酸(proline)和MeJA(methyl jasmonate)產(chǎn)生,提升Cd抗性,改善CaM(calmodulin)表達(dá),控制Ca2+信號(hào),增強(qiáng)植物對(duì)脅迫的感應(yīng)[104]。這些研究表明,植物通過(guò)內(nèi)部信號(hào)網(wǎng)絡(luò)的復(fù)雜相互作用,精細(xì)調(diào)控對(duì)Cd脅迫的響應(yīng)。
H2O2信號(hào)與植物Zn轉(zhuǎn)運(yùn)蛋白和Cd耐受性相關(guān)。CaWRKY41可能通過(guò)調(diào)節(jié)Zn轉(zhuǎn)運(yùn)和H2O2平衡,影響辣椒(Capsicum annuum L.)對(duì)Cd和病原體的反應(yīng)[105]。此外,大豆GmNAC81的過(guò)表達(dá)增加了對(duì)Cd2+脅迫的敏感性,并加強(qiáng)了Cd2+介導(dǎo)的PCD(programmed cell death)特征,如增強(qiáng)了Cd2+誘導(dǎo)的H2O2產(chǎn)生、細(xì)胞死亡和DNA損傷的表達(dá)[104]。研究顯示,富氫水(hydrogen-rich water,HRW)在Cd脅迫下能夠促進(jìn)抗氧化和Cd解毒相關(guān)的還原酶,如CATs、GSH-Pxs和GSTUs的生成,從而增強(qiáng)植物的防御能力[106]。HRW通過(guò)降低白菜(Brassica chinensis)BcIRT1和BcZIP2的表達(dá),減少植物體內(nèi)Cd的積累,其作用機(jī)制可能涉及調(diào)節(jié)氧化酶同源物、跨膜運(yùn)輸Ca2+及產(chǎn)生H2O2等[20]。
5 含巰基分子在Cd解毒方面的作用
巰基分子如GSH、PCs和MTs含有巰基(—SH)基團(tuán),幫助植物解毒[107]。GSH是一種在植物細(xì)胞各區(qū)室廣泛分布的三肽(γ-Glu-Cys-Gly),對(duì)細(xì)胞抗氧化和金屬離子螯合至關(guān)重要。GSH不僅是PCs的前體,幫助植物抵御金屬脅迫,還參與了多種代謝途徑[69,107]。MTs是一類短鏈、低分子量的基因編碼多肽,其結(jié)構(gòu)特征是含有豐富的半胱氨酸(Cys)。這些多肽通過(guò)Cys殘基的—SH與金屬離子結(jié)合,對(duì)植物中的金屬解毒和穩(wěn)態(tài)維持起著關(guān)鍵作用[108-109]。 在植物對(duì)金屬Cd脅迫的響應(yīng)中,GSH及其金屬絡(luò)合物可以通過(guò)酵母Cd因子1(YCF1)的作用被轉(zhuǎn)運(yùn)入液泡中儲(chǔ)存,減輕Cd的毒害[110]。在擬南芥中,MYB4-MAN3-Mannose-MNB1信號(hào)級(jí)聯(lián)通過(guò)GSH依賴的PC合成途徑,增強(qiáng)了對(duì)Cd的耐受性[81]。AtZAT6轉(zhuǎn)錄因子通過(guò)激活與PC合成相關(guān)的基因(尤其是GSH1),正向調(diào)節(jié)Cd的積累和耐受性[89]。水稻品種D62B通過(guò)上調(diào)OsGST和OsPCS1基因,增強(qiáng)了對(duì)Cd的固定和在液泡中的儲(chǔ)存[111]。此外,TaWRKY74調(diào)控小麥對(duì)Cd脅迫下ASA-GSH系統(tǒng)基因的表達(dá)[58]。研究發(fā)現(xiàn),硒(Se)的不同形態(tài)(硒半胱氨酸、亞硒酸鈉和硒酸鈉)能提高番茄植物對(duì)Cd脅迫的耐受性,通過(guò)增加GSH和PCs的水平及其基因表達(dá),增強(qiáng)Cd解毒能力[112]。
PC的合成需要L-谷氨酸(Glu)、L-半胱氨酸(Cys)和甘氨酸(Gly),是細(xì)胞用來(lái)處理金屬離子的主要分子。其中第一步釋放Gly,第二步形成更長(zhǎng)的PC鏈并需要金屬離子參與。這一機(jī)制不僅使植物能夠通過(guò)PCs螯合金屬離子以解毒,還促進(jìn)了金屬離子的長(zhǎng)距離運(yùn)輸[113-114]。研究表明,PCS1和PCS2在擬南芥中通過(guò)固定Cd離子于液泡減輕毒性,AtMYB4的過(guò)表達(dá)增強(qiáng)了植物對(duì)Cd脅迫的抵抗力,而OsPCS1突變體對(duì)Cd和As敏感,TaPCS1在擬南芥中的表達(dá)則增強(qiáng)了Cd的耐受性并促進(jìn)了其從根部到地上部的轉(zhuǎn)運(yùn),減少了根部Cd積累[80,115-116]。此外,MTs是胞質(zhì)蛋白家族,具有獨(dú)特的金屬穩(wěn)態(tài)和應(yīng)激反應(yīng)功能。MTs在維持必需金屬平衡和解毒有毒金屬中發(fā)揮作用,并具有抗氧化性質(zhì),有助于抵御氧化應(yīng)激,通過(guò)清除活性氧(ROS)維持氧化還原平衡。這些低分子量蛋白含有高度保守的Cys基序,如CC、CXC和CXXC,使其能結(jié)合必需的Cu、Zn和有毒的Cd等金屬離子[71,81]。景天中的SaMT3通過(guò)C末端CXC基序結(jié)合Cd,N末端Cys殘基清除ROS,幫助植物適應(yīng)Cd脅迫[109]。水稻的OsMT-I-Id有助于增強(qiáng)酵母細(xì)胞對(duì)Cd的耐受性和金屬積累。C-結(jié)構(gòu)域的突變影響耐受性,N-結(jié)構(gòu)域的突變?cè)黾用舾行?,顯示Cys在Cd結(jié)合中的關(guān)鍵作用[117]。綜上所述,PCS、GSH和GST構(gòu)成了植物內(nèi)部一個(gè)復(fù)雜而有效的防御系統(tǒng),它們協(xié)同作用以緩解Cd的毒性影響。
