Prognostic analysis of genes related to pyroptosis in prostate cancer cells and the regulatory role of NLRP1
MA Xiaolu,CHEN Jiaqin,F(xiàn)ENG Junlong,ZHAO Qi,WANG Bin
(Department of Andrology,Dongzhimen Hospital,Beijing University of Chinese Medicine,Beijing 100029,China)
ABSTRACT:Objective To analyze the prognostic value of prostate cancer (PCa) pyroptosis-related genes (PRGs) using gene expression databases and to explore the regulatory mechanism of nucleotidebinding oligomerization domain-like receptor containing pyrin domain 1 (NLRP1) in the pyroptosis of PCa cells.Methods Fragments per kilobase of exon model per million reads mapped (FPKM) data and clinical information from PCa and adjacent tissues from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) were obtained. Differentially expressed PRGs between PCa and adjacent tissues,classified subtypes and plotted survival curves were analyzed. Univariate Cox regression analysis,least absolute shrinkage and selection operator (LASSO) regression analysis were conducted to screen prognosis-related PRGs,risk scores were calculated,and a prognostic risk model was constructed and validated. Patients were divided into high and low risk groups based on the median risk scores from the training and validation sets,and gene ontology (GO) enrichment and kyoto encyclopedia of genes and genomes (KEGG) analysis were conducted on differentially expressed PRGs. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect the expression level of NLRP1 in PCa cell lines,and pyroptosis was induced in DU145 and LNCaP cells while morphological changes were observed. Western blot (WB) was performed to detect the expression of pyroptosis-related molecules.Results A total of 6 prognostic-related PRGs were obtained,including CHMP4C,CYCS,GPX4,GSDMB,NLRP1,and PLCG1. The risk score was positively correlated with the risk of recurrence but negatively correlated with the progression-free survival (Plt;0.001). The area under the receiver operating characteristic curves (AUCs) for the training set at 1,3,and 5 years were 0.769 (95%CI:0.652-0.878),0.804 (95%CI:0.736-0.882),and 0.772 (95%CI:0.631-0.905),respectively,while those for the validation set were 0.731 (95%CI:0.647-0.826),0.753 (95%CI:0.674-0.818),and 0.763 (95%CI:0.626-0.849),respectively. Differences in expression levels of the 6 PRGs were observed