摘要:目的 探究小膠質(zhì)細(xì)胞鐵死亡在煙霧吸入性腦損傷中的作用機(jī)制。方法 將20只C57BL/6小鼠隨機(jī)分為對照組(Control組)、煙霧吸入性損傷(SII)組、鐵抑素治療組(Fer-1組,2.5 mmol/kg Fer-1)、甲磺酸去鐵胺治療組(DFO組,200 mg/kg DFO),每組5只。Fer-1組和DFO組于造模后第1、3、5天分別腹腔注射Fer-1和DFO。第6天通過蘇木素伊紅(HE)染色、普魯士藍(lán)染色觀察各組小鼠腦組織的病理變化。實(shí)時(shí)熒光定量逆轉(zhuǎn)錄PCR(RT-qPCR)檢測腦損傷因子、炎性因子、鐵死亡因子基因表達(dá)水平。雙聯(lián)吡啶比色法測定小鼠腦組織中鐵含量。硫代巴比妥酸比色法測定小鼠腦組織脂質(zhì)過氧化物(LPO)、丙二醛(MDA)含量。黃嘌呤氧化酶法測定小鼠腦組織超氧化物歧化酶(SOD)活性。二硫代二硝基苯甲酸(DTNB)直接法測定小鼠腦組織谷胱甘肽(GSH)含量。DMEM完全培養(yǎng)基培養(yǎng)BV2細(xì)胞,分為Control組、Erastin組(10 μmol/L Erastin刺激)、Fer-1組(10 μmol/L Erastin與5 mmol/L Fer-1同時(shí)刺激)、DFO組(10 μmol/L Erastin與50 mmol/L DFO同時(shí)刺激)。24 h后,CCK-8法檢測細(xì)胞活力變化,流式細(xì)胞術(shù)檢測細(xì)胞凋亡情況,2,7-二氯熒光素二乙酸酯(DCFDA)檢測細(xì)胞內(nèi)活性氧(ROS)水平,線粒體紅色熒光探針檢測線粒體膜電位。結(jié)果 與Control組相比,SII組小鼠腦組織出現(xiàn)明顯鐵沉積和炎癥反應(yīng),腦組織腦損傷因子、炎性因子mRNA表達(dá)水平升高,乙酰輔酶A合成酶長鏈家族4(ACSL4)、核受體共激活因子4(NCOA4)mRNA表達(dá)水平升高,谷胱甘肽氧化酶4(GPX4)、溶質(zhì)載體家族7成員11(SLC7A11)mRNA表達(dá)水平降低,小鼠腦組織GSH和SOD含量降低,LPO和MDA含量升高(P<0.05)。與SII組相比,F(xiàn)er-1組和DFO組小鼠相應(yīng)指標(biāo)變化與上述相反(P<0.05),小鼠腦組織損傷減輕。BV2細(xì)胞實(shí)驗(yàn)結(jié)果顯示,與Control組相比,Erastin組BV2細(xì)胞存活率下降、凋亡率升高(P<0.05),細(xì)胞內(nèi)ROS水平升高,線粒體膜電位下降;與Erastin組相比,F(xiàn)er-1組、DFO組細(xì)胞相應(yīng)指標(biāo)變化與上述相反(P<0.05),BV2細(xì)胞氧化損傷得到緩解。結(jié)論 鐵死亡抑制劑Fer-1和DFO能夠抑制小膠質(zhì)細(xì)胞鐵死亡并緩解煙霧吸入性腦損傷。
關(guān)鍵詞:煙霧吸入性損傷;小神經(jīng)膠質(zhì)細(xì)胞;鐵死亡;去鐵胺;鐵抑素
中圖分類號:R363.21,R644 文獻(xiàn)標(biāo)志碼:A DOI:10.11958/20231628
Mechanism of microglia ferroptosis in smoke inhalation-induced brain injury
LIU Bin1, 2, YANG Long1, LI Wenli3, SHAO Ningning4, DONG Jinrui5△
1 Center for Integrative Medicine, Tianjin University, Tianjin 300162, China; 2 Department of Infectious Diseases, Characteristic Medical Center of Chinese People's Armed Police Force; 3 Institute of Emergency Medicine, Tianjin University School of
Medicine; 4 Department of Basic Science and Research, Haihe Hospital, Tianjin University; 5 Institute of Medical
Engineering and Translational Medicine, Tianjin University School of Medicine
△Corresponding Author E-mail: jinrui_dong@tju.edu.cn
Abstract: Objective To investigate the underlying mechanism of microglia ferroptosis in smoke inhalation-induced (SII) brain injury. Methods Twenty SPF-grade male C57BL/6 mice were randomly divided into the control group, the SII group, the ferrostatin-1 group (Fer-1, 2.5 mmol/kg) and the deferoxamine group (DFO, 200 mg/kg), with 5 mice in each group. Mice in the Fer-1 group and the DFO group were intraperitoneally injected with Fer-1 and DFO 1, 3 and 5 day after smoke exposure, respectively. The pathological changes of brain tissue were examined by HE staining and Prussian