6 抗氧化
面對(duì)Cd脅迫時(shí),植物細(xì)胞會(huì)產(chǎn)生過(guò)量的ROS,通過(guò)抗氧化酶系統(tǒng)如POD、SOD、APX和CAT來(lái)清除ROS,維持氧化還原平衡。在小麥中,ROS促進(jìn)HSP70與HsfA1復(fù)合物解離,釋放TaHsfA1,參與細(xì)胞穩(wěn)定性維護(hù)。ROS還作為信號(hào)分子,激活MAPKs信號(hào)通路,調(diào)控細(xì)胞活動(dòng)[65,118]。該通路由三級(jí)激酶組成:MAPKKK(MAPK kinase)、MAPKK(MAPKK kinase)和MAPK(MAPKK kinase)。MAPKKK首先磷酸化MAPKK,后者再激活MAPK,最終激活的MAPK進(jìn)入細(xì)胞核,磷酸化轉(zhuǎn)錄因子,調(diào)節(jié)基因表達(dá)以應(yīng)對(duì)Cd脅迫。這一磷酸化級(jí)聯(lián)反應(yīng)參與了細(xì)胞核內(nèi)Cd信號(hào)的傳導(dǎo)[15,119]。研究發(fā)現(xiàn),SbMYB15轉(zhuǎn)錄因子通過(guò)調(diào)節(jié)MAPK信號(hào)通路和ROS平衡,提高植物對(duì)Cd和Ni的耐受性[120]。植物通過(guò)調(diào)節(jié)金屬轉(zhuǎn)運(yùn)蛋白和增強(qiáng)抗氧化酶活性來(lái)降低重金屬積累并保護(hù)自身免受氧化損傷。同樣,轉(zhuǎn)基因弗吉尼亞松(Pinus virginiana Mill.)中ERF/AP2辣椒轉(zhuǎn)錄因子(Capsicum annuum pathogenesis-related protein 1,CaPF1)的過(guò)表達(dá)提升了植物對(duì)Cd、Cu和Zn等和病原體的耐受性,并增強(qiáng)了抗氧化酶活性,減少了氧化損傷,同時(shí)促進(jìn)了器官生長(zhǎng)[121]。過(guò)表達(dá)TdSHN1的轉(zhuǎn)基因煙草在Cd(100 μmol/L)、Cu(250 μmol/L)和 Zn(10 mmol/L)脅迫下展現(xiàn)出更發(fā)達(dá)的根系、更豐富的生物量和較高的葉綠素含量,同時(shí)產(chǎn)生較少的ROS。TdSHN1可能是增強(qiáng)植物耐受性和修復(fù)重金屬污染土壤的有效基因[65]。
7 研究展望
Cd是一種廣泛存在的環(huán)境污染物,對(duì)植物的生理和生化功能產(chǎn)生負(fù)面影響,并且有可能通過(guò)食物鏈傳遞給人類,對(duì)公共健康構(gòu)成潛在威脅。由于植物對(duì)鎘脅迫的響應(yīng)機(jī)制涉及復(fù)雜的分子調(diào)控網(wǎng)絡(luò),迄今為止,關(guān)于鎘脅迫下植物細(xì)胞內(nèi)信號(hào)傳導(dǎo)途徑及其與抗鎘性關(guān)系的研究仍較為有限。未來(lái)的研究應(yīng)聚焦于植物在不同生長(zhǎng)階段和部位的基因調(diào)控差異,深入解析關(guān)鍵調(diào)控基因的特異性功能,以及其與激素信號(hào)、轉(zhuǎn)錄因子網(wǎng)絡(luò)、表觀遺傳修飾等分子調(diào)控系統(tǒng)的交互作用。通過(guò)系統(tǒng)研究這些調(diào)控機(jī)制,揭示植物如何動(dòng)態(tài)響應(yīng)內(nèi)外環(huán)境變化,實(shí)現(xiàn)精準(zhǔn)生長(zhǎng)調(diào)控。這不僅有助于完善植物生長(zhǎng)發(fā)育的理論體系,還將為培育適應(yīng)性強(qiáng)、高產(chǎn)穩(wěn)產(chǎn)的作物新品種提供重要的分子靶點(diǎn)和策略支持。
參考文獻(xiàn)
[1]
LI Z M,LIANG Y,HU H W,et al.Speciation,transportation,and pathways of cadmium in soil rice systems:A review on the environmental implications and remediation approaches for food safety[J].Environment international,2021,156:1-13.