between the high and low risk groups in both the training and validation sets (Plt;0.05). Cox regression analysis showed that T stage,prostate specific antigen (PSA),Gleason grade,and risk score were independent predictors of PCa prognosis (Plt;0.05). Differences in risk scores were observed among patients of different ages,T stages,and Gleason grades (Plt;0.05). NLRP1 was found to be lowly expressed in PCa cell lines and was involved in the regulation of pyroptosis in DU145 and LNCaP cells.Conclusion The prognostic risk model constructed based on PRGs has a certain predictability for the prognosis of PCa patients,and NLRP1 may be involved in the regulation of pyroptosis in PCa cells.
KEY WORDS:prostate cancer; pyroptosis; nucleotidebinding oligomerization domain-like receptor containing pyrin domain 1; The Cancer Genome Atlas
摘要:目的 利用基因表達(dá)數(shù)據(jù)庫分析前列腺癌(PCa)細(xì)胞焦亡相關(guān)基因(PRGs)與PCa預(yù)后的關(guān)系,探究核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體1(NLRP1)在PCa細(xì)胞焦亡中的調(diào)節(jié)機(jī)制。方法 從癌癥基因組圖譜(TCGA)數(shù)據(jù)庫、基因表達(dá)綜合數(shù)據(jù)庫(GEO)獲取PCa、癌旁正常組織每千個堿基的轉(zhuǎn)錄每百萬映射讀取的片段(FPKM)數(shù)據(jù)及臨床資料。分析PCa與癌旁正常組織差異表達(dá)的PRGs,劃分亞型并繪制生存曲線。單因素Cox回歸分析、最小絕對收縮選擇算子(LASSO)回歸分析篩選預(yù)后相關(guān)PRGs,計算風(fēng)險評分,建立預(yù)后風(fēng)險模型并進(jìn)行驗證。以訓(xùn)練集、驗證集的中位風(fēng)險評分將患者分為高、低風(fēng)險組,對差異表達(dá)的PRGs進(jìn)行基因本體論(GO)富集和京都基因與基因組百科全書(KEGG)分析。實時熒光定量聚合酶鏈?zhǔn)椒磻?yīng)(qRT-PCR)檢測PCa細(xì)胞系NLRP1表達(dá)水平,誘導(dǎo)DU145、LNCaP細(xì)胞焦亡并觀察形態(tài)變化,蛋白質(zhì)免疫印跡法(WB)檢測焦亡相關(guān)分子表達(dá)。結(jié)果共獲得CHMP4C、CYCS、GPX4、GSDMB、NLRP1、PLCG1 6個具有預(yù)后價值的PRGs,患者風(fēng)險評分與復(fù)發(fā)風(fēng)險呈正相關(guān),與無進(jìn)展生存期呈負(fù)相關(guān)(P<0.001)。訓(xùn)練集1、3、5年AUC分別為0.769(95%CI:0.652~0.878)、0.804(95%CI:0.736~0.882)、0.772(95%CI:0.631~0.905),驗證集分別為0.731(95%CI:0.647~0.826)、0.753(95%CI:0.674~0.818)、0.763(95%CI:0.626~0.849)。訓(xùn)練集和驗證集中高、低風(fēng)險組的6個PRGs表達(dá)水平均存在差異(P<0.05)。Cox回歸分析顯示T分期、前列腺特異性抗原(PSA)、Gleason分級、風(fēng)險評分為PCa預(yù)后的獨立預(yù)測因素(P<0.05),年齡、T分期、Gleason分級患者其風(fēng)險評分差異均有統(tǒng)計學(xué)意義(P<0.05)。NLRP1在PCa細(xì)胞系中低表達(dá),參與DU145、LNCaP細(xì)胞焦亡調(diào)節(jié)。結(jié)論 基于PRGs構(gòu)建的預(yù)后風(fēng)險模型對PCa患者預(yù)后具有一定預(yù)測能力,NLRP1可能參與了PCa細(xì)胞焦亡的調(diào)節(jié)過程。
關(guān)鍵詞:前列腺癌;細(xì)胞焦亡;核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體1;癌癥基因組圖譜數(shù)據(jù)庫
中圖分類號:R737.25"" 文獻(xiàn)標(biāo)志碼:A
DOI:10.3969/j.issn.1009-8291.2025.01.015
