摘要:生物能源是從生物來(lái)源的材料制成的可再生能源,主要分為生物質(zhì)能、生物燃料、生物氣體三大類(lèi),具有綠色、低碳、清潔、可再生等優(yōu)點(diǎn).微生物油作為第三代生物柴油,有可能成為傳統(tǒng)化石燃料的綠色替代品,是緩解能源挑戰(zhàn)和環(huán)境問(wèn)題的研究熱點(diǎn).本文綜述產(chǎn)油酵母油脂合成與調(diào)控機(jī)制以及代謝工程等研究進(jìn)展.產(chǎn)油酵母作為微生物油生產(chǎn)的主體,其異檸檬酸脫氫酶的活性依賴(lài)一磷酸腺苷(AMP),使得它們?cè)谙薜獥l件下大量積累油脂;酵母積累油脂受到各種條件的影響(比如碳氮源、溫度、溶氧、pH值等),相關(guān)碳氮源利用與脅迫調(diào)控轉(zhuǎn)錄因子GAT1、MIG1、ASG1、MYB、GRAS、CBF11、TORC1 bHLH8和PHD 等也調(diào)控其脂代謝.但產(chǎn)油酵母相對(duì)于釀酒酵母來(lái)說(shuō),其油脂合成機(jī)制與遺傳背景依舊不清晰,限制了其工業(yè)化應(yīng)用.因此,未來(lái)還需要加強(qiáng)微生物油生產(chǎn)技術(shù)的研究,從提高菌株魯棒性、增加經(jīng)濟(jì)性代謝副產(chǎn)物產(chǎn)量、提高廉價(jià)底物利用能力等方面降低微生物油的生產(chǎn)成本,使其成為傳統(tǒng)化石燃料的有效替代品.
關(guān)鍵詞:生物柴油; 產(chǎn)油酵母; 油脂合成; 調(diào)控機(jī)制; 代謝工程; 經(jīng)濟(jì)性
中圖分類(lèi)號(hào):Q93
文章編號(hào):1001-8395(2025)01-0001-14
doi:10.3969/j.issn.1001-8395.2025.01.001
當(dāng)前,世界能源格局深刻調(diào)整,不斷增長(zhǎng)的能源需求和氣候危機(jī)促使生物能源去代替對(duì)環(huán)境造成嚴(yán)重污染的傳統(tǒng)化石燃料[1].生物能源(bioenergy)是從生物來(lái)源的材料制成的可再生能源,主要分為生物質(zhì)能、生物燃料、生物氣體三大類(lèi).生物柴油屬于生物燃料,是由植物、動(dòng)物或微生物的脂肪與甲醇或乙醇經(jīng)酯化而形成的脂肪酸甲酯或乙酯,具有燃料性能好、無(wú)毒、環(huán)保性能好、可生物降解以及再生、原料來(lái)源廣泛等特性,對(duì)于推進(jìn)能源結(jié)構(gòu)調(diào)整具有重要戰(zhàn)略意義.
作為第三代生物柴油的微生物油脂,是指細(xì)菌、酵母、霉菌和藻類(lèi)等產(chǎn)油微生物在適當(dāng)?shù)臈l件下,將碳水化合物轉(zhuǎn)化并儲(chǔ)存在細(xì)胞內(nèi)的油脂.與第一代和第二代生物燃料相比,微生物油脂不僅組分與能量與動(dòng)植物油相似,而且具有生產(chǎn)周期短、可規(guī)?;a(chǎn)、不與糧“爭(zhēng)地”、不與民“爭(zhēng)糧”、不受季節(jié)和氣候影響、原料來(lái)源廣泛等優(yōu)點(diǎn)[2],并且可以作為生物燃料、平臺(tái)化學(xué)品、食品和飼料的成分.所以為了保護(hù)農(nóng)業(yè)用地及糧食安全、降低原料成本,微生物油脂成為了生產(chǎn)生物柴油的理想原料.
1"產(chǎn)油酵母的種類(lèi)
所有微生物都能合成以供其生存的結(jié)構(gòu)脂質(zhì),但只有那些能夠積累占其細(xì)胞干重20%以上的脂質(zhì)的微生物才稱(chēng)為產(chǎn)油微生物[3].產(chǎn)油微生物多種多樣,包括微藻、細(xì)菌、酵母和霉菌,不同的菌株在脂質(zhì)和生物質(zhì)生產(chǎn)能力上不可避免地表現(xiàn)出細(xì)微或巨大的差異[2].數(shù)十年以來(lái),產(chǎn)油酵母菌因其獨(dú)特優(yōu)勢(shì),逐漸成為微生物油脂生產(chǎn)領(lǐng)域的研究熱點(diǎn).高產(chǎn)油物種的鑒定、促進(jìn)油脂積累的優(yōu)化條件、將廢物轉(zhuǎn)化為酵母油的技術(shù)以及大規(guī)模擴(kuò)大生產(chǎn)推動(dòng)了產(chǎn)油酵母菌在工業(yè)生產(chǎn)中的應(yīng)用.與細(xì)菌和藻類(lèi)相比,產(chǎn)油酵母具備顯著優(yōu)勢(shì).在嚴(yán)格控制條件下,酵母菌能夠快速增殖至高密度,并能積累高達(dá)70%(以干質(zhì)量計(jì))的油脂,這使其成為微生物油脂生產(chǎn)的有力候選者.產(chǎn)油酵母有許多種,不同種其脂質(zhì)含量存在顯著差異,甚至在同一個(gè)種之間也是如此[3].目前已經(jīng)發(fā)現(xiàn)的產(chǎn)油酵母主要分為Saccharomycetales、Sporidiobolales、Tremellales、Trichosporonales、Cystobasidiales等5個(gè)目(主要分布在子囊菌門(mén)和擔(dān)子菌門(mén)),其中被廣泛研究的產(chǎn)油酵母包括解脂耶氏酵母(Yarrowia lipolytica)、圓紅冬孢酵母( Rhodosporidium toruloides )、斯達(dá)油脂酵母(Lipomyces starkeyi)和產(chǎn)油毛孢子菌(Trichosporon oleaginosus)等4個(gè)種.除了上述的產(chǎn)油酵母,還從環(huán)境中分離出了許多能大量積累油脂的酵母,如表1所示.但目前產(chǎn)油酵母代謝工程改造的主要瓶頸是缺乏基因操作工具[4].提高這些物種的遺傳適應(yīng)性,便于代謝工程改造的開(kāi)展,這對(duì)于提高它們的生物量和脂質(zhì)產(chǎn)量是至關(guān)重要的.幸運(yùn)的是,轉(zhuǎn)化方法的優(yōu)化、合成生物學(xué)元件的挖掘和遺傳工具的開(kāi)發(fā)等方面已經(jīng)取得了一些重要進(jìn)展,或?qū)⑸羁谈淖儺a(chǎn)油酵母菌株的研究格局[4].
2"產(chǎn)油酵母的油脂合成與調(diào)控機(jī)制
2.1"油脂合成代謝""真核生物的脂質(zhì)合成是一個(gè)復(fù)雜的代謝過(guò)程,需要通過(guò)大量的酶催化不同反應(yīng).關(guān)于脂質(zhì)的代謝與調(diào)控研究一般是以S.cerevisiae為研究對(duì)象,產(chǎn)油酵母的脂質(zhì)代謝與S.cerevisiae在許多方面是相似的,但也有許多不同之處.一般來(lái)說(shuō),產(chǎn)油酵母能大量積累油脂的前提是限氮發(fā)酵條件[49],產(chǎn)油酵母TCA循環(huán)中的異檸檬酸脫氫酶的活性依賴(lài)一磷酸腺苷(adenosine monophosphate, AMP),但在非產(chǎn)油酵母中這種依賴(lài)性就不存在[50],這就導(dǎo)致產(chǎn)油酵母積累油脂的代謝流與S.cerevisiae有較大差異,如圖1所示[51].需要指出的是,產(chǎn)油酵母分散在子囊菌門(mén)和擔(dān)子菌門(mén)多個(gè)分支中.