[2] SHAHID M,DUMAT C,KHALID S,et al.Cadmium bioavailability,uptake,toxicity and detoxification in soil plant system[J].Reviews of environmental contamination and toxicology,2017,241:73-137.
[3] LIU C F,XIAO R B,DAI W J,et al.Cadmium accumulation and physiological response of Amaranthus tricolor L.under soil and atmospheric stresses[J].Environmental science and pollution research,2021,28(11):14041-14053.
[4] YANG G L,ZHENG M M,TAN A J,et al.Research on the mechanisms of plant enrichment and detoxification of cadmium[J].Biology,2021,10(6):1-19.
[5] 魏復(fù)盛,楊國(guó)治,蔣德珍,等.中國(guó)土壤元素背景值基本統(tǒng)計(jì)量及其特征[J].中國(guó)環(huán)境監(jiān)測(cè),1991,7(1):1-6.
[6] YUAN X H,XUE N D,HAN Z G.A meta analysis of heavy metals pollution in farmland and urban soils in China over the past 20 years[J].Journal of environmental sciences,2021,101:217-226.
[7] NAWAZ M,SUN J F,SHABBIR S,et al.A review of plants strategies to resist biotic and abiotic environmental stressors[J].Science of the total environment,2023,900:1-11.
[8] LEI G J,F(xiàn)UJII KASHINO M,WU D Z,et al.Breeding for low cadmium barley by introgression of a Sukkula like transposable element[J].Nature food,2020,1(8):489-499.
[9] LIN A,ZHANG X,ZHU Y G,et al.Arsenate induced toxicity:Effects on antioxidative enzymes and DNA damage in Vicia faba[J].Environmental toxicology and chemistry,2008,27(2):413-419.
[10] TARHONSKA K,JANASIK B,ROSZAK J,et al.Environmental exposure to cadmium in breast cancer association with the Warburg effect and sensitivity to tamoxifen[J].Biomedicine amp; pharmacotherapy,2023,161:1-10.
[11] GWON M A,KIM M J,KANG H G,et al.Cadmium exposure impairs oocyte meiotic maturation by inducing endoplasmic reticulum stress in vitro maturation of porcine oocytes[J].Toxicology in vitro,2023,91:1-11.
[12] APRILE A,SABELLA E,F(xiàn)RANCIA E,et al.Combined effect of cadmium and lead on durum wheat[J].International journal of molecular sciences,2019,20(23):1-17.
[13] HAN G H,HUANG R N,HONG L H,et al.The transcription factor NAC102 confers cadmium tolerance by regulating WAKL11 expression and cell wall pectin metabolism in Arabidopsis[J].Journal of integrative plant biology,2023,65(10):2262-2278.
[14] SUN Y P,LIU X Y,LI W X,et al.The regulatory metabolic networks of the Brassica campestris L.hairy roots in response to cadmium stress revealed from proteome studies combined with a transcriptome analysis[J].Ecotoxicology and environmental safety,2023,263:1-12.
[15] DALCORSO G,F(xiàn)ARINATI S,F(xiàn)URINI A.Regulatory networks of cadmium stress in plants[J].Plant signaling amp; behavior,2010,5(6):663-667.
[16] CAO H W,LI C,ZHANG B Q,et al.A metallochaperone HIPP33 is required for rice zinc and iron homeostasis and productivity[J].Agronomy,2022,12(2):1-16.