前列腺癌(prostate cancer,PCa)是男性泌尿生殖系統(tǒng)常見惡性腫瘤,多發(fā)于中老年男性[1-2]。盡管手術(shù)治療或放療對局限性PCa療效顯著,但術(shù)后仍有較高的復(fù)發(fā)和轉(zhuǎn)移率[3-5]。常用的PCa預(yù)后指標(biāo)如Gleason評分、前列腺特異性抗原(prostate specific antigen,PSA)等在預(yù)測患者生化復(fù)發(fā)時間方面能力有限[6]。因此,探索更加準(zhǔn)確、特異性更高的生物標(biāo)志物對指導(dǎo)PCa患者治療、預(yù)測預(yù)后至關(guān)重要。細(xì)胞焦亡由炎性小體與Gasdermin蛋白(GSDM)家族介導(dǎo)[7-8]。核苷酸結(jié)合寡聚化結(jié)構(gòu)域樣受體(nucleotidebinding oligomerization domain-like receptor containing pyrin domain,NLRP)等炎性小體募集并結(jié)合含有胱天蛋白酶募集結(jié)構(gòu)域的細(xì)胞凋亡相關(guān)斑點樣蛋白(apoptosis-associated specklike protein containing a caspase recruitment domain,ASC)形成復(fù)合物,該復(fù)合物募集caspase-1前體激活caspase-1[9]。caspase-1參與切割Gasdermin D蛋白(GSDMD),GSDMD的N-末端片段(GSDMD-N)在質(zhì)膜上形成孔洞,導(dǎo)致細(xì)胞滲透性裂解并釋放炎性因子[10-11]。近期研究顯示,細(xì)胞焦亡相關(guān)基因(pyroptosis-related genes,PRGs)對PCa預(yù)后具有一定預(yù)測能力[12-13]。本次研究基于基因表達(dá)數(shù)據(jù)庫數(shù)據(jù)篩選預(yù)后相關(guān)PRGs,構(gòu)建PCa預(yù)后風(fēng)險模型,探究NLRP1在PCa中的調(diào)節(jié)機(jī)制,旨在為預(yù)測PCa患者預(yù)后、提高疾病治療效果提供參考。
1 資料與方法
1.1 數(shù)據(jù)收集 從癌癥基因組圖譜(The Cancer Genome Atlas,TCGA)(https://cancergenome.nih.gov/)數(shù)據(jù)庫獲取495例PCa組織和52例癌旁正常組織的每千個堿基的轉(zhuǎn)錄每百萬映射讀取的片段(fragments per kilobase of exon model per million reads mapped,F(xiàn)PKM)數(shù)據(jù)及生存狀態(tài)、生存時間、年齡、TNM分期、PSA、Gleason分級等臨床資料,從基因表達(dá)綜合數(shù)據(jù)庫(Gene Expression Omnibus,GEO,https://www.ncbi.nlm.nih.gov/geo/)獲取92例PCa患者的FPKM數(shù)據(jù)及相應(yīng)臨床資料。FPKM數(shù)據(jù)表達(dá)水平通過log2(FPKM+1)進(jìn)行對數(shù)轉(zhuǎn)換。PRGs來自分子特征數(shù)據(jù)庫(molecular signatures database,MSigDB)(http://www.gsea-msigdb.org/gsea/msigdb/search.jsp)。
1.2 預(yù)后相關(guān)PRGs的鑒定 使用R軟件(4.1.2版本)“l(fā)imma”包分析PCa組織與癌旁正常組織間差異表達(dá)的PRGs,篩選條件:|log2(Fold Change)|>1、偽發(fā)現(xiàn)率(1 discovery rate,F(xiàn)DR)<0.05。使用“pheatmap”包繪制熱圖,使用STRING網(wǎng)站(https://cn.string-db.org/)繪制PCa中差異表達(dá)PRGs的相互作用網(wǎng)絡(luò)。使用“ConsensusClusterPlus”包對PCa組織進(jìn)行無監(jiān)督聚類分析,劃分亞型,使用“survival”“survminer”包繪制不同亞型的生存曲線。使用單因素Cox回歸分析篩選與預(yù)后相關(guān)的PRGs,使用“glmnet”包進(jìn)行最小絕對收縮選擇算子(least absolute shrinkage and selection operator,LASSO)回歸分析,剔除過擬合的PRGs,通過多因素Cox回歸分析確定與預(yù)后相關(guān)的PRGs。
1.3 基于PRGs的預(yù)后風(fēng)險模型的構(gòu)建與驗證 將TCGA數(shù)據(jù)庫來源的樣本作為訓(xùn)練集,GEO數(shù)據(jù)庫來源的樣本作為驗證集,訓(xùn)練集與驗證集基線資料差異均無統(tǒng)計學(xué)意義(P>0.05),具有可比性。計算患者風(fēng)險評分,公式risk score=∑ni=1coef(i)×expr(i),其中n、coef(i)和expr(i)分別代表PRGs的數(shù)量、相應(yīng)系數(shù)和相應(yīng)表達(dá)水平。根據(jù)中位風(fēng)險評分將所有患者分為高、低風(fēng)險組,使用“survival”“survminer”包繪制生存曲線,使用“timeROC”包繪制受試者工作特征(receiver operating characteristic,ROC)曲線對預(yù)后風(fēng)險模型進(jìn)行評估,計算ROC曲線下面積(area under the curve,AUC)。