這種分類(lèi)歸屬的多樣性,成就了產(chǎn)油酵母物種或分支的表型或基因型特性的多樣性和不確定性.同時(shí)也表明含油脂性可能經(jīng)歷了多次獨(dú)立的發(fā)展,因此可能存在多種脂質(zhì)積累機(jī)制.在相同的生長(zhǎng)條件下積累不同數(shù)量的脂質(zhì)的近緣物種或一個(gè)物種內(nèi)的菌株的基因組和轉(zhuǎn)錄組比較,可能可以揭示脂質(zhì)積累機(jī)制[1].
產(chǎn)油酵母積累的油脂以脂肪酸和甘油三酯為主,還含有部分甾醇.脂肪酸是一類(lèi)4~36個(gè)碳的一元羧酸,甘油三酯是脂肪酸與甘油縮合形成的酯,甾醇是一類(lèi)含有羥基的類(lèi)固醇.
2.1.1"脂肪酸的合成""產(chǎn)油酵母的脂肪酸從頭合成需要乙酰-CoA、丙二酸單酰-CoA與NADPH等3種原料,合成場(chǎng)所在細(xì)胞質(zhì).葡萄糖進(jìn)入糖酵解途徑后產(chǎn)生丙酮酸,后者進(jìn)入線粒體,在丙酮酸脫氫酶復(fù)合物(pyruvate dehydrogenase complex, PDH)的作用下產(chǎn)生乙酰-CoA, 乙酰-CoA進(jìn)入TCA循環(huán),在檸檬酸合酶的作用下與草酰乙酸縮合成檸檬酸.
在限氮發(fā)酵條件下,氮源的缺乏增強(qiáng)了一磷酸腺苷脫氨酶(adenosine monophosphate deaminase, AMPD)的活性[52],促進(jìn)AMP分解為5′-磷酸-肌醇(inosine 5′-monophosphate, IMP)和NH+4,使胞內(nèi)的AMP水平降低,銨氮增加[53-55],低濃度的AMP抑制了AMP依賴(lài)的異檸檬酸脫氫酶(isocitrate dehydrogenase, ICDH)的活性,TCA循環(huán)的活性降低,最終導(dǎo)致檸檬酸在線粒體中大量積累[53,56],該反應(yīng)可以誘導(dǎo)產(chǎn)油酵母直接在細(xì)胞質(zhì)中產(chǎn)生持續(xù)供應(yīng)的乙酰-CoA[57].線粒體中積累的檸檬酸在蘋(píng)果酸/檸檬酸轉(zhuǎn)位酶系統(tǒng)作用下轉(zhuǎn)移到細(xì)胞質(zhì)中,胞質(zhì)檸檬酸在檸檬酸裂解酶(ATP-citrate lyase, ACL)的作用下產(chǎn)生草酰乙酸與大量的乙酰-CoA,而ACL在產(chǎn)油酵母中普遍存在,在S.cerevisiae中沒(méi)有[53],這一反應(yīng)產(chǎn)生的乙酰-CoA就是脂肪酸合成的原料.然后,丙二酸單酰-CoA是乙酰-CoA在ACC的作用下生成的[58],同時(shí)胞質(zhì)中的乙酰-CoA對(duì)乙酰-CoA羧化酶有別構(gòu)激活信號(hào)作用.最后,氧化還原力NADPH主要是由磷酸戊糖途徑中葡萄糖-6-磷酸脫氫酶與6-磷酸葡萄糖酸脫氫酶與蘋(píng)果酸合酶(malate enzyme,ME)催化蘋(píng)果酸生成丙酮酸這兩步產(chǎn)生[53,59-60].3種脂肪酸合成原料在脂肪酸合成酶復(fù)合物FAS1與FAS2的作用下最終生成C16和C18脂肪酸.Wu等[61]研究表明,使用RNA干擾敲除RtFAS1和RtFAS2可以降低脂質(zhì)含量,但沒(méi)有改變R. toruloides NP11的脂肪酸組分.產(chǎn)油酵母Y.lipolytica FAS的KS結(jié)構(gòu)域的酶工程也提高了中鏈脂肪酸的含量.
2.1.2"甘油三酯的合成""產(chǎn)油酵母的甘油三酯合成前體是脂酰-CoA(Acyl-CoA)與3-磷酸甘油.脂酰-CoA來(lái)自脂肪酸的活化,3-磷酸甘油由磷酸二羥丙酮或甘油磷酸化形成.3-磷酸甘油?;D(zhuǎn)移酶(Glycerol-3-phosphate acyltransferase, G3PAT)催化3-磷酸甘油與脂酰-CoA生成的溶血磷脂,然后溶血磷脂酰基轉(zhuǎn)移酶(lysophospholipid acyltransferase,LPAT)催化溶血磷脂生成磷脂酸(phosphastidic acid,PA),最后磷脂酸產(chǎn)生的二酰甘油在二酰甘油?;D(zhuǎn)移酶(1,2-diacylglycerol acyltransferase, DGA1 and DGA2)與磷脂二酰甘油?;D(zhuǎn)移酶(phospholipid diacylglycerol acyltransferase,PDAT)的作用下生成TAG[53].Mondal等[52]在Y. lipolytica中通過(guò)分別過(guò)表達(dá)ACC1和DGAT1(二?;视王;D(zhuǎn)移酶)使得脂質(zhì)產(chǎn)量提高了2倍和4倍,聯(lián)合過(guò)表達(dá)使脂質(zhì)積累增加了5倍.
2.1.3"甾醇酯的合成""以S.cerevisiae為研究材料揭示了甾醇酯(sterolesters,SE)的合成過(guò)程.研究發(fā)現(xiàn)其合成前體是甲羥戊酸,有兩分子乙酰-CoA先后在乙酰-CoA?;D(zhuǎn)移酶2(acetyl-CoA acetyltransferase 2, ACAT2)、甲羥戊酸合酶(HMG-CoA synthase, HMGS)和甲羥戊酸還原酶(HMG-CoA reductase, HMGR)的作用下生成[62].甲羥戊酸在多種酶的作用下生成角鯊烯,然后再在加氧酶、環(huán)化酶等多種酶的作用下最終生成SE[63].
2.2"油脂分解代謝
產(chǎn)油酵母油脂的分解代謝主要是脂肪酸的β-氧化途徑(fatty acid β-oxidation),該反應(yīng)發(fā)生在線粒體,脂酰-CoA通過(guò)4步反應(yīng)降解,每個(gè)循環(huán)通過(guò)釋放2個(gè)羧基末端的碳原子,使脂酰-CoA縮短為乙酰-CoA[64].最后一步是在乙酰-CoA?;D(zhuǎn)移酶1(acetyl -CoA acetyltransferase 1,ACAT1)的作用下裂解為兩分子乙酰-CoA[64].在動(dòng)物體內(nèi),由脂肪酸降解產(chǎn)生的乙酰-CoA不能再形成丙酮酸或草酰乙酸,但是在植物與微生物體內(nèi)由于特有的乙醛酸循環(huán)途徑中存在的異檸檬酸裂解酶(isocitrate lyase,ICL)與蘋(píng)果酸合酶(malate synthase,MLS),乙酰-CoA還能再生成草酰乙酸,進(jìn)入TCA循環(huán)[65].
2.3"油脂合成調(diào)控機(jī)制
脂質(zhì)的組成和脂質(zhì)生物合成基因的表達(dá)都受到各種生長(zhǎng)條件的影響,包括酵母菌株、生長(zhǎng)階段、碳氮比、碳源、碳源和水平、曝氣率、溫度、酒精的存在、氮水平、氮源、磷水平、硫胺素、生物素、pH值和對(duì)碳源的適應(yīng)[32],但調(diào)節(jié)油脂生物體中脂質(zhì)積累的一般機(jī)制尚未完全明確.