[17] ISMAEL M A,ELYAMINE A M,MOUSSA M G,et al.Cadmium in plants:Uptake,toxicity,and its interactions with selenium fertilizers[J].Metallomics,2019,11(2):255-277.
[18] LUO X S,BING H J,LUO Z X,et al.Impacts of atmospheric particulate matter pollution on environmental biogeochemistry of trace metals in soil plant system:A review[J].Environmental pollution,2019,255:1-11.
[19] LI L P,ZHANG Y Q,IPPOLITO J A,et al.Cadmium foliar application affects wheat Cd,Cu,Pb and Zn accumulation[J].Environmental pollution,2020,262:1-7.
[20] WU X,SU N N,YUE X M,et al.IRT1 and ZIP2 were involved in exogenous hydrogen rich water reduced cadmium accumulation in Brassica chinensis and Arabidopsis thaliana[J].Journal of hazardous materials,2021,407:1-11.
[21] SASAKI A,YAMAJI N,YOKOSHO K,et al.Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice[J].The plant cell,2012,24(5):2155-2167.
[22] MIYADATE H,ADACHI S,HIRAIZUMI A,et al.OsHMA3,a P1B type of ATPase affects root to shoot cadmium translocation in rice by mediating efflux into vacuoles[J].The new phytologist,2011,189(1):190-199.
[23] TAKAHASHI R,ISHIMARU Y,SHIMO H,et al.The OsHMA2 transporter is involved in root to shoot translocation of Zn and Cd in rice[J].Plant,cell amp; environment,2012,35(11):1948-1957.
[24] ZHANG M,LIU X C,YUAN L Y,et al.Transcriptional profiling in cadmium treated rice seedling roots using suppressive subtractive hybridization[J].Plant physiology and biochemistry,2012,50:79-86.
[25] ISHIKAWA S,ISHIMARU Y,IGURA M,et al.Ion beam irradiation,gene identification,and marker assisted breeding in the development of low cadmium rice[J].Proceedings of the national academy of sciences,2012,109(47):19166-19171.
[26] TANG L,MAO B G,LI Y K,et al.Knockout of OsNramp5 using the CRISPR/Cas9 system produces low Cd accumulating indica rice without compromising yield[J].Scientific reports,2017,7:1-12.
[27] YANG C H,ZHANG Y,HUANG C F.Reduction in cadmium accumulation in japonica rice grains by CRISPR/Cas9 mediated editing of OsNRAMP5[J].Journal of integrative agriculture,2019,18(3):688-697.
[28] WU D,YAMAJI N,YAMANE M,et al.The HvNramp5 transporter mediates uptake of cadmium and manganese,but not iron[J].Plant physiology,2016,172(3):1899-1910.
[29] SUI F Q,CHANG J D,TANG Z,et al.Nramp5 expression and functionality likely explain higher cadmium uptake in rice than in wheat and maize[J].Plant and soil,2018,433(1/2):377-389.
[30] LIU A L,ZHOU Z B,YI Y K,et al.Transcriptome analysis reveals the roles of stem nodes in cadmium transport to rice grain[J].BMC genomics,2020,21(1):1-16.
[31] TAKAHASHI R,BASHIR K,ISHIMARU Y,et al.The role of heavy metal ATPases,HMAs,in zinc and cadmium transport in rice[J].Plant signaling amp; behavior,2012,7(12):1605-1607.
[32] UENO D,KOYAMA E,KONO I,et al.Identification of a novel major quantitative trait locus controlling distribution of Cd between roots and shoots in rice[J].Plant and cell physiology,2009,50(12):2223-2233.
[33] TAKAHASHI R,ITO M,KAWAMOTO T.The road to practical application of cadmium phytoremediation using rice[J].Plants,2021,10(9):1-10.
[34] LU C N,ZHANG L X,TANG Z,et al.Producing cadmium free Indica rice by overexpressing OsHMA3[J].Environment international,2019,126:619-626.
[35] LIU C L,GAO Z Y,SHANG L G,et al.Natural variation in the promoter of OsHMA3 contributes to differential grain cadmium accumulation between Indica and Japonica rice FA[J].Journal of integrative plant biology,2020,62(3):314-329.
[36] WANG K,YAN T Z,XU S L,et al.Validating a segment on chromosome 7 of japonica for establishing low cadmium accumulating indica rice variety[J].Scientific reports,2021,11(1):1-10.
[37] SUN C J,YANG M,LI Y,et al.Comprehensive analysis of variation of cadmium accumulation in rice and detection of a new weak allele of OsHMA3[J].Journal of experimental botany,2019,70(21):6389-6400.
