摘""要:為探究水松(Glyptostrobus"pensilis)葉揮發(fā)性成分的地理變化規(guī)律,本研究采用GC-MS方法測(cè)定廣西6個(gè)地理分布(賓陽縣、天等縣、雁山區(qū)、蒼梧縣、平樂縣和覃塘區(qū))的野生水松葉揮發(fā)物成分。結(jié)果表明:不同地理分布水松葉揮發(fā)性成分共檢測(cè)出139種化學(xué)成分,其中,萜烯類的α-蒎烯和D-檸檬烯在各地理分布中的相對(duì)含量均較高,分別為18.61%~28.32%、16.80%~49.02%。通過對(duì)比6個(gè)地理分布水松葉揮發(fā)性成分發(fā)現(xiàn),覃塘區(qū)水松葉揮發(fā)物種類最少,賓陽縣的最多;雁山區(qū)的醇類、芳香烴類、醚類、醛類、萜烯類、酮類和酯類相對(duì)含量均最低,而天等縣的芳香烴類、酚類、醚類、醛類、酸類、萜烯類和烷烴類相對(duì)含量均最高。不同地理分布水松葉揮發(fā)性成分主成分分析表明,前3個(gè)主成分累計(jì)貢獻(xiàn)率達(dá)97.53%,可以反映大部分成分信息,其中,醚類、萜烯類、烷烴類、芳香烴類、酸類、烯烴類、酚類、酯類、酮類、醇類和其他類的特征向量絕對(duì)值較大,是區(qū)分不同地理分布水松的差異性物質(zhì)。聚類分析結(jié)果顯示,覃塘區(qū)、蒼梧縣和雁山區(qū)聚為一組,平樂縣和賓陽縣聚為一組,天等縣單獨(dú)為一組。揮發(fā)性成分與環(huán)境因子的相關(guān)性分析表明,經(jīng)度和海拔對(duì)揮發(fā)性成分含量的影響最大。本研究結(jié)果可為水松的培育和資源利用提供參考依據(jù)。
關(guān)鍵詞:水松;揮發(fā)性成分;GC-MS;地理變化中圖分類號(hào):S791.24;R284.1""""""文獻(xiàn)標(biāo)志碼:A
Differences"in"Volatile"Components"of"Glyptostrobus"pensilis"Leaves"from"Different"Geographic"Distributions
YANG"Xiaojuan1,"LIU"Shinan1,"DENG"Biyu2,3,"LU"Zhihai1,"HUANG"Anshu2,3,"LIANG"Yongyan2,3*
1."College"of"Forestry,"Guangxi"University"/"Guangxi"Colleges"and"Universities"Key"Laboratory"for"Cultivation"and"Utilization"of"Subtropical"Forest"Plantation,"Nanning,"Guangxi"530004,"China;"2."Guangxi"Forest"Resources"and"Environment"Monitoring"Center,"Nanning,"Guangxi"530028,"China;"3."Guangxi"Beihai"Wetland"Ecosystem"National"Observation"and"Research"Station,"Beihai,"Guangxi"536000,"China
Abstract:"GC-MS"method"was"utilized"to"determine"the"volatile"components"of"wild"Glyptostrobus"pensilis"leaves"from"six"geographic"distributions"in"Guangxi"(Binyang"county,"Tiandeng"county,"Yanshan"district,"Cangwu"county,"Pingle"county"and"Qintang"district)"to"investigate"the"geographic"variation"patterns"of"volatile"components"in"the"leaves."A"total"of"139"chemical"components"were"detected"in"the"volatile"components"of"the"leaves"from"different"geographic"distributions."Terpenes"α-pinene"and"D-limonene"had"relatively"high"contents"across"all"geographic"distributions,"ranging"from"18.61%"to"28.32%"and"16.80%"to"49.02%,"respectively."Qintang"had"the"fewest"volatile"species,"while"Binyang"had"the"most."The"relative"contents"of"alcohols,"aromatic"hydrocarbons,"ethers,"aldehydes,"terpenes,"ketones"and"esters"were"the"lowest"in"Yanshan,"whereas"the"relative"contents"of"aromatic"hydrocarbons,"phenols,"ethers,"aldehydes,"acids,"terpenes"and"alkanes"were"the"highest"in"Tiandeng."Principal"component"analysis"(PCA)"showed"that"the"cumulative"contribution"rate"of"the"first"three"principal"components"reached"97.53%,"reflecting"most"of"the"component"information."The"absolute"values"of"characteristic"vectors"for"ethers,"terpenes,"alkanes,"aromatic"hydrocarbons,"acids,"olefins,"phenols,"lipids,"ketones,"alcohols"and"other"compounds"were"larger,"indicating"these"are"the"differential"substances"distinguishing"the"different"geographic"distributions"of"G."pensilis."Cluster"analysis"results"showed"that"Qintang,"Cangwu"and"Yanshan"clustered"into"one"group,"Pingle"and"Binyang"clustered"into"another"group,"and"Tiandeng"formed"a"separate"group."Correlation"analysis"between"volatile"components"and"environmental"factors"indicated"that"longitude"and"altitude"had"the"greatest"impact"on"the"content"of"volatile"components."The"study"would"provide"reference"for"the"cultivation"and"resource"utilization"of"G."pensilis.