1.4 預(yù)后相關(guān)PRGs的功能富集分析 使用“l(fā)imma”包分析高、低風(fēng)險組間差異表達(dá)的PRGs,篩選條件:|log2(Fold Change)|>0.585、FDR<0.05。使用“clusterProfiler”包對差異表達(dá)的PRGs進(jìn)行基因本體論(gene ontology,GO)富集分析和京都基因與基因組百科全書(kyoto encyclopedia of genes and genomes,KEGG)分析。
1.5 細(xì)胞培養(yǎng)與分組 人PCa細(xì)胞系22RV1(貨號FY-22FN0730)、C4-2(貨號FY-22FN0914)、DU145(貨號FY-22FN0787)、LNCaP(貨號FY-XM091)、PC-3(貨號FY-22FN2155)、人正常前列腺上皮細(xì)胞RWPE-1細(xì)胞(貨號FY-FN4131),均購自上海富雨生物科技有限公司。重組質(zhì)粒sh-NLRP1購自上海生博生物醫(yī)藥科技有限公司。使用含10%(體積分?jǐn)?shù))胎牛血清、1%(體積分?jǐn)?shù))青霉素/鏈霉素的RPMI-1640培養(yǎng)基,在37 ℃、5% CO2的培養(yǎng)箱中進(jìn)行細(xì)胞培養(yǎng)。DU145、LNCaP細(xì)胞分為對照組、焦亡組、sh-NLRP1組。對照組正常培養(yǎng),焦亡組培養(yǎng)基中加入1 μg/mL脂多糖(lipopolysaccharide,LPS),培養(yǎng)5.5 h后加入5 mmol三磷酸腺苷(adenosine triphosphate,ATP)作用0.5 h。sh-NLRP1組轉(zhuǎn)染sh-NLRP1后向培養(yǎng)基中加入1 μg/mL LPS,培養(yǎng)5.5 h后加入5 mmol ATP作用0.5 h。收集各組細(xì)胞用于后續(xù)實驗。
1.6 實時熒光定量聚合酶鏈?zhǔn)椒磻?yīng)(quantitative real-time polymerase chain reaction,qRT-PCR)檢測NLRP1表達(dá) 使用TRIzol試劑提取細(xì)胞總RNA,反轉(zhuǎn)錄成cDNA,配制20 μL聚合酶鏈?zhǔn)椒磻?yīng)(polymerase chain reaction,PCR)反應(yīng)體系。反應(yīng)條件:94 ℃預(yù)變性2 min,95 ℃ 30 s,95 ℃ 5 s,60 ℃ 30 s,循環(huán)40次。引物序列見表1。使用ABI 7500實時熒光定量PCR儀完成qRT-PCR操作,應(yīng)用2-△△Ct法計算基因相對表達(dá)水平。
1.7 蛋白質(zhì)免疫印跡法(western blot,WB)檢測細(xì)胞焦亡信號通路相關(guān)分子表達(dá) 取細(xì)胞沉淀加入適量裂解液,4 ℃孵育30 min。4 ℃、10 000轉(zhuǎn)/min離心10 min,取上清液制樣。經(jīng)電泳、轉(zhuǎn)膜,截取目的條帶浸于封閉液中,室溫封閉1 h。加入1∶500稀釋的一抗孵育液,4 ℃過夜。洗膜,加入1∶5000稀釋的對應(yīng)二抗孵育液,室溫孵育2 h,洗膜,加入增強(qiáng)型化學(xué)發(fā)光試劑,避光反應(yīng)5 min,收集熒光圖像結(jié)果。一抗:NLRP1(貨號ab36852)、ASC(貨號ab283684)、pro-caspase-1(貨號ab179515)、GSDMD(貨號ab219800)、GSDMD-N(貨號ab215203),購自英國Abcam公司;C-caspase-1(貨號89332),購自美國CST公司。二抗:β-肌動蛋白(β-actin,貨號ab8227),購自英國Abcam公司。
1.8 統(tǒng)計學(xué)方法 使用SPSS 24.0統(tǒng)計學(xué)軟件進(jìn)行數(shù)據(jù)分析,計量資料以±s表示,正態(tài)分布數(shù)據(jù)采用t檢驗,非正態(tài)分布數(shù)據(jù)采用Wilcoxon檢驗,計數(shù)資料以例(%)表示,采用χ2檢驗或Fishers檢驗,Kaplan-Meier生存分析采用對數(shù)秩檢驗,相關(guān)性分析采用Wilcoxon、Kruskal-Wallis檢驗,檢驗水準(zhǔn) α=0.05。
2 結(jié) 果