[38] UENO D,YAMAJI N,KONO I,et al.Gene limiting cadmium accumulation in rice[J].Proceedings of the national academy of sciences of the United States of America,2010,107(38):16500-16505.
[39] MAGHREBI M,BALDONI E,LUCCHINI G,et al.Analysis of cadmium root retention for two contrasting rice accessions suggests an important role for OsHMA2[J].Plants,2021,10(4):1-12.
[40] YAMAJI N,XIA J,MITANI UENO N,et al.Preferential delivery of zinc to developing tissues in rice is mediated by P type heavy metal ATPase OsHMA2" [J].Plant physiology,2013,162(2):927-939.
[41] CHANG J D,HUANG S,YAMAJI N,et al.OsNRAMP1 transporter contributes to cadmium and manganese uptake in rice[J].Plant,cell amp; environment,2020,43(10):2476-2491.
[42] CHANG J D,XIE Y,ZHANG H H,et al.The vacuolar transporter OsNRAMP2 mediates Fe remobilization during germination and affects Cd distribution to rice grain[J].Journal of experimental botany,2022,476:79-95.
[43] URAGUCHI S,KAMIYA T,SAKAMOTO T,et al.Low affinity cation transporter(OsLCT1)regulates cadmium transport into rice grains[J].Proceedings of the national academy of sciences of the United States of America,2011,108(52):20959-20964.
[44] LIU X S,F(xiàn)ENG S J,ZHANG B Q,et al.OsZIP1 functions as a metal efflux transporter limiting excess zinc,copper and cadmium accumulation in rice[J].BMC plant biology,2019,19(1):1-16.
[45] MA Y M,WEN Y F,WANG C,et al.ZIP genes are involved in the retransfer of zinc ions during the senescence of zinc deficient rice leaves[J].International journal of molecular sciences,2023,24(18):1-18.
[46] ZHAN J H,ZOU W L,LI S Y Y,et al.OsNAC15 regulates tolerance to zinc deficiency and cadmium by binding to OsZIP7 and OsZIP10 in rice[J].International journal of molecular sciences,2022,23(19):1-19.
[47] SHIMO H,ISHIMARU Y,AN G,et al.Low cadmium(LCD),a novel gene related to cadmium tolerance and accumulation in rice[J].Journal of experimental botany,2011,62(15):5727-5734.
[48] CLEMENS S,AARTS M G M,THOMINE S,et al.Plant science:The key to preventing slow cadmium poisoning[J].Trends in plant science,2013,18(2):92-99.
[49] SHENG Y B,YAN X X,HUANG Y,et al.The WRKY transcription factor,WRKY13,activates PDR8 expression to positively regulate cadmium tolerance in Arabidopsis[J].Plant,cell amp; environment,2019,42(3):891-903.
[50]" TIAN W J,HUANG Y,LI D D,et al.Identification of StAP2/ERF genes of potato(Solanum tuberosum)and their multiple functions in detoxification and accumulation of cadmium in yest:Implication for Genetic based phytoremediation[J].Science of the total environment,2022,810:1-12.
[51] LIN T,YANG W,LU W,et al.Transcription factors PvERF15 and PvMTF 1 form a cadmium stress transcriptional pathway[J].Plant physiology,2017,173(3):1565-1573.
[52] EULGEM T,RUSHTON P J,ROBATZEK S,et al.The WRKY superfamily of plant transcription factors[J].Trends in plant science,2000,5(5):199-206.
[53] JAVED T,GAO S J.WRKY transcription factors in plant defense[J].Trends in genetics,2023,39(10):787-801.
[54] HAN Y Y,F(xiàn)AN T T,ZHU X Y,et al.WRKY12 represses GSH1 expression to negatively regulate cadmium tolerance in Arabidopsis[J].Plant molecular biology,2019,99(1/2):149-159.
[55] ZHANG Q,CAI W,JI T T,et al.WRKY13 enhances cadmium tolerance by promoting D CYSTEINE DESULFHYDRASE and hydrogen sulfide production[J].Plant physiology,2020,183(1):345-357.
[56] ZHANG C,TONG C C,CAO L,et al.Regulatory module WRKY33 ATL31 IRT1 mediates cadmium tolerance in Arabidopsis[J].Plant,cell amp; environment,2023,46(5):1653-1670.
[57] LI F J,DENG Y R,LIU Y,et al.Arabidopsis transcription factor WRKY45 confers cadmium tolerance via activating PCS1 and PCS2 expression[J].Journal of hazardous materials,2023,460:1-15.
[58] LI G Z,ZHENG Y X,LIU H T,et al.WRKY74 regulates cadmium tolerance through glutathione dependent pathway in wheat[J].Environmental science and pollution research,2022,29(45):68191-68201.
[59] FENG K,HOU X L,XING G M,et al.Advances in AP2/ERF super family transcription factors in plant[J].Critical reviews in biotechnology,2020,40(6):750-776.