blue staining on the 6th day after smoke exposure. RT-qPCR was used to detect levels of inflammatory factors, brain tissue damage markers and ferroptosis markers. The contents of iron in mouse brain tissue were determined by double pyridine colorimetric assay. The contents of malondialdehyde (MDA) and lipid peroxide (LPO) in mouse brain tissue were determined by thiobarbituric acid (TBA) colorimetric assay. Superoxide dismutase (SOD) activity in mouse brain tissue was measured by xanthine oxidase assay kit. The contents of glutathione (GSH) in mouse brain tissue were determined by direct method of dithiodinitrobenzoic acid (DTNB) assay. BV2 cells were cultured in complete DMEM medium and divided into the control group, the erastin group (10 μmol/L), the Fer-1 group (erastinc stimulation combined with 5 mmol/L Fer-1 treatment) and the DFO group (erastinc stimulation combined with 50 mmol/L DFO treatment). After 24 h, cell viability was detected by CCK-8 assay, cell apoptosis was detected by Annexin V-FITC/PI flow cytometry, intracellular reactive oxygen species (ROS) production was detected by DCFDA staining, and mitochondrial membrane potential was detected by MitoTracker Red CMXRos staining. Results Compared with the control group, enhanced iron deposition and inflammation in brain tissue, elevated mRNA expression of inflammatory markers and damage markers in brain tissue, up-regulated ACSL4 and NCOA4 mRNA levels, down-regulated GPX4 and SLC7A11 mRNA levels, decreased GSH and SOD contents, and increased LPO and MDA contents were observed in brain tissue of the SII group (P<0.05). The mRNA expression level of 7 member of solute carrier family 11 (SLC7A11) was decreased in mice of the SII group. The contents of GSH and SOD were decreased, and the contents of LPO and MDA were increased (P<0.05). Compared with the SII group, all the above parameters were reversed in the Fer-1 group and the DFO group, and the damage of mouse brain tissue was alleviated (P<0.05). In BV2 cell experiments, compared with the control group, decreased survival rate of BV2 cells and increased apoptosis rate were found in the erastin group (P<0.05), and increased intracellular ROS level and decreased mitochondrial membrane potential were also observed in the erastin-stimulated BV2 cells. The above parameters were opposite to those of the erastin group in the Fer-1 group and the DFO group (P<0.05), and the oxidative damage of BV2 cells was alleviated. Conclusion The ferroptosis inhibitors Fer-1 and DFO can inhibit microglia ferroptosis and alleviate smoke inhalation-induced brain injury.