2.1 PRGs在PCa中的表達(dá)以及PRGs之間的相關(guān)性 從MSigDB數(shù)據(jù)庫共獲得了52個PRGs,在TCGA數(shù)據(jù)庫PCa組織與癌旁正常組織中,共35個PRGs存在表達(dá)差異,IL-1α、TP63、ELANE、IL-6、CASP1、GSDME、NLRP1、IL-18、NOD2、PYCARD、IL-1β、NLRP7、CHMP3、IRF2、PRKACA、TNF、CHMP7、CASP5、CHMP2B、PJVK、NOD1、HMGB1、GSDMD在PCa組織中呈低表達(dá),BAK1、CASP6、CYCS、PLCG1、TP53、CHMP2A、CASP8、GPX4、BAX、CHMP4C、GSDMB、GSDMA在PCa組織中呈高表達(dá)(圖1A)。相互作用網(wǎng)絡(luò)顯示,35個PRGs之間具有豐富的相互作用,其中CASP5、GSDMD、IL-18、CASP1、TNF、IL-1α、IL-6、IL-1β、NLRP1、PYCARD為樞紐基因(圖1B~C)。對TCGA數(shù)據(jù)庫來源樣本進(jìn)行無監(jiān)督聚類分析,聚類變量k=2時數(shù)據(jù)被分為兩組,1組271例,2組224例(圖1D),與1組相比,2組無進(jìn)展生存率較高,差異有統(tǒng)計學(xué)意義(P=0.05,圖1E)。
2.2 基于PRGs的預(yù)后風(fēng)險模型的建立與驗證 采用單因素Cox回歸分析從35個差異表達(dá)的PRGs中進(jìn)一步篩選出了13個與預(yù)后相關(guān)的PRGs(圖2A),通過LASSO-Cox回歸分析最終確定了6個具有預(yù)后價值的PRGs并建立風(fēng)險預(yù)后模型(圖2B~C)。風(fēng)險評分=(0.298 5×CHMP4C)+(0.562 5×CYCS)+(0.624 3×GPX4)+(0.310 2×GSDMB)+(1.020 9×NLRP1)+(0.924 2×PLCG1)。以訓(xùn)練集(n=495)的中位風(fēng)險評分0.873為臨界值,將患者分為低風(fēng)險組(n=248)與高風(fēng)險組(n=247),患者風(fēng)險評分與復(fù)發(fā)風(fēng)險正相關(guān),與無進(jìn)展生存期負(fù)相關(guān)(P<0.001,圖2D~E)。1、3、5年ROC曲線的AUC分別為0.769(95%CI:0.652~0.878)、0.804(95%CI:0.736~0.882)、0.772(95%CI:0.631~0.905)(圖2F)。繪制預(yù)后相關(guān)PRGs表達(dá)熱圖,與低風(fēng)險組相比,高風(fēng)險組6個PRGs表達(dá)水平均較高(P<0.05,圖2G)。
同樣計算驗證集(n=92)樣本的風(fēng)險評分,以臨界值0.873將患者分為低風(fēng)險組(n=51)與高風(fēng)險組(n=41),患者風(fēng)險評分與復(fù)發(fā)風(fēng)險正相關(guān),與無進(jìn)展生存期負(fù)相關(guān)(P<0.001,圖2H~I(xiàn)),1、3、5年ROC曲線AUC分別為0.731(95%CI:0.647~0.826)、0.753(95%CI:0.674~0.818)、0.763(95%CI:0.626~0.849)(圖2J),與低風(fēng)險組相比,高風(fēng)險組CHMP4C、GPX4、GSDMB、NLRP1、PLCG1表達(dá)水平較高,CYCS表達(dá)水平較低(P<0.05,圖2K)。
2.3 風(fēng)險評分與PCa臨床病理因素的關(guān)系 分別對訓(xùn)練集(n=495)與驗證集(n=92)患者的風(fēng)險評分和不同臨床特征進(jìn)行單因素、多因素Cox回歸分析(自變量為年齡、T分期、PSA水平、Gleason分級、風(fēng)險評分,因變量為PCa患者無進(jìn)展生存期),結(jié)果顯示在訓(xùn)練集與驗證集中,T分期、PSA水平、Gleason分級、風(fēng)險評分為PCa預(yù)后的獨立預(yù)測因素(P<0.05)(圖3A~B)。相關(guān)性分析結(jié)果顯示,在訓(xùn)練集與驗證集中,年齡、T分期、Gleason分級的患者其風(fēng)險評分差異均具有統(tǒng)計學(xué)意義(P<0.05,圖3C~D)。
2.4 預(yù)后相關(guān)PRGs的GO和KEGG功能分析 GO富集結(jié)果顯示,預(yù)后相關(guān)PRGs與細(xì)胞器裂變、核分裂、染色體分離等細(xì)胞周期相關(guān)生物學(xué)過程密切相關(guān)(圖4A);KEGG分析結(jié)果顯示,預(yù)后相關(guān)PRGs與神經(jīng)活性配體-受體相互作用、細(xì)胞因子-細(xì)胞因子受體相互作用、細(xì)胞周期等過程密切相關(guān)(圖4B)。
2.5 NLRP1在不同PCa細(xì)胞中的表達(dá)及不同組間細(xì)胞焦亡情況比較 qRT-PCR檢測結(jié)果顯示,與RWPE-1細(xì)胞比較,22RV1、C4-2、DU145、LNCaP、PC-3細(xì)胞中NLRP1的相對表達(dá)水平均更低(P<0.05,圖5A),其中DU145、LNCaP細(xì)胞的NLRP1相對表達(dá)水平最低,因此選擇這兩種細(xì)胞進(jìn)行后續(xù)實驗。光學(xué)顯微鏡下拍攝結(jié)果顯示,與DU145、LNCaP細(xì)胞對照組相比,焦亡組焦亡細(xì)胞數(shù)量增加(P<0.05);與焦亡組相比,sh-NLRP1組焦亡細(xì)胞數(shù)量減少(P<0.05,圖5B、C)。
2.6 NLRP1介導(dǎo)PCa細(xì)胞焦亡 WB檢測結(jié)果顯示,與DU145、LNCaP細(xì)胞對照組比較,焦亡組NLRP1、ASC、C-caspase-1、GSDMD-N的相對表達(dá)水平升高(P<0.05);與焦亡組比較,sh-NLRP1組NLRP1、ASC、C-caspase-1、GSDMD-N的相對表達(dá)水平降低(P<0.05,圖6)。