[60] PENG X J,WU Q Q,TENG L H,et al.Transcriptional regulation of the paper mulberry under cold stress as revealed by a comprehensive analysis of transcription factors[J].BMC plant biology,2015,15(1):1-14.
[61] XIE Q Q,YU Q,JOBE T O,et al.An amiRNA screen uncovers redundant CBF and ERF34/35 transcription factors that differentially regulate arsenite and cadmium responses[J].Plant,cell amp; environment,2021,44(5):1692-1706.
[62] WANG C Y,QIAO F,WANG M Q,et al.PvERF104 confers cadmium tolerance in Arabidopsis:Evidence for metal responsive element binding transcription factors[J].Environmental and experimental botany,2023,206:1-10.
[63] ZHANG G B,YI H Y,GONG J M.The Arabidopsis ethylene/jasmonic acid NRT signaling module coordinates nitrate reallocation and the trade off between growth and environmental adaptation[J].The plant cell,2014,26(10):3984-3998.
[64] ANWAR A,WANG Y D,CHEN M Q,et al.Zero valent iron(nZVI)nanoparticles mediate SlERF1 expression to enhance cadmium stress tolerance in tomato[J].Journal of hazardous materials,2024,468:1-14.
[65] DJEMAL R,KHOUDI H.The ethylene responsive transcription factor of durum wheat,TdSHN1,confers cadmium,copper,and zinc tolerance to yeast and transgenic tobacco plants[J].Protoplasma,2022,259(1):19-31.
[66] GIEDROC D P,CHEN X H,APUY J L.Metal response element (MRE) binding transcription factor 1 (MTF 1):Structure,function,and regulation[J].Antioxidants and redox signaling,2001,3(4):577-596.
[67] SUN N,LIU M,ZHANG W T,et al.Bean metal responsive element binding transcription factor confers cadmium resistance in tobacco[J].Plant physiology,2015,167(3):1136-1148.
[68] YANG W N,BEI X J,LIU M,et al.Intronic promoter mediated feedback loop regulates bean PvSR2 gene expression[J].Biochemical and biophysical research communications,2015,463(4):1097-1101.
[69] WANG C Y,LIN T T,WANG M Q,et al.An AC rich bean element serves as an ethylene responsive element in Arabidopsis[J].Plants,2020,9(8):1-8.
[70] CHAUHAN H,KHURANA N,AGARWAL P,et al.Heat shock factors in rice(Oryza sativa L.):Genome wide expression analysis during reproductive development and abiotic stress[J].Molecular genetics and genomics,2011,286(2):171-187.
[71] ANDRSI N,PETTK "SZANDTNER A,SZABADOS L.Diversity of plant heat shock factors:Regulation,interactions,and functions[J].Journal of experimental botany,2021,72(5):1558-1575.
[72] VON KOSKULL DRING P,SCHARF K D,NOVER L.The diversity of plant heat stress transcription factors[J].Trends in plant science,2007,12(10):452-457.
[73] CHEN S S,JIANG J,HAN X J,et al.Identification,expression analysis of the Hsf family,and characterization of class A4 in Sedum alfredii hance under cadmium stress[J].International journal of molecular sciences,2018,19(4):1-17.
[74] SHIM D,HWANG J U,LEE J,et al.Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice[J].The plant cell,2009,21(12):4031-4043.
[75] CHEN S S,YU M,LI H,et al.SaHsfA4c from Sedum alfredii hance enhances cadmium tolerance by regulating ROS scavenger activities and heat shock proteins expression[J].Frontiers in plant science,2020,11:1-14.
[76] SUN L J,HUANG L,HONG Y B,et al.Comprehensive analysis suggests overlapping expression of rice ONAC transcription factors in abiotic and biotic stress responses[J].International journal of molecular sciences,2015,16(2):4306-4326.
[77] YU Y A,ZHANG L.The wheat NAC transcription factor TaNAC22 enhances cadmium stress tolerance in wheat[J].Cereal research communications,2023,51(4):867-877.
[78] HU S B,YU Y,CHEN Q H,et al.OsMYB45 plays an important role in rice resistance to cadmium stress[J].Plant science,2017,264:1-8.
[79] LI C N,NG C K Y,F(xiàn)AN L M.MYB transcription factors,active players in abiotic stress signaling[J].Environmental and experimental botany,2015,114:80-91.
[80] AGARWAL P,MITRA M,BANERJEE S,et al.MYB4 transcription factor,a member of R2R3 subfamily of MYB domain protein,regulates cadmium tolerance via enhanced protection against oxidative damage and increases expression of PCS1 and MT1C in Arabidopsis[J].Plant science,2020,297:1-20.