Keywords:"Glyptostrobus"pensilis;"volatile"components;"GC-MS;"geographical"variation
DOI:"10.3969/j.issn.1000-2561.2025.02.019
植物在生長(zhǎng)發(fā)育過程中會(huì)釋放大量的次生代謝物,其中,揮發(fā)性有機(jī)物具有抗氧化、抗菌、抗癌等特性[1],能凈化空氣、改善身心健康,目前已被廣泛用于食品、飲料、藥品、香水和化妝品行業(yè)[2]。據(jù)報(bào)道,揮發(fā)性成分對(duì)植物的生長(zhǎng)發(fā)育也起到了至關(guān)重要的作用,揮發(fā)性有機(jī)物作為生長(zhǎng)發(fā)育的調(diào)控信號(hào),有助于植物抵抗外界脅迫并保護(hù)植物自身[3]。如在環(huán)境壓力下,植物能在幾秒內(nèi)迅速釋放有機(jī)物,并在重復(fù)受傷等特殊情況下持續(xù)釋放多日,以觸發(fā)和誘導(dǎo)植物作出防御[4];通過信號(hào)傳導(dǎo),這些揮發(fā)性有機(jī)物還能改變植物激素的動(dòng)態(tài)平衡,對(duì)生物和非生物脅迫作出響應(yīng)[5]。近年來,人們發(fā)現(xiàn)揮發(fā)性有機(jī)物的釋放受海拔、濕度、溫度等影響[6]。任瑞芬等[7]研究了百里香(Thymus"mongolicus)揮發(fā)性物質(zhì)種源變化差異,發(fā)現(xiàn)其萜烯類物質(zhì)與經(jīng)緯位置、海拔、生態(tài)環(huán)境因子以及土壤酸堿度存在顯著相關(guān)性;陳亞菲等[8]認(rèn)為溫度和相對(duì)濕度對(duì)地錢(Marchantia"polymorpha)的揮發(fā)性成分影響最大;劉圓圓等[9]研究發(fā)現(xiàn)不同地區(qū)的山胡椒(Litsea"cubeba)葉揮發(fā)物種類和含量相差較大,可能是當(dāng)?shù)靥厥鈿夂蛩?。由此可見,不同地理分布下植物揮發(fā)物存在差異,探究其差異來源對(duì)植物的保護(hù)和利用具有重要意義。
水松(Glyptostrobus"pensilis)為柏科(Cupressaceae)水松屬(Glyptostrobus"Endl)植物,是我國的特有樹種,屬國家一級(jí)保護(hù)植物,
被稱為植物界的“活化石”,在我國主要分布于珠江三角洲和福建中部以及閩江下游海拔1000"m以下地區(qū),在廣西、江西、四川、南京、武漢、廬山、上海、杭州和云南等地也有少量分布[10]。該植物常見于溫暖濕潤(rùn)地區(qū)以及水濕環(huán)境,多生長(zhǎng)在池塘、河流、湖畔等地。其樹干、樹皮常作為中藥治療類風(fēng)濕性關(guān)節(jié)炎、高血壓、皮炎和燙傷等,葉中存在的萜類物質(zhì)可用于治療慢性粒細(xì)胞性白血病和預(yù)防新型冠狀病毒肺炎[11-12],是開發(fā)利用前景較大的珍貴樹種。當(dāng)前,水松植株主要以天然林零散分布,多呈孤立木,數(shù)量較少[13]。為了加快對(duì)水松的保護(hù)和利用進(jìn)程,需在其現(xiàn)有資源的基礎(chǔ)上進(jìn)行人工栽植和定向培育。目前,有關(guān)外部條件變化對(duì)水松揮發(fā)物釋放規(guī)律的研究較少。因此,本研究采用GC-MS方法測(cè)定廣西6個(gè)不同地理分布(賓陽縣、天等縣、雁山區(qū)、蒼梧縣、平樂縣和覃塘區(qū))水松葉揮發(fā)物成分,探討地理變化對(duì)水松揮發(fā)物的影響,為保護(hù)和培育水松提供理論支撐。
1.1""樣地概況