對(duì)于產(chǎn)油微生物普遍來(lái)說(shuō)最重要生長(zhǎng)條件是培養(yǎng)基中的碳氮比,同時(shí)有許多研究報(bào)道調(diào)控細(xì)胞營(yíng)養(yǎng)與能量穩(wěn)態(tài)TOR信號(hào)通路、促進(jìn)氮源吸收的氮代謝抑制(nitrogen catabolite repression, NCR)途徑與促進(jìn)碳源吸收的碳代謝抑制(carbon catabolite repression, CCR)途徑對(duì)產(chǎn)油酵母的脂質(zhì)代謝具有重要的調(diào)控作用.到目前為止,已經(jīng)在多種微生物中發(fā)現(xiàn)西羅莫司處理抑制TORC1的活性,會(huì)促進(jìn)胞內(nèi)脂質(zhì)的增加.比如低碳氮比條件下,西羅莫司處理S.cerevisiae、T. oleaginosus、微藻Chlamydomonas reinhardtii和Cyanidioschyzon merolae能在不影響生物量積累的同時(shí)促進(jìn)胞內(nèi)脂滴的增加[66-68],但也不是所有物種都有這個(gè)特性,比如在玉米黑穗病菌Ustilago maydis中,西羅莫司處理誘導(dǎo)了該菌大液泡與大脂滴的形成,但無(wú)明顯的甘油三酯積累[69].
綜上,TORC1對(duì)微生物油脂的積累具有調(diào)控作用.在西羅莫司或氮饑餓條件下,TORC1被抑制,Tap42-PP2A從囊泡上被釋放到胞質(zhì)中,Tap42去磷酸化[70],胞質(zhì)Tap42-PP2A和Tap42-PP2A-like磷酸酶復(fù)合物通過(guò)去磷酸化轉(zhuǎn)錄因子GAT1與GLN3從而激活與氮分解代謝產(chǎn)物抑制和應(yīng)激反應(yīng)相關(guān)的基因表達(dá)[71-72].Madeira等[66]研究發(fā)現(xiàn),在S.cerevisiae中缺失GLN3與GAT1編碼基因會(huì)減少脂滴的形成,同時(shí)也會(huì)抑制細(xì)胞的生長(zhǎng);同時(shí)缺失磷酸酶SIT4(PP2A-like protein phosphatase)也會(huì)降低脂滴的積累,所以在酵母中TOR信號(hào)通路可能通過(guò)GAT1與GLN3轉(zhuǎn)錄因子調(diào)控酵母脂質(zhì)代謝.Wang等[73]還在Y.lipolytica中發(fā)現(xiàn)Mhy1p轉(zhuǎn)錄因子在脂質(zhì)合成、氨基酸與氮代謝中發(fā)揮重要調(diào)控作用,在Mhy1p突變體中脂質(zhì)含量增加,GLN3與GAT1轉(zhuǎn)錄水平大大提高.在高產(chǎn)脂真菌Mucor circinelloides WJ11中鑒定的腺苷脫氨酶(adenosine deaminase,Ada)編碼基因?qū)е鹿こ叹甑闹|(zhì)質(zhì)量分?jǐn)?shù)增加了20%(細(xì)胞干質(zhì)量的25%)[74].研究報(bào)道在Y.lipolytica中,敲除SNF1及其途徑中的GAL83、SAK1、MIG1編碼基因能顯著促進(jìn)生長(zhǎng)和脂質(zhì)積累,其中MIG1編碼基因的缺失會(huì)抑制脂肪酸降解[75-76].SNF1還參與INO1基因?qū)α字x的調(diào)控[77].此外,激活的SNF1還能直接抑制ACC1合成丙二酸單酰-CoA的活性,從而抑制脂肪酸的合成,還可以抑制HMGR的活性來(lái)抑制甾醇的合成[78].在Saitozyma podzolica zwy-2-3菌株中,GAT1和CreA也能通過(guò)正調(diào)控油脂合成相關(guān)基因正調(diào)控脂代謝.除了調(diào)控碳氮代謝的轉(zhuǎn)錄因子能夠調(diào)控脂代謝以外,一些響應(yīng)環(huán)境脅迫的轉(zhuǎn)錄因子,比如MYB、Asg1、GRAS、CBF11、TORC1 bHLH8和PHD TF家族,也能夠調(diào)節(jié)產(chǎn)油酵母的脂代謝[3,79].
3"產(chǎn)油酵母代謝工程
代謝途徑的調(diào)控和關(guān)鍵酶的過(guò)表達(dá)可以使代謝流向目的產(chǎn)物方向積累.野生微生物菌株的這種改造一直是食品、飲料和藥品生產(chǎn)等工業(yè)領(lǐng)域應(yīng)用的優(yōu)先策略.選擇優(yōu)良的出發(fā)菌株是育種的關(guān)鍵步驟.微生物油脂合成途徑的改造,采用兩種截然不同的策略:改善產(chǎn)脂質(zhì)微生物的常駐代謝途徑[80],或?qū)a(chǎn)油微生物的脂肪酸合成途徑基因轉(zhuǎn)入大腸桿菌或釀酒酵母等工業(yè)微生物細(xì)胞中.為了提高產(chǎn)油酵母的油脂產(chǎn)量,對(duì)油脂合成的關(guān)鍵節(jié)點(diǎn)進(jìn)行調(diào)控就顯得十分重要.
已有大量的研究利用代謝工程策略來(lái)增強(qiáng)不同微生物的脂質(zhì)積累.大致可分為以下幾種不同的途徑:
1) 過(guò)表達(dá)脂肪酸生物合成途徑的酶;
2) 過(guò)表達(dá)酶增強(qiáng)TAG生物合成途徑;
3) 調(diào)控相關(guān)TAG生物合成旁路途徑;
4) 部分阻斷競(jìng)爭(zhēng)途徑;
5) 多基因?qū)胪患?xì)胞的方法.促進(jìn)胞質(zhì)乙酰-CoA合成能促進(jìn)產(chǎn)油.有2種途徑能促進(jìn)胞質(zhì)乙酰-CoA的增加:1) 通過(guò)ACI裂解檸檬酸產(chǎn)生乙酰-CoA[81];2) 丙酮酸旁路途徑,丙酮酸經(jīng)丙酮酸脫羧酶(Pyruvate decarboxylase, PDC)轉(zhuǎn)化為乙醛,再經(jīng)過(guò)脫氫酶和乙酰-CoA合成酶(Acetyl-CoA synthase, ACS)合成乙酰-CoA[82].在Chromochloris zofingiensis、C. reinhardtii和Schizochytrium sp.中過(guò)表達(dá)ACS均能增加其油脂產(chǎn)量,還發(fā)現(xiàn)在C.zofingiensis中ACS被GATA型轉(zhuǎn)錄因子所調(diào)控[83].此外,Donzella等[84] 在R. azoricum中過(guò)表達(dá)細(xì)菌來(lái)源的磷酸轉(zhuǎn)乙酰酶與磷酸轉(zhuǎn)酮酶,能在細(xì)胞質(zhì)中直接合成乙酰-CoA.綜上,促進(jìn)胞質(zhì)乙酰-CoA的增加是促進(jìn)產(chǎn)油的有效途徑.同時(shí)促進(jìn)乙酰-CoA與TAG合成關(guān)鍵酶的表達(dá)也能促進(jìn)產(chǎn)油.文獻(xiàn)[54,85]發(fā)現(xiàn)過(guò)表達(dá)ACC1、ACL、DGA、FAS、GPD1、ME、SCT1、SLC1、ZWF1等多個(gè)基因,L.starkeyi的產(chǎn)油量顯著提高到22.7 g/L,產(chǎn)油率高達(dá)85%,其野生型產(chǎn)油量為8.25 g/L,產(chǎn)油率僅為30%;Aburatani等[86]通過(guò)L.starkeyi全基因組代謝模型重構(gòu)發(fā)現(xiàn),DGA1與ACL1是油脂代謝中非常關(guān)鍵的調(diào)控基因,同時(shí),在Y.lipolytica和L.starkeyi中都發(fā)現(xiàn),過(guò)表達(dá)或者高活性的ACL促進(jìn)脂質(zhì)的積累[87-88];還有研究發(fā)現(xiàn),限氮條件下R.toruloides、L.starkeyi與Y.lipolytica的IDH活性也被抑制;在限磷條件下,R.toruloides高產(chǎn)油,IDH活性也是降低的[56,89].Qiao等[90]研究發(fā)現(xiàn),在Y.lipolytica中同時(shí)過(guò)表達(dá)SCD、ACC與DGA,使脂質(zhì)產(chǎn)率達(dá)到84.7%,產(chǎn)量達(dá)到55 g/L,對(duì)葡萄糖與纖維素衍生糖的耐受性也大幅增強(qiáng),而且工程菌相對(duì)于野生型有3倍的生長(zhǎng)優(yōu)勢(shì).Blazeck等[91]同時(shí)過(guò)表達(dá)AMPD、ACL1、ACL2、ME、DGAT,敲除PEX10和MFE1能使油脂質(zhì)量積累到干質(zhì)量的90%.促進(jìn)NADPH合成也能促進(jìn)產(chǎn)油.與限氮密切相關(guān)的ME編碼基因過(guò)表達(dá),也能促進(jìn)產(chǎn)油真菌Mucor circinelloides與產(chǎn)油酵母R. glutinis的脂質(zhì)積累[92],但是在L.starkeyi與Y.lipolytica中,胞質(zhì)ME的缺失并不影響脂質(zhì)積累[60],可能是這2種產(chǎn)油酵母的ME并不是NADPH依賴(lài)的酶;Yuzbasheva等[93]發(fā)現(xiàn),在Y.lipolytica中同時(shí)共表達(dá)GPD與脂酰-CoA結(jié)合蛋白,相比于野生型油脂產(chǎn)量提高了41%.促進(jìn)脂肪酸與TAG合成的關(guān)鍵酶能夠大幅提升油脂產(chǎn)量,某些時(shí)候外源基因的表達(dá)會(huì)比同源基因更加有效,比如在Y. lipolytica中過(guò)表達(dá)R.toruloides來(lái)源的DGA1與C.purpurea的DGA2[94],同時(shí)敲除TGL3基因[95],能使脂質(zhì)產(chǎn)率最終達(dá)到71%[94].Dulermo等[96]在Y. lipolytica中過(guò)表達(dá)GDP1與DGA2,敲除POX1-6與TGL4,降低脂肪酸降解的同時(shí)又增強(qiáng)了TAG的合成,使脂質(zhì)產(chǎn)率增加到65%~75%;除了促進(jìn)油脂的產(chǎn)生,脂質(zhì)代謝工程還能促進(jìn)脂肪酸、長(zhǎng)鏈不飽和脂肪酸(PUFAs)、脂肪醇和脂肪酸甲酯等衍生物的增加[89].