[81] YAN X X,HUANG Y,SONG H,et al.A MYB4 MAN3 Mannose MNB1 signaling cascade regulates cadmium tolerance in Arabidopsis[J].PLoS genetics,2021,17(6):1-23.
[82] ZHANG P,WANG R L,JU Q,et al.The R2R3 MYB transcription factor MYB49 regulates cadmium accumulation[J].Plant physiology,2019,180(1):529-542.
[83] LEDENT V,VERVOORT M.The basic helix loop helix protein family:Comparative genomics and phylogenetic analysis[J].Genome research,2001,11(5):754-770.
[84] FERR "D’AMAR "A R,POGNONEC P,ROEDER R G,et al.Structure and function of the b/HLH/Z domain of USF[J].The EMBO journal,1994,13(1):180-189.
[85] ATCHLEY W R,TERHALLE W,DRESS A.Positional dependence,cliques,and predictive motifs in the bHLH protein domain[J].Journal of molecular evolution,1999,48(5):501-516.
[86] SIMIONATO E,LEDENT V,RICHARDS G,et al.Origin and diversification of the basic helix loop helix gene family in metazoans:Insights from comparative genomics[J].BMC evolutionary biology,2007,7(1):1-18.
[87] BUCK M J,ATCHLEY W R.Phylogenetic analysis of plant basic helix loop helix proteins[J].Journal of molecular evolution,2003,56(6):742-750.
[88] KHAN I,ASAF S,JAN R,et al.Genome wide annotation and expression analysis of WRKY and bHLH transcriptional factor families reveal their involvement under cadmium stress in tomato(Solanum lycopersicum L.)[J].Frontiers in plant science,2023,14:1-14.
[89] CHEN J,YANG L B,YAN X X,et al.Zinc finger transcription factor ZAT6 positively regulates cadmium tolerance through the glutathione dependent pathway in Arabidopsis[J].Plant physiology,2016,171(1):707-719.
[90] ZHU H H,CHEN L,XING W,et al.Phytohormones induced senescence efficiently promotes the transport of cadmium from roots into shoots of plants:A novel strategy for strengthening of phytoremediation[J].Journal of hazardous materials,2020,388:1-11.
[91] ZHU X F,WANG Z W,DONG F,et al.Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls[J].Journal of hazardous materials,2013,263:398-403.
[92] LI Y,ZHANG S N,BAO Q L,et al.Jasmonic acid alleviates cadmium toxicity through regulating the antioxidant response and enhancing the chelation of cadmium in rice(Oryza sativa L.)[J].Environmental pollution,2022,304:1-11.
[93] KAUSHIK S,RANJAN A,SINGH A K,et al.Methyl jasmonate reduces cadmium toxicity by enhancing phenol and flavonoid metabolism and activating the antioxidant defense system in pigeon pea(Cajanus cajan)[J].Chemosphere,2024,346:1-11.
[94] PAN W,YOU Y,SHENTU J L,et al.Abscisic acid(ABA) importing transporter 1(AIT1)contributes to the inhibition of Cd accumulation via exogenous ABA application in Arabidopsis[J].Journal of hazardous materials,2020,391:1-10.
[95] ZHU X F,JIANG T,WANG Z W,et al.Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana[J].Journal of hazardous materials,2012,239/240:302-307.
[96] LIU Z P,DING Y F,WANG F J,et al.Role of salicylic acid in resistance to cadmium stress in plants[J].Plant cell reports,2016,35(4):719-731.
[97] WANG F J,TAN H F,ZHANG Y T,et al.Salicylic acid application alleviates cadmium accumulation in brown rice by modulating its shoot to grain translocation in rice[J].Chemosphere,2021,263:1-10.
[98] WANG X,DU H X,MA M,et al.The dual role of nitric oxide(NO)in plant responses to cadmium exposure[J].Science of the total environment,2023,892:1-11.
[99] PAN J Y,GUAN M Y,XU P,et al.Salicylic acid reduces cadmium(Cd)accumulation in rice(Oryza sativa L.)by regulating root cell wall composition via nitric oxide signaling[J].Science of the total environment,2021,797:1-11.
[100] SINGH S,PARIHAR P,SINGH R,et al.Heavy metal tolerance in plants:Role of transcriptomics,proteomics,metabolomics,and ionomics[J].Frontiers in plant science,2016,6:1-36.
[101] ZHANG X,XUE W J,ZHANG C B,et al.Cadmium pollution leads to selectivity loss of glutamate receptor channels for permeation of Ca2+/Mn2+/Fe2+/Zn2+ over Cd2+ in rice plant[J].Journal of hazardous materials,2023,452:1-11.