Key words: smoke inhalation injury; microglia; ferroptosis; deferoxamine; ferrostatin-1
煙霧吸入性損傷(smoke inhalation injury,SII)是由爆破煙霧和火災(zāi)煙霧引起的多器官損傷[1],可導(dǎo)致慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)[2]、全身炎癥反應(yīng)綜合征(systemic inflammatory response syndrome,SIRS)和急性呼吸窘迫綜合征(acute respiratory distress syndrome,ARDS)等多種并發(fā)癥[3-4]。研究表明,至少75%的燒傷患者死于吸入過多的煙霧,其主要有害成分包括熱量、呼吸道刺激物和全身毒素,從而對人體健康產(chǎn)生嚴(yán)重危害,其中包括對中樞神經(jīng)系統(tǒng)的影響[5-6]。小膠質(zhì)細(xì)胞是中樞神經(jīng)系統(tǒng)中最豐富的非神經(jīng)元細(xì)胞,參與維持腦內(nèi)環(huán)境平衡、修復(fù)受損組織等生理功能[7]。研究表明,煙霧的吸入會導(dǎo)致小膠質(zhì)細(xì)胞的炎癥反應(yīng)和氧化應(yīng)激,引發(fā)細(xì)胞死亡[8]。鐵死亡是一種程序性細(xì)胞死亡形式,其特點(diǎn)是鐵依賴性氧化損傷、細(xì)胞膜破裂以及損傷相關(guān)分子的釋放[9-10]。小膠質(zhì)細(xì)胞中含有大量的鐵離子,而煙霧損傷可能會導(dǎo)致小膠質(zhì)細(xì)胞鐵離子釋放和過量積累,從而引起小膠質(zhì)細(xì)胞鐵死亡[11-12]。小膠質(zhì)細(xì)胞鐵死亡還可能影響腦內(nèi)鐵代謝,導(dǎo)致鐵離子的積累和神經(jīng)元的進(jìn)一步損傷[13]。本研究建立小鼠煙霧吸入性腦損傷模型和小膠質(zhì)細(xì)胞鐵死亡模型,通過使用鐵死亡抑制劑鐵抑素(ferrostatin-1,F(xiàn)er-1)和甲磺酸去鐵胺(deferoxamine mesylate,DFO)探究小膠質(zhì)細(xì)胞鐵死亡在煙霧吸入性腦損傷中的作用機(jī)制。
1 材料與方法
1.1 實(shí)驗(yàn)材料
1.1.1 實(shí)驗(yàn)動(dòng)物 SPF級7~8周齡雄性C57BL/6小鼠20只,體質(zhì)量18~20 g,購自北京維通利華實(shí)驗(yàn)動(dòng)物技術(shù)有限公司,動(dòng)物生產(chǎn)許可證號:SCXK(京)2021-0006。所有動(dòng)物飼養(yǎng)在易生源基因科技(天津)有限公司,使用許可證號:SYXK(津)2021-0003,安置在溫度為21~24 ℃、濕度為40%~70%、光照/黑暗周期為12 h的環(huán)境中,自由進(jìn)食和飲水。適應(yīng)性飼養(yǎng)1周后進(jìn)行實(shí)驗(yàn)。
1.1.2 主要藥品及試劑 愛拉斯?。‥rastin)、Fer-1和DFO購自上海阿拉丁生化科技股份有限公司;谷胱甘肽(glutathione,GSH)、組織鐵和脂質(zhì)過氧化物(lipid peroxide,LPO)試劑盒購自南京建成生物工程研究所;丙二醛(malondialdehyde,MDA)含量檢測試劑盒、超氧化物歧化酶(superoxide dismutase,SOD)活性檢測試劑盒、活性氧(ROS)檢測試劑盒、蘇木素伊紅(HE)染色試劑盒、普魯士藍(lán)(Prussian blue,PB)染色試劑盒、MitoTracker Red CMXRos線粒體紅色熒光探針、ANNEXIN V-FITC/PI凋亡檢測試劑盒、CCK-8試劑盒、4%多聚甲醛和無酶無菌水購自北京索萊寶科技有限公司;Trizol購自Thermo Fisher Scientific公司;RNeasy Mini Kit購自Qiagen公司;cDNA合成預(yù)混液和SYBR Green qPCR Mix購自上海碧云天生物技術(shù)股份有限公司。
1.1.3 主要儀器 電子天平(常州萬泰天平儀器有限公司,型號FA1004LC)、離心機(jī)(蘇州莫納生物科技有限公司,型號GL2415R)、實(shí)時(shí)熒光定量PCR儀(Bio-rad公司,型號CFX96)、多功能酶標(biāo)儀(PERKinElmer公司,型號Enpire)、組織切片機(jī)(上海徠卡儀器有限公司,型號RM2016)。