試驗(yàn)材料采自廣西境內(nèi)6個(gè)不同地區(qū),均為成熟林木,林下植被相似,采樣地分別是貴港覃塘、南寧賓陽、梧州蒼梧、桂林雁山、桂林平樂、崇左天等,具體采樣地位置及2023年氣候環(huán)境見表1。
1.2""方法
1.2.1""樣品采集""于2023年8月進(jìn)行樣品采集,從樹體中上部不同方向隨機(jī)取樣,樣品采集后,置于80"℃烘箱中,烘干至恒重,粉碎,備用。
1.2.2""水松葉揮發(fā)物含量提取及測(cè)定""采用TDS-GC/MS聯(lián)用技術(shù)[14]測(cè)定水松葉片揮發(fā)物的成分。采用HP-5MS型色譜柱(30"m×250"μm×"0.25"μm),初始溫度為40"℃,持續(xù)4"min,以6"℃/min的速率升溫至250"℃,250"℃保持3"min,然后以10"℃/min升溫至270"℃,保持5"min。MS工作條件:電子能量在70"eV的EI模式下對(duì)原子質(zhì)量進(jìn)行掃描,范圍為28~450"m/z,設(shè)離子溫度為230"℃,接口溫度為280"℃,四極桿為150"℃。采用NIST2008譜庫分析質(zhì)譜數(shù)據(jù),結(jié)合人工檢索匹配解譜,采用峰面積表示相對(duì)峰面積。
1.3""數(shù)據(jù)處理
采用Excel"2016軟件對(duì)水松葉揮發(fā)物種類和含量變化進(jìn)行統(tǒng)計(jì),采用SPSS"25.0軟件對(duì)不同地理分布水松葉揮發(fā)性成分進(jìn)行主成分分析、聚類分析和相關(guān)性分析。
2.1""水松葉揮發(fā)性成分的GC-MS分析
經(jīng)GC-MS分析,得到6個(gè)地理分布水松葉揮發(fā)性成分(圖1),結(jié)果表明,在不同地理分布水松葉揮發(fā)性成分中共檢測(cè)出139種化學(xué)成分,包括烯烴類30種、醇類30種、酯類24種、萜烯類16種、醛類10種、酮類7種、芳香烴類5種、酸類3種、烷烴類2種、醚類2種、酚類1種、其他類9種。其中,萜烯類的α-蒎烯和D-檸檬烯的相對(duì)含量分別為18.61%~28.32%、16.80%~"49.02%,二者在各地理分布中的相對(duì)含量均較高。
2.2""不同地理分布水松葉揮發(fā)性成分差異
各地理分布水松葉揮發(fā)性成分種類均以醇類、烯烴類、酯類為多,其次是萜烯類,而酚類、醚類、酸類和烷烴類較少(圖2)。揮發(fā)性成分相對(duì)含量顯示,6個(gè)地理分布中萜烯類的相對(duì)含量均明顯高于其他揮發(fā)物,相對(duì)含量在59.67%~"79.40%之間,相對(duì)含量較高的還有酯類、烯烴類、其他類(圖3)。不同地理分布水松葉揮發(fā)性成分存在差異,各地理分布揮發(fā)物種類中,賓陽(120種)gt;蒼梧(119種)=平樂(119種)gt;雁山(118種)=天等(118種)gt;覃塘(116種),其中,天等的水松葉揮發(fā)物以醇類種類較多,其余5個(gè)分布區(qū)均以烯烴類種類較多。在各地理分布揮發(fā)物的相對(duì)含量中,雁山的醇類、芳香烴類、醚類、醛類、萜烯類、酮類和酯類的相對(duì)含量均最低,而天等的芳香烴類、酚類、醚類、醛類、酸類、萜烯類和烷烴類的相對(duì)含量均最高。主要揮發(fā)物
成分中,各地理分布中的α-蒎烯相對(duì)含量為覃塘(18.61%)lt;天等(19.20%)lt;雁山(22.62%)lt;蒼梧(23.38%)lt;平樂(23.86%)lt;賓陽(28.32%),D-檸檬烯相對(duì)含量為平樂(16.80%)lt;雁山(18.94%)lt;蒼梧(19.35%)lt;賓陽(19.55%)lt;覃塘(22.44%)lt;天等(49.02%),可見,覃塘和天等的α-蒎烯相對(duì)含量較低,但其D-檸檬烯相對(duì)含量較高,其中,天等的D-檸檬烯明顯高于其他地理分布。此外,還發(fā)現(xiàn)對(duì)位薄荷-1(7),8-二烯-2-醇、香芹醇和芳樟醇氧化物A僅存在于天等水松中。