3 討 論
盡管PCa的治療效果已獲得顯著提升,但仍有30%~40%的患者接受局部治療后出現(xiàn)轉(zhuǎn)移或復(fù)發(fā)[14-15]。生化復(fù)發(fā)是指接受根治性治療后患者血清PSA水平連續(xù)2次>0.2 ng/mL,促進(jìn)晚期去勢抵抗性PCa發(fā)展,提高遠(yuǎn)處轉(zhuǎn)移風(fēng)險與死亡率[16-18]。已有多項研究分析了細(xì)胞焦亡在多種癌癥中的作用,并建立了能夠有效預(yù)測患者預(yù)后和治療反應(yīng)的模型[19-21]。本研究首先分析了TCGA數(shù)據(jù)庫來源的PCa與癌旁正常組織間差異表達(dá)的PRGs,通過單因素Cox回歸分析、LASSO-Cox回歸分析最終獲得了CHMP4C、CYCS、GPX4、GSDMB、NLRP1與PLCG1共6個具有預(yù)后價值的PRGs。CHMP4C是ESCRT-Ⅲ的一個亞基,在PCa組織中表達(dá)升高,其對細(xì)胞分裂脫落過程的調(diào)控失調(diào)可能與致癌基因誘導(dǎo)的有絲分裂應(yīng)激協(xié)同作用,促進(jìn)腫瘤發(fā)生[22-24]。CYCS涉及多種調(diào)控性細(xì)胞死亡形式[25-26],BAZYLIANSKA等[27]的研究顯示,CYCS的K53乙?;瘏⑴cPCa逃避細(xì)胞凋亡機(jī)制。GPX4是一種專門還原磷脂過氧化物修復(fù)氧化性脂質(zhì)損傷的酶,有助于減弱敗血癥中的脂質(zhì)過氧化、炎癥小體激活和細(xì)胞焦亡[28-29],降低GPX4表達(dá)可誘導(dǎo)PC3細(xì)胞鐵死亡[30]。GSDMB是細(xì)胞焦亡途徑中的下游效應(yīng)蛋白,參與膀胱癌、乳腺癌發(fā)展[31-32]。PLCG1存在于各種亞細(xì)胞區(qū)室中,參與調(diào)節(jié)細(xì)胞遷移、侵襲和擴(kuò)散[33]。NLRP1為NLRP家族第1個被鑒定的炎性小體,與免疫調(diào)節(jié)功能失調(diào)相關(guān)疾病關(guān)系密切[34]。受到外部刺激后,NLRP1的N-末端PYD結(jié)構(gòu)域與ASC結(jié)合,啟動級聯(lián)反應(yīng)激活caspase-1,并通過調(diào)節(jié)先天和適應(yīng)性免疫反應(yīng)參與多種炎癥性疾病[35]。LIN等[36]的結(jié)果顯示,NLRP1低表達(dá)的肺腺癌患者生存率較低?;谏鲜?個具有預(yù)后價值的PRGs建立預(yù)后風(fēng)險模型并使用GEO數(shù)據(jù)庫來源樣本進(jìn)行驗證,在訓(xùn)練集與驗證集中,高風(fēng)險組患者疾病進(jìn)展的可能性均較高,無進(jìn)展生存期較短,1、3、5年ROC曲線AUC值較高,提示風(fēng)險模型準(zhǔn)確性較高。相關(guān)性分析結(jié)果顯示,風(fēng)險評分與PCa臨床病理因素密切相關(guān),提示風(fēng)險評分可作為PCa預(yù)后的獨立預(yù)測因素。GO功能富集分析結(jié)果顯示,預(yù)后相關(guān)PRGs主要與細(xì)胞周期等過程密切相關(guān)。
本研究進(jìn)一步選取NLRP1作為靶點,通過體外細(xì)胞實驗探究其在PCa細(xì)胞焦亡調(diào)節(jié)機(jī)制中的作用。NLRP1在PCa細(xì)胞系中均呈低表達(dá),使用LPS與ATP誘導(dǎo)細(xì)胞焦亡,觀察到部分細(xì)胞內(nèi)有許多氣泡狀突出物,細(xì)胞形態(tài)腫脹膨大,NLRP1、ASC、C-caspase-1、GSDMD-N等焦亡相關(guān)蛋白表達(dá)水平明顯上調(diào),而誘導(dǎo)細(xì)胞焦亡的同時抑制NLRP1在一定程度上抑制了細(xì)胞焦亡水平,提示NLRP1可能參與了PCa細(xì)胞焦亡的調(diào)節(jié)過程。
本研究還存在一些局限性:TCGA、GEO數(shù)據(jù)庫樣本量有限且均為回顧性數(shù)據(jù),還需大規(guī)模前瞻性數(shù)據(jù)進(jìn)行驗證;其余5個預(yù)后相關(guān)PRGs在PCa中的具體分子機(jī)制仍需通過體內(nèi)、體外實驗進(jìn)一步探究。綜上所述,本研究基于基因表達(dá)數(shù)據(jù)庫分析鑒定出了6個與PCa預(yù)后相關(guān)PRGs,構(gòu)建并驗證了預(yù)后風(fēng)險模型,該模型具有較高的預(yù)測PCa預(yù)后情況的能力,預(yù)后相關(guān)PRGs可能是PCa的潛在治療靶點,NLRP1在PCa細(xì)胞中低表達(dá),可能參與了細(xì)胞焦亡調(diào)節(jié)過程。
參考文獻(xiàn):
[1] EPSTEIN JI,KRYVENKO ON.A comparison of genitourinary society pathology and international society of urological pathology prostate cancer guidelines[J].Eur Urol,2021,79(1):3-5.