啟動(dòng)子是調(diào)控原核生物和真核生物中天然基因表達(dá)和異源基因表達(dá)的重要元件.根據(jù)實(shí)驗(yàn)需要,構(gòu)成型或誘導(dǎo)型啟動(dòng)子可以調(diào)控靶基因表達(dá)的時(shí)間和水平.適合產(chǎn)油酵母菌中脂質(zhì)生物合成基因的重要啟動(dòng)子主要包括POX2、LIP2、YAT1、NAR1、ICL1、CTR31、MET16、DAO1、PGK、GAPDH、ACC1、XYL1、TEFp、LDP1等基因的啟動(dòng)子.轉(zhuǎn)錄組測(cè)序和功能表征也可以驗(yàn)證其他非常規(guī)產(chǎn)油酵母菌株中的啟動(dòng)子,以加快代謝工程研究.此外,除了通過(guò)啟動(dòng)子改造對(duì)油脂代謝相關(guān)酶進(jìn)行過(guò)表達(dá)外,改變轉(zhuǎn)錄因子、表觀遺傳因子的協(xié)同作用也可以調(diào)節(jié)油脂合成途徑關(guān)鍵酶的水平和豐度.但是目前對(duì)于產(chǎn)油酵母的脂代謝調(diào)控機(jī)制還不明確,還需要進(jìn)一步的研究來(lái)指導(dǎo)代謝工程的應(yīng)用.
4"產(chǎn)油酵母未來(lái)發(fā)展方向
盡管最近在資源穩(wěn)定、原料利用和代謝工程技術(shù)方面取得了進(jìn)展,但從酵母中生產(chǎn)油類(lèi)化學(xué)品的成本仍然太高,無(wú)法獲得具有競(jìng)爭(zhēng)力的燃料價(jià)格.因此,大幅降低產(chǎn)油成本才能使酵母基生物柴油在全球市場(chǎng)上的銷(xiāo)售價(jià)格具有競(jìng)爭(zhēng)力.減少原料運(yùn)輸、預(yù)處理和水解成本、降低曝氣和pH控制成本、減少污染潛力、全年生產(chǎn)、提高木質(zhì)纖維素水解物中碳水化合物的利用、加快微生物生長(zhǎng)到更高的細(xì)胞密度、更高的石油積累、改進(jìn)的集油技術(shù)、將殘留的酵母細(xì)胞質(zhì)量轉(zhuǎn)化為有價(jià)值的副產(chǎn)品以及降低廢物處理成本等都是需要努力的方向.
對(duì)于產(chǎn)油酵母本身來(lái)講,需要選擇高油、高細(xì)胞產(chǎn)量以及其他理想特性(比如能夠利用纖維素水解物、耐受抑制劑、耐滲透性)的產(chǎn)油酵母作為工業(yè)菌株,生產(chǎn)合適的脂肪酸的最終產(chǎn)品,同時(shí)利用葡萄糖和木糖來(lái)減少加工時(shí)間[97].工業(yè)菌株具備用于預(yù)處理木質(zhì)纖維素酶解的高溫耐受性,允許同時(shí)糖化和發(fā)酵,并具備易于裂解、促進(jìn)油回收的能力和快速生長(zhǎng)等特性.這些特性可能會(huì)促進(jìn)統(tǒng)一的生物加工,降低成本.許多新發(fā)現(xiàn)的非常規(guī)產(chǎn)油菌種在原料利用方面具有一定的優(yōu)勢(shì),在相關(guān)工業(yè)條件下也具有良好的脂質(zhì)滴度和生長(zhǎng)動(dòng)力學(xué)性能.然而,如果要通過(guò)菌株改進(jìn)作為生物技術(shù)的主力,就需要探索它們的遺傳可操作性.這里有4種可能的途徑來(lái)改善非傳統(tǒng)產(chǎn)油酵母菌株的脂肪衍生化學(xué)品和燃料生產(chǎn)(圖2):廢物原料利用、代謝重塑、共培養(yǎng)和細(xì)胞外脂質(zhì)生產(chǎn).廢物利用和代謝重構(gòu)有助于提高脂質(zhì)產(chǎn)量和過(guò)程的經(jīng)濟(jì)性,而共培養(yǎng)和細(xì)胞外脂質(zhì)生產(chǎn)分別有助于更好地利用營(yíng)養(yǎng)物質(zhì)和降低耐受脂質(zhì)毒性.
4.1"菌株魯棒性的提高""纖維素水解液的存在會(huì)使產(chǎn)油能力大大下降.木質(zhì)纖維素由幾種聚合物組成,包括纖維素、半纖維素、木質(zhì)素和果膠.這些聚合物的相對(duì)數(shù)量和類(lèi)型在不同的植物中也會(huì)有所不同.預(yù)處理是必要的,以打開(kāi)和分離這些聚合物,降解晶體結(jié)構(gòu),并使每個(gè)聚合物更容易進(jìn)行酶解.由于酵母缺乏顯著的纖維素降解活性,在被產(chǎn)油酵母轉(zhuǎn)化為脂質(zhì)之前,必須對(duì)木質(zhì)纖維素材料進(jìn)行預(yù)處理和酶水解以釋放游離糖.水解液中可能包括D-葡萄糖、D-木糖、D-阿拉伯糖、甘露糖和半乳糖等.此外,纖維素和半纖維素水解后的副產(chǎn)物糠醛,5-羥甲基糠醛,以及木質(zhì)素的降解釋放的多種多酚和低分子量酚類(lèi)物質(zhì)(如丁香醛、4-羥基苯甲酸、香草酸和香蘭素等)對(duì)酶和微生物細(xì)胞生長(zhǎng)產(chǎn)生抑制效應(yīng).糠醛抗性表型通常涉及應(yīng)激反應(yīng)中復(fù)雜的多基因調(diào)控,通過(guò)NADPH、NADH依賴(lài)的還原酶將糠醛還原為毒性更低的物質(zhì)[8],NADPH依賴(lài)葡萄糖-6-磷酸脫氫酶(ZWF1)、NADH依賴(lài)酒精脫氫酶(ADH)、NADH依賴(lài)丙二醇氧化還原酶(FucO)的過(guò)表達(dá)均改善了糠醛耐受性.轉(zhuǎn)運(yùn)體對(duì)糠醛的耐受性也至關(guān)重要.多胺轉(zhuǎn)運(yùn)體還通過(guò)與帶負(fù)電荷的細(xì)胞成分,例如核酸、磷脂等結(jié)合,提高了糠醛耐受性,保護(hù)大腸桿菌菌株LY180免受糠醛損傷.已經(jīng)發(fā)現(xiàn)木糖提高糠醛耐受性是通過(guò)改善NADH的再生實(shí)現(xiàn)的, N. crassa被發(fā)現(xiàn)30%耐糠醛羧甲基纖維素作為主要碳源而不是蔗糖,表明了碳水化合物代謝和糠醛耐受性之間的聯(lián)系[98],通過(guò)過(guò)表達(dá)假定的木糖轉(zhuǎn)運(yùn)蛋白,可以提高菌株對(duì)糠醛的耐受.用代謝工程的方法去提高菌株耐受性,還可以通過(guò)適應(yīng)性實(shí)驗(yàn)室進(jìn)化的方法提高菌株魯棒性.Zhou等[99]采用適應(yīng)性實(shí)驗(yàn)室進(jìn)化方法提高解脂耶氏酵母菌對(duì)芳香醛的耐受性,結(jié)合轉(zhuǎn)錄組學(xué)、酶學(xué)和遺傳驗(yàn)證發(fā)現(xiàn),醛酮還原酶YALI0_B07117g和醛脫氫酶YALI0_B01298g在脂菌芳香醛耐受能力中起重要作用.