2.3""水松葉揮發(fā)性成分主成分分析
不同地理分布水松葉揮發(fā)性成分的主成分分析結(jié)果表明,前3個(gè)主成分的累計(jì)貢獻(xiàn)率達(dá)97.53%,大于80%,說明前3個(gè)主成分可基本反映水松葉揮發(fā)性成分的大部分信息,因此可以用前3個(gè)主成分來評(píng)價(jià)水松葉揮發(fā)性成分質(zhì)量。由表2可知,第1主成分貢獻(xiàn)率為68.25%,其中,其他類、醚類、萜烯類、烷烴類、芳香烴類、酸類、烯烴類和酚類的特征向量絕對(duì)值均大于0.3,明顯高于其他類別;第2主成分貢獻(xiàn)率為18.47%,其中,酯類和酮類的特征向量絕對(duì)值較大,均大于0.4;第3主成分貢獻(xiàn)率為10.82%,其中,醇類的特征向量絕對(duì)值大于0.7,顯著高于其他類別(表2)。
2.4""水松葉揮發(fā)性成分聚類分析
基于水松葉揮發(fā)性成分含量,采用歐式聚類對(duì)6個(gè)地理分布水松葉揮發(fā)性成分進(jìn)行聚類,結(jié)果如圖4所示,在歐式距離為5處,6個(gè)地理分布被分為3組,其中覃塘、蒼梧和雁山為一組,平樂和賓陽為一組,天等單獨(dú)為一組。
2.5""水松葉揮發(fā)性成分與地理環(huán)境因子的相關(guān)性分析
通過對(duì)水松葉內(nèi)的12類揮發(fā)性物質(zhì)含量與環(huán)境因子進(jìn)行相關(guān)性分析發(fā)現(xiàn),經(jīng)度與醚類、醛類、萜烯類和烷烴類呈顯著負(fù)相關(guān)(Plt;0.05),與烯烴類呈顯著正相關(guān);海拔與其他類呈極顯著負(fù)相關(guān)(Plt;0.01);,與酚類、醚類、醛類、酸類、萜烯類和烷烴類呈顯著或極顯著正相關(guān)緯度、年均氣溫、年均降水量和年均相對(duì)濕度與水松揮發(fā)性物質(zhì)相對(duì)含量的相關(guān)性不顯著(表3)。
采用GC-MS法對(duì)水松葉揮發(fā)性成分進(jìn)行檢測(cè)發(fā)現(xiàn),水松葉揮發(fā)物類型以烯烴類化合物為主,且以萜烯類相對(duì)含量最高,這與前人對(duì)落基山刺柏水杉(Metasequoia"glyptostroboides)[14]、落基山圓柏(Juniperus"scopulorum)[15]和側(cè)柏(Platycladus"orientalis)[16]的研究結(jié)果具有一致性。此外,THAI等[17]曾報(bào)道水松精油的組成以α-蒎烯(18.9%)和檸檬烯(23.9%)為主,HUY等[18]認(rèn)為水松葉中分離出的精油中富含單萜烯,主要含有檸檬烯(33.3%)、α-蒎烯(23.4%)和乙酸冰片酯(9.2%)。本研究中,水松葉揮發(fā)性成分中的α-蒎烯相對(duì)含量(18.61%~28.32%)和D-檸檬烯相對(duì)含量(16.80%~49.02%)明顯高于其他化合物,這與前人研究結(jié)果一致。據(jù)報(bào)道,萜烯類物質(zhì)能有效刺激自律神經(jīng),促進(jìn)內(nèi)分泌,還具安定性情、調(diào)整感覺系統(tǒng)的功效,是藥理活性較強(qiáng)的化合物[19]。其中,α-蒎烯具抗炎、抗腫瘤、鎮(zhèn)靜、抗菌和抗抑郁的功效[20],D-檸檬烯具抗氧化、抗糖尿病、抗癌、保護(hù)心臟、保護(hù)胃、保護(hù)肝臟、免疫調(diào)節(jié)等功效[21],對(duì)人體身心健康具有重要作用。因此,水松具有一定的保健價(jià)值。