[2] LIU Z,GUO H,ZHU Y,et al.TP53 alterations of hormone-nave prostate cancer in the Chinese population[J].Prostate Cancer Prostatic Dis,2021,24(2):482-491.
[3] 康海,劉曉穎,趙潔,等.基于TCGA數(shù)據(jù)庫分析lncRNA SNHG25在前列腺癌中的表達(dá)及其意義[J].現(xiàn)代泌尿外科雜志,2024,29(3):224-231.
[4] DEVOS G,DEVLIES W,DE MEERLEER G,et al.Neoadjuvant hormonal therapy before radical prostatectomy in high-risk prostate cancer[J].Nat Rev Urol,2021,18(12):739-762.
[5] PANEBIANCO V,VILLEIRS G,WEINREB JC,et al.Prostate magnetic resonance imaging for local recurrence reporting (PI-RR):international consensus-based guidelines on multiparametric magnetic resonance imaging for prostate cancer recurrence after radiation therapy and radical prostatectomy[J].Eur Urol Oncol,2021,4(6):868-876.
[6] DANACIOGLU YO,KESER F,EFILOGˇLU,et al.The efficiency of prostate-specific antigen density measurement using three different methods on the prediction of biochemical recurrence[J].Aging Male,2021,24(1):15-23.
[7] WEI X,XIE F,ZHOU X,et al.Role of pyroptosis in inflammation and cancer[J].Cell Mol Immunol,2022,19(9):971-992.
[8] RODRGUEZ-ANTONIO I,LPEZ-SNCHEZ GN,URIBE M,et al.Role of the inflammasome,gasdermin D,and pyroptosis in non-alcoholic fatty liver disease[J].J Gastroenterol Hepatol,2021,36(10):2720-2727.
[9] 李春桃,唐蘇婷,徐云柯,等.miR-16-5p靶向NLRP1抑制缺氧復(fù)氧誘導(dǎo)的BRL-3A細(xì)胞焦亡[J].中國比較醫(yī)學(xué)雜志,2021,31(10):68-75.
[10] CHEN T,WANG Z,ZHONG J,et al.Secoisolariciresinol diglucoside induces pyroptosis by activating caspase-1 to cleave GSDMD in colorectal cancer cells[J].Drug Dev Res,2022,83(5):1152-1166.
[11] DEVANT P,KAGAN JC.Molecular mechanisms of gasdermin D pore-forming activity[J].Nat Immunol,2023,24(7):1064-1075.
[12] JIA Y,WANG X,DENG Y,et al.Pyroptosis provides new strategies for the treatment of cancer[J].J Cancer,2023,14(1):140-151.
[13] HU D,CAO Q,TONG M,et al.A novel defined risk signature based on pyroptosis-related genes can predict the prognosis of prostate cancer[J].BMC Med Genomics,2022,15(1):24-40.
[14] GANDAGLIA G,LENI R,BRAY F,et al.Epidemiology and prevention of prostate cancer[J].Eur Urol Oncol,2021,4(6):877-892.
[15] TSAUR I,BLAHETA RA,DOTZAUER R,et al.Focal therapy for primary tumor and metastases in de novo or recurrent oligometastatic prostate cancer:current standing and future perspectives[J].World J Urol,2023,41(8):2077-2090.
[16] LEE W,LIM B,KYUNG YS,et al.Impact of positive surgical margin on biochemical recurrence in localized prostate cancer[J].Prostate Int,2021,9(3):151-156.