4.2"代謝副產(chǎn)物""除了脂類(lèi),產(chǎn)油酵母還同時(shí)生產(chǎn)代謝副產(chǎn)物,比如葡萄糖酸、富馬酸、山梨醇、木糖醇、檸檬酸、脯氨酸等.通過(guò)優(yōu)化生長(zhǎng)培養(yǎng)基中的初始碳源、氮源、溶解氧、葡萄糖濃度等營(yíng)養(yǎng)物質(zhì)以及培養(yǎng)時(shí)間來(lái)控制碳流,使酵母細(xì)胞通量分布在兩種不同的代謝途徑之間,從而最大限度地實(shí)現(xiàn)廢物原料的資源化,提高生產(chǎn)過(guò)程的經(jīng)濟(jì)性能.比如,S.podzolica菌株可以在利用葡萄糖發(fā)酵時(shí)產(chǎn)生葡萄糖酸[41],利用木糖發(fā)酵時(shí)產(chǎn)生木糖酸[100];同時(shí)Rhodosporidium toruloides也可以在產(chǎn)油的同時(shí)生產(chǎn)類(lèi)胡蘿卜素.
4.3"胞外油脂""生物柴油生產(chǎn)商業(yè)化的另一個(gè)障礙是石油提取下游工藝的高能耗.迄今為止,有機(jī)溶劑萃取和機(jī)械破碎仍然是最有效和最經(jīng)濟(jì)的微生物油提取技術(shù),但這個(gè)過(guò)程涉及的機(jī)械細(xì)胞破裂、提取和相分離等傳統(tǒng)油提取工藝需要大量的能量,占了生物柴油總生產(chǎn)成本的40%以上.因此,應(yīng)通過(guò)正確設(shè)計(jì)的提取工藝實(shí)現(xiàn)能量平衡經(jīng)濟(jì)性.Huang等[101]發(fā)現(xiàn)在耐酸產(chǎn)游菌Cryptococcus curvatus MUCL 29819中添加質(zhì)量濃度超過(guò)20 g/L的乙酸時(shí),有利于細(xì)胞中的油脂釋放.當(dāng)乙酸質(zhì)量濃度為40 g/L時(shí),酵母胞外的油脂產(chǎn)量最高,達(dá)到5.01 g/L.這也是降低脂質(zhì)回收成本的可能途徑.此外,還可以從環(huán)境中篩選能天然產(chǎn)生胞外油脂的菌株,王致鵬[102]篩選到一株Rhodosporidium paludigenum p1721能夠積累胞外油脂,當(dāng)酵母提取物質(zhì)量濃度為3 g/L時(shí),胞外油脂產(chǎn)量最大,達(dá)到14.1 g/L,生物細(xì)胞質(zhì)量濃度(biomass)為15.1 g/L.
5"結(jié)束語(yǔ)
雖然已經(jīng)進(jìn)行了多項(xiàng)研究以開(kāi)發(fā)和加強(qiáng)微生物油生產(chǎn)技術(shù),使其成為傳統(tǒng)化石燃料的有效替代品.但是,由于技術(shù)局限,產(chǎn)業(yè)化還有很長(zhǎng)的路要走.首先需要確定和采用可用于脂質(zhì)生產(chǎn)的大量、可持續(xù)和低成本的碳源和氮源.如今,一些可行的低成本碳源已經(jīng)成功地用于微生物油脂的產(chǎn)生,但如何保持可持續(xù)供應(yīng)仍然是一個(gè)挑戰(zhàn).然后是如何選擇或編碼高效菌株?雖然已有不少關(guān)于油脂合成的基因工程改造的研究,已經(jīng)明確了部分基因的作用效果和機(jī)制,但這些研究均是建立在單個(gè)基因的研究基礎(chǔ)上,對(duì)于2個(gè)或多個(gè)基因的協(xié)同作用的研究還極少.廉價(jià)的預(yù)處理也是必要的.脂質(zhì)提取是從微生物中提取脂質(zhì)的最后一個(gè)重要步驟,但沒(méi)有標(biāo)準(zhǔn)來(lái)指導(dǎo)高效和綠色操作.然而,研究人員幾乎將所有注意力都放在脂質(zhì)合成上,而不是如何利用脂質(zhì)生產(chǎn)生物柴油.微生物油產(chǎn)業(yè)化的每個(gè)方面都被分開(kāi)研究,沒(méi)有系統(tǒng)考慮.總之,有限的技術(shù)、低效率和高成本分離提取工藝使產(chǎn)業(yè)化仍在路上.
參考文獻(xiàn)
[1] SITEPU I R, GARAY L A, SESTRIC R, et al. Oleaginous yeasts for biodiesel: current and future trends in biology and production[J]. Biotechnology Advances,2014,32(7):1336-1360.
[2] NAVEIRA-PAZOS C, VEIGA M C, KENNES C. Accumulation of lipids by the oleaginous yeast Yarrowia lipolytica grown on carboxylic acids simulating syngas and carbon dioxide fermentation[J]. Bioresource Technology,2022,360:127649.
[3] SREEHARSHA R V, MOHAN S V. Obscure yet promising oleaginous yeasts for fuel and chemical production[J]. Trends in Biotechnology,2020,38(8):873-887.
[4] WEN Z Q, AL MAKISHAH N H.Recent advances in genetic technology development of oleaginous yeasts[J]. Applied Microbiology and Biotechnology,2022,106(17):5385-5397.
[5] NOGU V S I, BLACK B A, KRUGER J S, et al. Integrated diesel production from lignocellulosic sugars via oleaginous yeast[J]. Green Chemistry,2018,20(18):4349-4365.
[6] SLININGER P J, DIEN B S, KURTZMAN C P, et al. Comparative lipid production by oleaginous yeasts in hydrolyzates of lignocellulosic biomass and process strategy for high titers[J]. Biotechnology and Bioengineering,2016,113(8):1676-1690.
[7] HUANG X F, LIU J N, LU L J, et al.Culture strategies for lipid production using acetic acid as sole carbon source by Rhodosporidium toruloides[J]. Bioresource Technology,2016,206:141-149.
[8] MATSAKAS L, BONTURI N, MIRANDA E A, et al.High concentrations of dried sorghum stalks as a biomass feedstock for single cell oil production by Rhodosporidium toruloides[J]. Biotechnology for Biofuels,2015,8(1):6.
[9] YAEGASHI J, KIRBY J, ITO M, et al. Rhodosporidium toruloides: a new platform organism for conversion of lignocellulose into terpene biofuels and bioproducts[J]. Biotechnology for Biofuels,2017,10:241.