植物葉揮發(fā)性成分因地理分布的變化而異[22]。通過對(duì)不同地理分布水松葉揮發(fā)性成分差異研究發(fā)現(xiàn),天等的水松葉揮發(fā)性成分與其他地理分布存在明顯差異,具體表現(xiàn)為天等的水松葉揮發(fā)物以醇類為主,其他地理分布的以烯烴類為主;其次,相比于其他地理分布,天等的水松葉多數(shù)揮發(fā)物成分含量較高,主要化合物中,天等的水松葉中α-蒎烯含量雖較低,而D-檸檬烯含量較高,此外,對(duì)位薄荷-1(7),8-二烯-2-醇、香芹醇和芳樟醇氧化物A僅在天等水松葉中發(fā)現(xiàn)。天等作為本研究中最南部的采樣點(diǎn),與其他地理分布相比,其經(jīng)度較低,海拔較高,地理分布可能是導(dǎo)致其揮發(fā)物存在明顯差異的重要原因。已有研究表明,植物釋放的揮發(fā)性成分能調(diào)節(jié)植物生長(zhǎng)發(fā)育,并在脅迫條件下穩(wěn)定光合機(jī)制,增強(qiáng)植物耐受性[23-24]。因此,研究葉內(nèi)揮發(fā)性成分對(duì)瀕危樹種水松的育種和栽培具有重要意義。本研究通過對(duì)比6個(gè)地理分布野生水松葉揮發(fā)性成分發(fā)現(xiàn),覃塘水松葉揮發(fā)物種類最少,賓陽最多,此外,雁山的醇類、芳香烴類、醚類、醛類、萜烯類、酮類和酯類相對(duì)含量最低,而天等的芳香烴類、酚類、醚類、醛類、酸類、萜烯類和烷烴類相對(duì)含量最高??梢姡斓群唾e陽可以進(jìn)一步作為后續(xù)種質(zhì)資源的篩選。
為進(jìn)一步探究不同地理分布水松葉揮發(fā)性成分的差異,對(duì)6個(gè)地理分布水松葉揮發(fā)性成分進(jìn)行主成分分析、聚類分析和相關(guān)性分析。結(jié)果表明,主成分分析中,前3個(gè)主成分累計(jì)貢獻(xiàn)率達(dá)97.53%,可以反映大部分成分信息。值得注意的是,醚類、萜烯類、烷烴類、芳香烴類、酸類、酚類與第1主成分呈高度正相關(guān),其他類和烯烴類與第1主成分呈高度負(fù)相關(guān),酯類和酮類與第2主成分呈高度正相關(guān),醇類與第3主成分呈高度負(fù)相關(guān),說明這些類別對(duì)水松葉揮發(fā)性成分影響較大,可以作為區(qū)分不同地理分布水松的差異性物質(zhì)。此外,醛類在3個(gè)主成分中的特征向量值均較小,可見,醛類對(duì)總體特征的貢獻(xiàn)度較低,在不同地理區(qū)域中具有穩(wěn)定性,推測(cè)醛類不是影響水松葉揮發(fā)性成分地理分布差異的主要因素。
同一植物不同地理分布揮發(fā)性成分的差異可能歸因于該植物對(duì)特定生境的適應(yīng)[25]。聚類分析表明,覃塘、蒼梧和雁山聚為一組,平樂和賓陽聚為一組,天等單獨(dú)為一組。已有研究證實(shí),氣候和地理環(huán)境是導(dǎo)致植物揮發(fā)性成分產(chǎn)生差異的主要因素,如WALIA等[26]對(duì)不同海拔印加孔雀草(Tagetes"minuta)9種揮發(fā)性成分進(jìn)行研究發(fā)現(xiàn),高海拔地區(qū)的Z-β-香檸烯含量較高,而二氫薄荷酮?jiǎng)t相反。FERNáNDEZ-SESTELO等[27]通過研究認(rèn)為年降水量大,穗薰衣草(Lavandula"latifolia)精油高質(zhì)高產(chǎn),高海拔能獲得高質(zhì)量精油,而低緯度可得到高產(chǎn)量精油。