[17] ALBISINNI S,DIAMAND R.Understanding biochemical recurrence after radical prostatectomy:trust biology,not a number[J].Prostate Cancer Prostatic Dis,2023,26(4):637-638.
[18] FERDINANDUS J,F(xiàn)ENDLER WP,F(xiàn)AROLFI A,et al.PSMA PET validates higher rates of metastatic disease for European association of urology biochemical recurrence risk groups:an international multicenter study[J].J Nucl Med,2022,63(1):76-80.
[19] XIANG R,GE Y,SONG W,et al.Pyroptosis patterns characterized by distinct tumor microenvironment infiltration landscapes in gastric cancer[J].Genes (Basel),2021,12(10):1535-1556.
[20] YE Y,DAI Q,QI H.A novel defined pyroptosis-related gene signature for predicting the prognosis of ovarian cancer[J].Cell Death Discov,2021,7(1):71-81.
[21] CHEN H,LUO H,WANG J,et al.Identification of a pyroptosis-related prognostic signature in breast cancer[J].BMC Cancer,2022,22(1):429-444.
[22] PETSALAKI E,ZACHOS G.The abscission checkpoint:a guardian of chromosomal stability[J].Cells,2021,10(12):3350-3368.
[23] LIU B,GUO S,LI GH,et al.CHMP4C regulates lung squamous carcinogenesis and progression through cell cycle pathway[J].J Thorac Dis,2021,13(8):4762-4774.
[24] KHAN AA,AL-MAHROUQI N,AL-YAHYAEE A,et al.Deciphering urogenital cancers through proteomic biomarkers:a systematic review and meta-analysis[J].Cancers (Basel),2023,16(1):22-43.
[25] KAN J,HU Y,GE Y,et al.Declined expressions of vast mitochondria-related genes represented by CYCS and transcription factor ESRRA in skeletal muscle aging[J].Bioengineered,2021,12(1):3485-3502.
[26] SHEN X,WANG H,WENG C,et al.Caspase 3/GSDME-dependent pyroptosis contributes to chemotherapy drug-induced nephrotoxicity[J].Cell Death Dis,2021,12(2):186-201.
[27] BAZYLIANSKA V,KALPAGE HA,WAN J,et al.Lysine 53 acetylation of cytochrome c in prostate cancer:warburg metabolism and evasion of apoptosis[J].Cells,2021,10(4):802-822.
[28] XIE Y,KANG R,KLIONSKY DJ,et al.GPX4 in cell death,autophagy,and disease[J].Autophagy,2023,19(10):2621-2638.
[29] QU M,WANG Y,QIU Z,et al.Necroptosis,pyroptosis,ferroptosis in sepsis and treatment[J].Shock,2022,57(6):161-171.
[30] SHAO ZC,ZHU BH,HUANG AF,et al.Docosahexaenoic acid reverses epithelial-mesenchymal transition and drug resistance by impairing the PI3K/AKT/Nrf2/GPX4 signalling pathway in docetaxel-resistant PC3 prostate cancer cells[J].Folia Biol (Praha),2022,68(2):59-71.
[31] HE H,YI L,ZHANG B,et al.USP24-GSDMB complex promotes bladder cancer proliferation via activation of the STAT3 pathway[J].Int J Biol Sci,2021,17(10):2417-2429.
[32] GMEZ-CHIACHIO M,MOLINA-CRESPO ,RAMOS-NEBOT C,et al.Gasdermin B over-expression modulates HER2-targeted therapy resistance by inducing protective autophagy through Rab7 activation[J].J Exp Clin Cancer Res,2022,41(1):285-303.
[33] LI T,YANG Z,LI H,et al.Phospholipase Cγ1 (PLCG1) overexpression is associated with tumor growth and poor survival in IDH wild-type lower-grade gliomas in adult patients[J].Lab Invest,2022,102(2):143-153.
[34] FENINI G,KARAKAYA T,HENNIG P,et al.NLRP1 inflammasome activation in keratinocytes:increasing evidence of important roles in inflammatory skin diseases and immunity[J].J Invest Dermatol,2022,142(9):2313-2322.
[35] GRISWOLD AR,HUANG HC,BACHOVCHIN DA.The NLRP1 inflammasome induces pyroptosis in human corneal epithelial cells[J].Invest Ophthalmol Vis Sci,2022,63(3):2-11.
[36] LIN W,CHEN Y,WU B,et al.Identification of the pyroptosis related prognostic gene signature and the associated regulation axis in lung adenocarcinoma[J].Cell Death Discov,2021,7(1):161-170.
(編輯 閆玉梅)