[10] JIRU T M, STEYN L, POHL C, et al. Production of single cell oil from cane molasses by Rhodotorula kratochvilovae(syn, Rhodosporidium kratochvilovae) SY89 as a biodiesel feedstock[J]. Chemistry Central Journal,2018,12(1):91.
[11] JOHNRAVINDAR D, KARTHIKEYAN O P, SELVAM A, et al. Lipid accumulation potential of oleaginous yeasts: a comparative evaluation using food waste leachate as a substrate[J]. Bioresource Technology,2018,248:221-228.
[12] CHAIYASO T, MANOWATTANA A, TECHAPUN C, et al. Efficient bioconversion of enzymatic corncob hydrolysate into biomass and lipids by oleaginous yeast Rhodosporidium paludigenum KM281510[J]. Preparative Biochemistry amp; Biotechnology,2019,49(6):545-556.
[13] MUNCH G, SESTRIC R, SPARLING R, et al. Lipid production in the under-characterized oleaginous yeasts, Rhodosporidium babjevae and Rhodosporidium diobovatum from biodiesel-derived waste glycerol[J]. Bioresource Technology,2015,185:49-55.
[14] LIU L, CHEN J H, LIM P E, et al. Enhanced single cell oil production by mixed culture of Chlorella pyrenoidosa and Rhodotorula glutinis using cassava bagasse hydrolysate as carbon source[J]. Bioresource Technology,2018,255:140-148.
[15] LIU Y T, WANG Y P, LIU H J, et al. Enhanced lipid production with undetoxified corncob hydrolysate by Rhodotorula glutinis using a high cell density culture strategy[J]. Bioresource Technology,2015,180:32-39.
[16] BRANDENBURG J, BLOMQVIST J, PICKOVA J, et al. Lipid production from hemicellulose with Lipomyces starkeyi in a pH regulated fed-batch cultivation[J]. Yeast,2016,33(8):451-462.
[17] JUANSSILFERO A B, KAHAR P, AMZA R L, et al. Effect of inoculum size on single-cell oil production from glucose and xylose using oleaginous yeast Lipomyces starkeyi[J]. Journal of Bioscience and Bioengineering,2018,125(6):695-702.
[18] LI J M, YAN G H, LIU S C, et al. Target of rapamycin complex 1 and Tap42-associated phosphatases are required for sensing changes in nitrogen conditions in the yeast Saccharomyces cerevisiae[J]. Molecular Microbiology,2017,106(6):938-948.
[19] PROBST K V, VADLANI P V. Production of single cell oil from Lipomyces starkeyi ATCC 56304 using biorefinery by-products[J]. Bioresource Technology,2015,198:268-275.
[20] RAHMAN S, ARBTER P, POPOVIC M, et al. Microbial lipid production from lignocellulosic hydrolyzates: effect of carbohydrate mixtures and acid-hydrolysis byproducts on cell growth and lipid production by Lipomyces starkeyi[J]. J Chem Technol Biotechnol,2017,92(8):1980-1989.
[21] SITEPU I, SELBY T, LIN T, et al. Carbon source utilization and inhibitor tolerance of 45 oleaginous yeast species[J]. Journal of Industrial Microbiology amp; Biotechnology,2014,41(7):1061-1070.
[22] ANNAMALAI N, SIVAKUMAR N, OLESKOWICZ-POPIEL P. Enhanced production of microbial lipids from waste office paper by the oleaginous yeast Cryptococcus curvatus[J]. Fuel,2018,217:420-426.
[23] CHEN J X, ZHANG X L, TYAGI R D, et al. Utilization of methanol in crude glycerol to assist lipid production in non-sterilized fermentation from Trichosporon oleaginosus[J]. Bioresource Technology,2018,253:8-15.
[24] LIU J, YUAN M, LIU J N, et al. Bioconversion of mixed volatile fatty acids into microbial lipids by Cryptococcus curvatus ATCC 20509[J]. Bioresource Technology,2017,241:645-651.
[25] MEO A, PRIEBE X L, WEUSTER-BOTZ D. Lipid production with Trichosporon oleaginosus in a membrane bioreactor using microalgae hydrolysate[J]. Journal of Biotechnology,2017,241:1-10.
[26] PARK G W,CHANG H N,JUNG K, et al. Production of microbial lipid by Cryptococcus curvatus on rice straw hydrolysates[J]. Process Biochem,2017,56:147-153.
[27] YAGUCHI A, ROBINSON A, MIHEALSICK E, et al. Metabolism of aromatics by Trichosporon oleaginosus while remaining oleaginous[J]. Microbial Cell Factories,2017,16(1):206.
[28] ZHANG X L, CHEN J X, YAN S, et al. Lipid production for biodiesel from sludge and crude glycerol[J]. Water Environment Research: a Research Publication of the Water Environment Federation,2017,89(5):424-439.
[29] LIU N, QIAO K J, STEPHANOPOULOS G. 13C metabolic flux analysis of acetate conversion to lipids by Yarrowia lipolytica[J]. Metabolic Engineering,2016,38:86-97.
[30] BATI N, HAMMOND E G, GLATZ B A. Biomodification of fats and oils-trials with Candida-lipolytica[J]. Journal of the American Oil Chemists’ Society,1984,61(11):1743-1746.
[31] DOBROWOLSKI A, MITUA P, RYMOWICZ W, et al. Efficient conversion of crude glycerol from various industrial wastes into single cell oil by yeast Yarrowia lipolytica[J]. Bioresource Technology,2016,207:237-243.
[32] LAZAR Z, DULERMO T, NEUVGLISE C, et al. Hexokinase: a limiting factor in lipid production from fructose in Yarrowia lipolytica[J]. Metabolic Engineering,2014,26:89-99.
[33] FONTANILLE P, KUMAR V, CHRISTOPHE G, et al. Bioconversion of volatile fatty acids into lipids by the oleaginous yeast Yarrowia lipolytica[J]. Bioresource Technology,2012,114:443-449.
[34] PAPANIKOLAOU S, CHEVALOT I, KOMAITIS M, et al. Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures[J]. Applied Microbiology and Biotechnology,2002,58(3):308-312.
[35] MICHELY S, GAILLARDIN C, NICAUD J M, et al. Comparative physiology of oleaginous species from the Yarrowia clade[J]. PLoS One,2013,8(5):e63356.
[36] TSIGIE Y A, WANG C Y, TRUONG C T, et al. Lipid production from Yarrowia lipolytica Po1g grown in sugarcane bagasse hydrolysate[J]. Bioresource Technology,2011,102(19):9216-9222.
[37] MANOWATTANA A, TECHAPUN C, WATANABE M, et al. Bioconversion of biodiesel-derived crude glycerol into lipids and carotenoids by an oleaginous red yeast Sporidiobolus pararoseus KM281507 in an airlift bioreactor[J]. Journal of Bioscience and Bioengineering,2018,125(1):59-66.
[38] LIU J, LIU J N, YUAN M, et al. Bioconversion of volatile fatty acids derived from waste activated sludge into lipids by Cryptococcus curvatus[J]. Bioresource Technology,2016,211:548-555.
[39] LIU J N, HUANG X F, CHEN R, et al. Efficient bioconversion of high-content volatile fatty acids into microbial lipids by Cryptococcus curvatus ATCC 20509[J]. Bioresource Technology,2017,239:394-401.
[40] CAO X, XU H, LI F, et al. One-step direct transesterification of wet yeast for biodiesel production catalyzed by magnetic nanoparticle-immobilized lipase[J]. Renewable Energy,2021,171:11-21.
[41] QIAN X J, GORTE O, CHEN L, et al. Co-production of single cell oil and gluconic acid using oleaginous Cryptococcus podzolicus DSM 27192[J]. Biotechnology for Biofuels,2019,12:127.
[42] DEEBA F, PRUTHI V, NEGI Y S. Fostering triacylglycerol accumulation in novel oleaginous yeast Cryptococcus psychrotoleransIITRFD utilizing groundnut shell for improved biodiesel production[J]. Bioresource Technology,2017,242:113-120.
[43] DEEBA F, PRUTHI V, NEGI Y S. Converting paper mill sludge into neutral lipids by oleaginous yeast Cryptococcus vishniaccii for biodiesel production[J]. Bioresource Technology,2016,213:96-102.