然而,KARIMI等[28]認(rèn)為百日草(Zataria"multiflora)精油含量與海拔呈負(fù)相關(guān),與溫度呈正相關(guān)。因此,我們推測(cè)水松葉揮發(fā)性成分的形成和積累差異,可能是由于不同的氣候、土壤或生態(tài)環(huán)境引起的。為探討水松葉揮發(fā)性成分在不同地理區(qū)域的適應(yīng)機(jī)制,本研究進(jìn)行揮發(fā)性成分與地理氣候因子的關(guān)聯(lián)分析,結(jié)果表明,水松葉多數(shù)揮發(fā)性成分與經(jīng)度呈顯著負(fù)相關(guān),與海拔呈顯著正相關(guān),而與緯度和氣候因素(年均降水量、年均氣溫和年均相對(duì)濕度)無顯著相關(guān)性。這也意味著,經(jīng)度和海拔是影響水松葉揮發(fā)性成分的主要因子,隨經(jīng)度降低,海拔升高,揮發(fā)性成分含量越高。因此,在進(jìn)行水松培育時(shí),應(yīng)考慮栽植地的經(jīng)度和海拔等環(huán)境因子。
參考文獻(xiàn)
[1]"ALAM"A,"JAWAID"T,"ALSANAD"S"M,"KAMAL"M,"BALAHA"M"F."Composition,"antibacterial"efficacy,"and"anticancer"activity"of"essential"oil"extracted"from"Psidium"guajava"(L.)"leaves[J]."Plants"(Basel),"2023,"12(2):"246.
[2]"BUGHIO"S"H,"BHATTI"S,"MEMON"S,"MEMON"A"A,"SAMEJO"M"Q,"MEMON"R,"KAZI"M,"THEBO"K"H."Phytochemical"and"antibacterial"assessment"of"essential"oils"extracted"from"aerial"parts"ofnbsp;Cordia"dichotoma"G."Forst[J]."International"Journal"of"Food"Properties,"2024,"27(1):"632-640.
[3]"韋賽君."3種植物揮發(fā)物對(duì)空氣負(fù)離子及空氣微生物的影響[D]."杭州:"浙江農(nóng)林大學(xué),"2021.""WEI"S"J."Effects"of"three"plant"volatiles"on"negative"air"ions"and"air"microorganisms[D]."Hangzhou:"Zhejiang"A"amp;"F"University,"2021."(in"Chinese)
[4]"SCALA"A,"ALLMANN"S,"MIRABELLA"R,"HARING"M"A,"SCHUURINK"R"C."Green"leaf"volatiles:"a"plant’s"multifunctional"weapon"against"herbivores"and"pathogens[J]."International"Journal"of"Molecular"Sciences,"2013,"14(9):"17781-17811.
[5]"ESCOBAR-BRAVO"R,"LIN"P"A,"WATERMAN"J"M,"ERB"M."Dynamic"environmental"interactions"shaped"by"vegetative"plant"volatiles[J]."Natural"Product"Reports,"2023,"40(4):"840-865.