[102] LI L Z,TU C,PEIJNENBURG W J G M,et al.Characteristics of cadmium uptake and membrane transport in roots of intact wheat(Triticum aestivum L.)seedlings[J].Environmental pollution,2017,221:351-358.
[103] KAYA C,ASHRAF M,ALYEMENI M N,et al.Responses of nitric oxide and hydrogen sulfide in regulating oxidative defence system in wheat plants grown under cadmium stress[J].Physiologia plantarum,2020,168(2):345-360.
[104] GU Q,WANG C Y,XIAO Q Q,et al.Melatonin confers plant cadmium tolerance:An update[J].International journal of molecular sciences,2021,22(21):1-18.
[105] DANG F F,LIN J H,CHEN Y P,et al.A feedback loop between CaWRKY41 and H2O2 coordinates the response to Ralstonia solanacearum and excess cadmium in pepper[J].Journal of experimental botany,2019,70(5):1581-1595.
[106] WU X,CHEN J H,YUE X M,et al.The zinc regulated protein(ZIP)family genes and glutathione s transferase(GST)family genes play roles in Cd resistance and accumulation of pak choi(Brassica campestris ssp.chinensis)[J].Ecotoxicology and environmental safety,2019,183:1-7.
[107] SETH C S,REMANS T,KEUNEN E,et al.Phytoextraction of toxic metals:A central role for glutathione[J].Plant,cell amp; environment,2012,35(2):334-346.
[108] MENDOZA C ZATL D G,JOBE T O,HAUSER F,et al.Long distance transport,vacuolar sequestration,tolerance,and transcriptional responses induced by cadmium and arsenic[J].Current opinion in plant biology,2011,14(5):554-562.
[109] ZHAO J Q,XIE R H,LIN J Y,et al.SaMT3 in Sedum alfredii drives Cd detoxification by chelation and ROS scavenging via Cys residues[J].Environmental pollution,2022,315:1-14.
[110] GUO J B,XU W Z,MA M.The assembly of metals chelation by thiols and vacuolar compartmentalization conferred increased tolerance to and accumulation of cadmium and arsenic in transgenic Arabidopsis thaliana[J].Journal of hazardous materials,2012,199:309-313.
[111] WANG K J,YU H Y,YE D H,et al.The critical role of the shoot base in inhibiting cadmium transport from root to shoot in a cadmium safe rice line(Oryza sativa L.)[J].Science of the total environment,2021,765:1-9.
[112] LI M Q,HASAN M K,LI C X,et al.Melatonin mediates selenium induced tolerance to cadmium stress in tomato plants[J].Journal of pineal research,2016,61(3):291-302.
[113] SEREGIN I V,KOZHEVNIKOVA A D.Phytochelatins:Sulfur containing metal(loid) chelating ligands in plants[J].International journal of molecular sciences,2023,24(3):1-38.
[114] SHUKLA D,TIWARI M,TRIPATHI R D,et al.Synthetic phytochelatins complement a phytochelatin deficient Arabidopsis mutant and enhance the accumulation of heavy metal (loid) s[J].Biochemical and biophysical research communications,2013,434(3):664-669.
[115] URAGUCHI S,TANAKA N,HOFMANN C,et al.Phytochelatin synthase has contrasting effects on cadmium and arsenic accumulation in rice grains[J].Plant and cell physiology,2017,58(10):1730-1742.
[116] GONG J M,LEE D A,SCHROEDER J I.Long distance root to shoot transport of phytochelatins and cadmium in Arabidopsis[J].Proceedings of the national academy of sciences of the United States of America,2003,100(17):10118-10123.
[117] GAUTAM N,TIWARI M,KIDWAI M,et al.Functional characterization of rice metallothionein OsMT I Id:Insights into metal binding and heavy metal tolerance mechanisms[J].Journal of hazardous materials,2023,458:1-13.
[118] SONG G,YUAN S X,WEN X H,et al.Transcriptome analysis of Cd treated switchgrass root revealed novel transcripts and the importance of HSF/HSP network in switchgrass Cd tolerance[J].Plant cell reports,2018,37(11):1485-1497.
[119] JONAK C,KR SZ L,BGRE L,et al.Complexity,cross talk and integration of plant MAP kinase signalling[J].Current opinion in plant biology,2002,5(5):415-424.
[120] SAPARA K K,KHEDIA J,AGARWAL P,et al.SbMYB15 transcription factor mitigates cadmium and nickel stress in transgenic tobacco by limiting uptake and modulating antioxidative defence system[J].Functional plant biology,2019,46(8):702-714.
[121] TANG W,CHARLES T M,NEWTON R J.Overexpression of the pepper transcription factor CaPF1 in transgenic Virginia pine(Pinus virginiana Mill.)confers multiple stress tolerance and enhances organ growth[J].Plant molecular biology,2005,59(4):603-617.