[44] SATHIYAMOORTHI E, KUMAR P, KIM B S. Lipid production by Cryptococcus albidus using biowastes hydrolysed by indigenous microbes[J]. Bioprocess and Biosystems Engineering,2019,42(5):687-696.
[45] WANG J, GAO Q Q, ZHANG H Z, et al. Inhibitor degradation and lipid accumulation potentials of oleaginous yeast Trichosporon cutaneum using lignocellulose feedstock[J]. Bioresource Technology,2016,218:892-901.
[46] YU Y, XU Z X, CHEN S T, et al. Microbial lipid production from dilute acid and dilute alkali pretreated corn stover via Trichosporon dermatis[J]. Bioresource Technology,2020,295:122253.
[47] CHEN J X, ZHANG X L, TYAGI R D, et al. Utilization of methanol in crude glycerol to assist lipid production in non-sterilized fermentation from Trichosporon oleaginosus[J]. Bioresource Technology,2018,253:8-15.
[48] TANIMURA A, SUGITA T, ENDOH R, et al. Lipid production via simultaneous conversion of glucose and xylose by a novel yeast, Cystobasidium iriomotense[J]. PLoS One,2018,13(9):e0202164..
[49] CALVEY C H, SU Y K, WILLIS L B, et al. Nitrogen limitation, oxygen limitation, and lipid accumulation in Lipomyces starkeyi[J]. Bioresource Technology,2016,200:780-788.
[50] XUE S J, CHI Z, ZHANG Y, et al. Fatty acids from oleaginous yeasts and yeast-like fungi and their potential applications[J]. Critical Reviews in Biotechnology,2018,38(7):1049-1060.
[51] SPAGNUOLO M, YAGUCHI A, BLENNER M. Oleaginous yeast for biofuel and oleochemical production[J]. Current Opinion in Biotechnology,2019,57:73-81.
[52] MONDAL S, HALDER S K, MONDAL K C. State-of-art engineering approaches for ameliorated production of microbial lipid[J]. Systems Microbiology and Biomanufacturing,2024,4(1):20-38.
[53] TAKAKU H, MATSUZAWA T, YAOI K, et al. Lipid metabolism of the oleaginous yeast Lipomyces starkeyi[J]. Applied Microbiology and Biotechnology,2020,104(14):6141-6148.
[54] ZHANG L, LEE J T E, OK Y S, et al. Enhancing microbial lipids yield for biodiesel production by oleaginous yeast Lipomyces starkeyi fermentation: a review[J]. Bioresource Technology,2022,344:126294.
[55] JIN M J, SLININGER P J, DIEN B S, et al. Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges[J]. Trends in Biotechnology,2015,33(1):43-54.
[56] TANG W, ZHANG S F, WANG Q, et al. The isocitrate dehydrogenase gene of oleaginous yeast Lipomyces starkeyi is linked to lipid accumulation[J]. Canadian Journal of Microbiology,2009,55(9):1062-1069.
[57] LIANG M H, JIANG J G. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology[J]. Progress in Lipid Research,2013,52(4):395-408.
[58] MUNIRAJ I K, UTHANDI S K, HU Z H, et al. Microbial lipid production from renewable and waste materials for second-generation biodiesel feedstock[J]. Environmental Technology Reviews,2015,4(1):1-16.
[59] JIN M J, SLININGER P J, DIEN B S, et al. Microbial lipid-based lignocellulosic biorefinery: feasibility and challenges[J]. Trends in Biotechnology,2015,33(1):43-54.
[60] RATLEDGE, C. The role of malic enzyme as the provider of NADPH in oleaginous microorganisms: a reappraisal and unsolved problems[J]. Biotechnology Letters,2014,36(8):1557-1568.
[61] WU C C, HONDA K,KAZUHITO F. Current advances in alteration of fatty acid profile in Rhodotorula toruloides: a mini-review[J]. World Journal of Microbiology amp; Biotechnology,2023,39(9):234.
[62] JORD T, PUIG S. Regulation of ergosterol biosynthesis in Saccharomyces cerevisiae[J]. Genes,2020,11(7):795.
[63] ESPENSHADE P J, HUGHES A L. Regulation of sterol synthesis in eukaryotes[J]. Annual Review of Genetics,2007,41:401-427.
[64] HOUTEN S M, VIOLANTE S, VENTURA F V, et al. The biochemistry and physiology of mitochondrial fatty acid β-oxidation and its genetic disorders[J]. Annual Review of Physiology,2016,78:23-44..
[65] VUORISTO K S, MARS A E, SANDERS J P M, et al. Metabolic engineering of TCA cycle for production of chemicals[J]. Trends in Biotechnology,2016,34(3):191-197.
[66] MADEIRA J B, MASUDA C A, MAYA-MONTEIRO C M, et al. TORC1 inhibition induces lipid droplet replenishment in yeast[J]. Molecular and Cellular Biology,2015,35(4):737-746
[67] IMAMURA S, KAWASE Y, KOBAYASHI I, et al. Target of rapamycin (TOR) plays a critical role in triacylglycerol accumulation in microalgae[J]. Plant Molecular Biology,2015,89(3):309-318.
[68] BRACHARZ F, REDAI V, BACH K, et al. The effects of TORC signal interference on lipogenesis in the oleaginous yeast Trichosporon oleaginosus[J]. BMC Biotechnology,2017,17(1):27.
[69] ROMERO-AGUILAR L, GUERRA-SNCHEZ G, TENORIO E P, et al. Rapamycin induces morphological and physiological changes without increase in lipid content in Ustilago maydis[J]. Archives of Microbiology,2020,202(5):1211-1221.
[70] ARONOVA S, WEDAMAN K, ANDERSON S, et al. Probing the membrane environment of the TOR kinases reveals functional interactions between TORC1, actin, and membrane trafficking in Saccharomyces cerevisiae[J]. Molecular Biology of the Cell,2007,18(8):2779-2794.
[71] DVEL K, SANTHANAM A, GARRETT S, et al. Multiple roles of Tap42 in mediating rapamycin-induced transcriptional changes in yeast[J]. Molecular Cell,2003,11(6):1467-1478.
[72] ZHANG W P, DU G C, ZHOU J W, et al. Regulation of sensing, transportation, and catabolism of nitrogen sources in Saccharomyces cerevisiae[J]. Microbiology and Molecular Biology Reviews:MMBR,2018,82(1):e00040-e00017.
[73] WANG G Y , LI D L, MIAO Z G, et al. Comparative transcriptome analysis reveals multiple functions for Mhy1p in lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica[J]. Biochimica et Biophysica Acta Molecular and Cell Biology of Lipids,2018,1863(1):81-90.
[74] LI S Q, YANG J H, MOHAMED H, et al. Identification and functional characterization of adenosine deaminase in Mucor circinelloides: a novel potential regulator of nitrogen utilization and lipid biosynthesis[J]. Journal of Fungi,2022,8(8):774.
[75] SEIP J, JACKSON R, HE H X, et al. Snf1 is a regulator of lipid accumulation in Yarrowia lipolytica[J]. Applied and Environmental Microbiology,2013,79(23):7360-7370.
[76] WANG Z P, XU H M, WANG G Y, et al. Disruption of the MIG1 gene enhances lipid biosynthesis in the oleaginous yeast Yarrowia lipolytica ACA-DC 50109[J]. Biochimica et Biophysica Acta,2013,1831(4):675-682.
[77] CHUMNANPUEN P, ZHANG J, NOOKAEW I, et al. Integrated analysis of transcriptome and lipid profiling reveals the co-influences of inositol-choline and Snf1 in controlling lipid biosynthesis in yeast[J]. Molecular Genetics and Genomics:MGG,2012,287(7):541-554.
[78] LIN S C, HARDIE D G. AMPK: sensing glucose as well as cellular energy status[J]. Cell Metabolism,2018,27(2):299-313.
[79] JANSURIYAKUL S, SOMBOON P, RODBOON N, et al. The zinc cluster transcriptional regulator Asg1 transcriptionally coordinates oleate utilization and lipid accumulation in Saccharomyces cerevisiae[J]. Applied Microbiology and Biotechnology,2016,100(10):4549-4560.