[6]"歐陽嗣航,"劉葉凡,"韓陽媚,"程順,"王秀敏,"李玉靈."植物揮發(fā)物釋放特征及其影響因素研究進(jìn)展[J]."林業(yè)與生態(tài)科學(xué),"2023,"38(3):"375-384.OUYANG"S"H,"LIU"Y"F,"HAN"Y"M,"CHENG"S,"WANG"X"M,"LI"Y"L."Research"progress"on"the"release"characteristics"of"biogenic"volatile"organic"compounds"and"its"influencing"factors[J]."Forestry"and"Ecologica"Sciences,"2023,"38(3):"375-384."(in"Chinese)
[7]"任瑞芬,"楊秀云,"劉濤."種源差異對(duì)百里香揮發(fā)性物質(zhì)種類和含量的影響[J]."西北林學(xué)院學(xué)報(bào),"2023,"38(1):"139-145.REN"R"F,"YANG"X"Y,"LIU"T."Effects"of"provenance"difference"on"the"type"and"content"of"volatile"compounds"in"Thymus"mongolicus"leaves[J]."Journal"of"Northwest"Forestry"University,"2023,"38(1):"139-145."(in"Chinese)
[8]"陳亞菲,"楊茹畫,"吳敬陳,"杜澤萱,"王麗."成都不同地區(qū)地錢揮發(fā)油成分的差異性[J]."應(yīng)用與環(huán)境生物學(xué)報(bào),"2019,"25(5):"1176-1184.CHEN"Y"F,"YANG"R"H,"WU"J"C,"DU"Z"X,"WANG"L."Volatile"oil"components"of"Marchantia"polymorpha"in"different"areas"of"Chengdu[J]."Chinese"Journal"of"Applied"amp;"Environmental"Biology,"2019,"25(5):"1176-1184."(in"Chinese)
[9]"劉圓圓,"彭瑋瑤,"張健,"查云盛,"何江斌,"友勝軍,"黎平,"顏健,"胡劍."3個(gè)不同地區(qū)山胡椒的果、莖、葉揮發(fā)性成分分析[J]."熱帶作物學(xué)報(bào),"2022,"43(8):"1703-1715."LIU"Y"Y,"PENG"W"Y,"ZHANG"J,"CHAnbsp;Y"S,"HE"J"B,"YOU"S"J,"LI"P,"YAN"J,"HU"J."Analysis"of"volatile"chemical"constituent"in"fruits,"stems"and"leaves"of"Litsea"cubeba"from"three"regions[J]."Chinese"Journal"of"Tropical"Crops,"2022,"43(8):"1703-1715."(in"Chinese)
[10]"汪榮."福建水松種群分布及特征研究[J]."福建師范大學(xué)學(xué)報(bào)(自然科學(xué)版),"2023,"39(6):"104-110."WANG"R."Study"on"the"distribution"and"characteristics"of"Glyptostrobus"pensilis"population"in"Fujian"province[J]."Journal"of"Fujian"Normal"University"(Natural"Science"Edition),"2023,"39(6):"104-110."(in"Chinese)
[11]"PHONG"N"V,"TRANG"N"M,"QUYEN"C"T,"ANH"H"L"T,"VINH"L"B."SARS-CoV-2"main"protease"and"papain-like"protease"inhibition"by"abietane-type"diterpenes"isolated"from"the"branches"of"Glyptostrobus"pensilis"using"molecular"docking"studies[J]."Natural"Product"Research,"2022,"36(24):"6343.
[12]"ZHANG"Y"M,"YIN"R"T,"JIA"R"R,"YANG"E"H,"XU"H"M,"TAN"N"H."A"new"abietane"diterpene"from"Glyptostrobus"pensilis[J]."Fitoterapia,"2010,"81(8):"1202-1204.
[13]"TANG"C"Q,"YANG"Y,"MOMOHARA"A,"WANG"H"C,"LUU"H"T,"LI"S,"SONG"K,"QIAN"S,"LEPAGE"B,"DONG"Y"F,"HAN"P"B,"OHSAWA"M,"LE"B"T,"TRAN"H"D,"DANG"M"T,"PENG"M"C,nbsp;WANG"C"Y."Forest"characteristics"and"population"structure"of"Glyptostrobus"pensilis,"a"globally"endangered"relict"species"of"southeastern"China[J]."Plant"Diversity,"2019,"41(4):"237-249.
[14]"殷倩."3種杉科植物揮發(fā)物組分測(cè)定及其園林綠地應(yīng)用分析[D]."杭州:"浙江農(nóng)林大學(xué),"2013."YIN"Q."Composition"of"volatile"organic"compounds"VOCs"in"three"Taxodiaceae"plants"and"the"application"of"landscape"architecture[D]."Hangzhou:"Zhejiang"A"amp;"F"University,"2013."(in"Chinese)
[15]"POULSON"A,"WILSON"T"M,"PACKER"C,"CARLSON"R"E,"BUCH"R"M."Aromatic"profiles"of"trunk,"limb,"and"leaf"essential"oils"of"Juniperus"scopulorum"(Cupressaceae)"from"Utah[J]."Phytologia,"2021,"103(1):"10-17.
[16]"李娟."側(cè)柏和油松揮發(fā)物動(dòng)態(tài)變化規(guī)律研究[D]."北京:"中國林業(yè)科學(xué)研究院,"2009."LI"J."The"VOCs"emittion"of"two"tree"species"of"Platycladusorientalis"and"Pinus"tabulaeformis"in"urban"environment[D]."Beijing:"Chinese"Academy"of"Forestry,"2009."(in"Chinese)
[17]"THAI"T"H."Chemical"composition"of"the"woods"oil"of"Glyptostrobus"pensilis"(Staunton"ex"D."Don)"K."Koch"from"Vietnam[J]."Academia"Journal"of"Biology,"2012,"34(2):"204-206.
[18]"HUY"THAI"T,"PAOLI"M,"THI"HIEN"N,"QUANG"HUNG"N,"BIGHELLI"A,"CASANOVA"J,"TOMI"F."Combined"analysis"by"GC(RI),"GC-MS"and"13C"NMR"of"leaf"and"wood"essential"oils"from"vietnamese"Glyptostrobus"pensilis"(Staunton"ex"d."Don)"K."Koch[J]."Compounds,"2023,"3(3):"447-458.
[19]"JI"W,"JI"X."Comparative"analysis"of"volatile"terpenes"and"terpenoids"in"the"leaves"of"Pinus"species-a"potentially"abundant"renewable"resource[J]."Molecules,"2021,"26(17):"5244.
[20]"ZORI?"M,"FARKI?"J,"KEBERT"M,"MLADENOVI?"E,"KARAKLI?"D,"ISAILOVI?"G,"ORLOVI?"S."Developing"forest"therapy"programmes"based"on"the"health"benefits"of"terpenes"in"dominant"tree"species"in"Tara"National"Park"(Serbia)[J]."International"Journal"of"Environmental"Research"and"Public"Health,"2022,"19(9):"5504
[21]"ANANDAKUMAR"P,"KAMARAJ"S,"VANITHA"M"K."D-limonene:"a"multifunctional"compound"with"potent"therapeutic"effects[J]."Journal"of"Food"Biochemistry,"2021,"45(1):"e13566.
[22]"SANTOS"S"M"D,"CARDOSO"C"A"L,"JUNIOR"P"C"D"O,"SILVA"M"E"D,"PEREIRA"Z"V,"SILVA"R"M"M"F,"FORMAGIO"A"S"N."Seasonal"and"geographical"variation"in"the"chemical"composition"of"essential"oil"from"Allophylus"edulis"leaves[J]."South"African"Journal"of"Botany,"2023,"154:"41-45.
[23]"CHEN"X,"NOWICKI"M,"WADL"P"A,"ZHANG"C,"K?LLNER"T"G,"PAYá-MILANS"M,"HUFF"M"L,"STATON"M"E,"CHEN"F,"TRIGIANO"R"N."Chemical"profile"and"analysis"of"biosynthetic"pathways"and"genes"of"volatile"terpenes"in"Pityopsis"ruthii,"a"rare"and"endangered"flowering"plant[J]."PLoS"One,"2023,"18(6):"e287524.
[24]"LI"C,"ZHA"W,"LI"W,"YOU"A."Advances"in"the"biosynthesis"of"terpenoids"and"their"ecological"functions"in"plant"resistance[J]."International"Journal"of"Molecular"Sciences,"2023,"24(14):"11561.
[25]"HEYDARI"Z,"JAFARI"L,"YAVARI"A."Diversity"in"essential"oil"compounds"in"relation"to"different"geographic"origins"and"plant"organs"of"Salvia"sharifii[J]."Journal"of"Medicinal"Plants"and"By-Products,"2023,"12(1):"83-92.
[26]"WALIA"S,"MUKHIA"S,"BHATT"V,"KUMAR"R,"KUMAR"R."Variability"in"chemical"composition"and"antimicrobial"activity"of"Tagetes"minuta"L."essential"oil"collected"from"different"locations"of"himalaya[J]."Industrial"Crops"and"Products,"2020,"150:"112449.
[27]"FERNáNDEZ-SESTELO"M,"CARRILLO-AGRICULTURE"J"M."Environmental"effects"on"yield"and"composition"of"essential"oil"in"wild"populations"of"spike"lavender"(Lavandula"latifolia"Medik.)[J]."Agriculture"(Basel),"2020,"10(12):"626.
[28]"KARIMI"A,"KR?HMER"A,"HERWIG"N,"SCHULZ"H,"HADIAN"J,"MEINERS"T."Variation"of"secondary"metabolite"profile"of"Zataria"multiflora"Boiss."populations"linked"to"geographic,"climatic,"and"edaphic"factors[J]."Frontiers"in"Plant"Science,"2020,"11:"969.