[80] LIANG M H, JIANG J G. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology[J]. Progress in Lipid Research,2013,52(4):395-408.
[81] ZENG S Y, LIU H H, SHI T Q, et al. Recent advances in metabolic engineering of Yarrowia lipolytica for lipid overproduction[J]. European Journal of Lipid Science and Technology,2018,120(3):1700352.
[82] MARKHAM K A, PALMER C M, CHWATKO M, et al. Rewiring Yarrowia lipolytica toward triacetic acid lactone for materials generation[J]. Proceedings of the National Academy of Sciences of the United States of America,2018,115(9):2096-2101.
[83] WU T, MAO X M, KOU Y P, et al. Characterization of microalgal acetyl-CoA synthetases with high catalytic efficiency reveals their regulatory mechanism and lipid engineering potential[J]. Journal of Agricultural and Food Chemistry,2019,67(34):9569-9578.
[84] DONZELLA S, CUCCHETTI D, CAPUSONI C, et al. Engineering cytoplasmic acetyl-CoA synthesis decouples lipid production from nitrogen starvation in the oleaginous yeast Rhodosporidium azoricum[J]. Microbial Cell Factories,2019,18(1):199.
[85] MATSUZAWA T, MAEHARA T, KAMISAKA Y, et al. Identification and characterization of Δ12 and Δ 12/Δ15 bifunctional fatty acid desaturases in the oleaginous yeast Lipomyces starkeyi[J]. Applied Microbiology and Biotechnology,2018,102(20):8817-8826.
[86] ABURATANI S, ISHIYA K, ITOH T, et al. Inference of regulatory system for TAG biosynthesis in Lipomyces starkeyi[J]. Bioengineering,2020,7(4):148
[87] ZHANG H Y, ZHANG L N, CHEN H Q, et al. Enhanced lipid accumulation in the yeast Yarrowia lipolytica by over-expression of ATP: citrate lyase from Mus musculus[J]. Journal of Biotechnology,2014,192:78-84.
[88] SATO R, ARA S, YAMAZAKI H, et al. Citrate-mediated acyl-CoA synthesis Is required for the promotion of growth and triacylglycerol production in oleaginous yeast Lipomyces starkeyi[J]. Microorganisms,2021,9(8):1693.
[89] CHATTOPADHYAY A, MITRA M, MAITI M K. Recent advances in lipid metabolic engineering of oleaginous yeasts[J]. Biotechnology Advances,2021,53:107722.
[90] QIAO K J, IMAM ABIDI S H, LIU H J, et al. Engineering lipid overproduction in the oleaginous yeast Yarrowia lipolytica[J]. Metabolic Engineering,2015,29:56-65.
[91] BLAZECK J, HILL A, LIU L Q, et al. Harnessing Yarrowia lipolytica lipogenesis to create a platform for lipid and biofuel production[J]. Nature Communications,2014,5:3131.
[92] LI Z, SUN H X, MO X M, et al. Overexpression of malic enzyme (ME) of Mucor circinelloides improved lipid accumulation in engineered Rhodotorula glutinis[J]. Applied Microbiology and Biotechnology,2013,97(11):4927-4936.
[93] YUZBASHEVA E Y, MOSTOVA E B, ANDREEVA N I, et al. Co-expression of glucose-6-phosphate dehydrogenase and acyl-CoA binding protein enhances lipid accumulation in the yeast Yarrowia lipolytica[J]. New Biotechnology,2017,39:18-21.
[94] FRIEDLANDER J, TSAKRAKLIDES V, KAMINENI A, et al. Engineering of a high lipid producing Yarrowia lipolytica strain[J]. Biotechnology for Biofuels,2016,9(1):77.
[95] DULERMO T, TRTON B, BEOPOULOS A, et al. Characterization of the two intracellular lipases of Y. lipolytica encoded by TGL3 and TGL4 genes: new insights into the role of intracellular lipases and lipid body organisation[J]. Biochimica et Biophysica Acta(BBA)-Molecular and Cell Biology of Lipids,2013,1831(9):1486-1495.
[96] DULERMO T, NICAUD J M. Involvement of the G3P shuttle and β-oxidation pathway in the control of TAG synthesis and lipid accumulation in Yarrowia lipolytica[J]. Metabolic Engineering,2011,13(5):482-491.
[97] HU C M, WU S G, WANG Q, et al. Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum[J]. Biotechnology for Biofuels,2011,4(1):25.
[98] RAN Y L, YANG Q, ZENG J, et al. Potential xylose transporters regulated by CreA improved lipid yield and furfural tolerance in oleaginous yeast Saitozyma podzolica zwy-2-3[J]. Bioresource Technology,2023,386:129413.
[99] ZHOU L L, XU Z X, WEN Z Q, et al. Combined adaptive evolution and transcriptomic profiles reveal aromatic aldehydes tolerance mechanisms in Yarrowia lipolytica[J]. Bioresource Technology,2021,329:124910.
[100] GORTE O, KUGEL M, OCHSENREITHER K. Optimization of carbon source efficiency for lipid production with the oleaginous yeast Saitozyma podzolica DSM 27192 applying automated continuous feeding[J]. Biotechnology for Biofuels,2020,13(1):181.
[101] HUANG X F, SHEN Y, LUO H J, et al. Enhancement of extracellular lipid production by oleaginous yeast through preculture and sequencing batch culture strategy with acetic acid[J]. Bioresource Technology,2018,247:395-401.
[102] 王致鵬. 產(chǎn)油酵母菌合成生物油脂的研究[D]. 青島:中國(guó)海洋大學(xué),2014.
Research Progress and Prospect of Oleaginous Yeast
QIAO Dairong1,2,"RAN Yulu1,2,"LI Wei3
(1. Microbiology and Metabolic Engineering Key Laboratory of Sichuan Province, Sichuan University, Chengdu 610065, Sichuan;
2. College of Life Science, Sichuan University, Chengdu 610065, Sichuan;
3. College of Life Science, Sichuan Normal University, Chengdu 610101, Sichuan)
With the advantages of being green, low-carbon, clean, and renewable, bioenergy is a form of energy that is produced from biologically based materials. It is primarily divided into three categories: biomass, biofuel, and biogas. In light of their potential to replace conventional fossil fuels with a greener alternative, microbial oils, the third generation of biodiesel, have gained attention as a focus of study to address energy and environmental issues. This paper reviews the progress of research on lipid synthesis, regulation mechanisms, and metabolic engineering in oleaginous yeast, which is the mainstay of microbial lipid production and whose isocitrate dehydrogenase activity is dependent on adenosine monophosphate (AMP), allowing them to accumulate large amounts of lipids under nitrogen-limiting conditions. Because various conditions (e.g., carbon and nitrogen sources, temperature, dissolved oxygen, pH, etc.) affect lipid accumulation, the related carbon and nitrogen source utilization and stress-regulated transcription factors, GAT1, MIG1, ASG1, MYB, GRAS, CBF11, TORC1 bHLH8, and PHD, among others, also regulate lipid metabolism in oleaginous yeast. However, unlike Saccharomyces cerevisiae, the lipid synthesis process and genetic background of oleaginous yeasts are still unknown, limiting their potential for industrial application. As a result, several studies will be needed in the future to develop technologies for microbial lipid production "in terms of improving strain robustness, increasing the production of economical metabolic by-products, and improving the ability to utilize economical substrates, so that it can become an effective alternative to traditional fossil fuels.
biodiesel fuel; oleaginous yeast; lipid synthesis; regulatory mechanism; metabolic engineering; economical
(編輯"陶志寧)
收稿日期:2023-12-19""接受日期:2024-01-27
基金項(xiàng)目:國(guó)家自然科學(xué)基金(32271535和32071479)
第一作者簡(jiǎn)介:?jiǎn)檀兀?956—),女,教授,主要從事微生物資源保護(hù)、微生物油脂合成分子機(jī)制、工業(yè)酶分子改造等研究,E-mail:qiaodairong@scu.edu.cn
引用格式:?jiǎn)檀?,冉雨鷺,李維. 產(chǎn)油酵母的研究現(xiàn)狀與展望[J]. 四川師范大學(xué)學(xué)報(bào)(自然科學(xué)版),2025,48(1):1-14.