1.2 實(shí)驗(yàn)方法
1.2.1 動(dòng)物模型的建立、分組及給藥 參照文獻(xiàn)[14]方法和本實(shí)驗(yàn)室前期預(yù)實(shí)驗(yàn)結(jié)果構(gòu)建小鼠SII模型。使用蘋果木屑作為煙氣燃料,將其放入煙氣發(fā)生器裝置中,設(shè)置溫度為37 ℃,CO質(zhì)量濃度為3 000 mg/m3,將清醒的實(shí)驗(yàn)小鼠放入與煙霧發(fā)生器相連的箱體內(nèi),點(diǎn)火發(fā)煙。暴露15 min后,將動(dòng)物轉(zhuǎn)移到空氣新鮮的地方。將實(shí)驗(yàn)小鼠按隨機(jī)數(shù)字表法分為對照組(Control組)、SII組、鐵抑素治療組(Fer-1組,2.5 mmol/kg Fer-1)和甲磺酸去鐵胺治療組(DFO組,200 mg/kg DFO),每組5只。Control組新鮮空氣暴露15 min,SII組、Fer-1組、DFO組煙霧暴露15 min,F(xiàn)er-1組和DFO組造模后第1、3、5天分別進(jìn)行Fer-1、DFO腹腔注射,Control組、SII組給予等體積生理鹽水。各組小鼠自由進(jìn)食飲水,第6天頸椎脫臼法處死小鼠,取腦組織,沿冠狀面切開,一半腦組織標(biāo)本浸泡在4%多聚甲醛中固定,用于后續(xù)組織學(xué)分析,另一半腦組織迅速置于-80 ℃冷凍保存,用于后續(xù)分子生物學(xué)分析。
1.2.2 組織學(xué)染色 取1.2.1中多聚甲醛固定后的腦組織,進(jìn)行石蠟包埋,切片(5 μm)。參照試劑盒說明書進(jìn)行HE染色,中性樹膠封片,光學(xué)顯微鏡(100倍)觀察腦損傷和炎癥反應(yīng)(藍(lán)色或紫色聚集的顆粒狀細(xì)胞為陽性視野)。參照試劑盒說明書進(jìn)行PB染色,中性樹膠封片,光學(xué)顯微鏡下(200倍)觀察腦組織鐵積累(棕褐色或棕黃色著色為二價(jià)鐵著色的陽性視野)。每只小鼠取3張切片,每張切片隨機(jī)讀取6個(gè)視野。
1.2.3 實(shí)時(shí)熒光定量逆轉(zhuǎn)錄PCR(RT-qPCR) 取1.2.1中-80 ℃冷凍保存的一半腦組織,加入1 mL Trizol溶液進(jìn)行勻漿,并使用試劑盒提取總RNA。Thermo Nanodrop 2000紫外分光光度計(jì)測定總RNA濃度。將1 μg的總RNA逆轉(zhuǎn)錄為cDNA。使用SYBR熒光探針進(jìn)行RT-qPCR實(shí)驗(yàn)。反應(yīng)體系(20 μL):SYBR 10 μL,上、下游引物各2 μL,cDNA模版2 μL,DEPC水4 μL。反應(yīng)條件:95 ℃預(yù)變性30 s;95 ℃變性5 s,60 ℃退火30 s,72 ℃延伸30 s,進(jìn)行40個(gè)循環(huán);檢測炎性因子:白細(xì)胞介素(interleukin,IL)-1β、IL-6、IL-8、腫瘤壞死因子(tumor necrosis factor,TNF)-α;腦損傷因子:閉鎖小帶蛋白1(zonula occludens-1,Zo-1)、血管內(nèi)皮鈣黏蛋白(VE-Cadherin)、閉合蛋白(Occludin)、緊密連接蛋白5(Claudin-5);鐵死亡因子:乙酰輔酶A合成酶長鏈家族4(acyl-CoA synthetase long-chain family member 4,ACSL4)、核受體共激活因子4(nuclear receptor coactivator 4,NCOA4)、谷胱甘肽氧化酶4(glutathione peroxidase 4,GPX4)、溶質(zhì)載體家族7成員11(solute carrier family 7 member 11,SLC7A11)mRNA表達(dá)。以樣本中GAPDH為內(nèi)參,依據(jù)公式?Ct=Ct目的基因-CtGAPDH,計(jì)算2-ΔΔCt值以表示目的基因的相對表達(dá)水平。所有引物序列均在NCBI數(shù)據(jù)庫中利用Primer-Blast設(shè)計(jì),經(jīng)Blast數(shù)據(jù)庫核酸序列比對無誤后,由蘇州金唯智生物科技有限公司合成,見表1。
1.2.4 腦組織鐵死亡相關(guān)因子分析 取1.2.1中凍存的腦組織制備組織勻漿,以2 500 r/min離心10 min,取上清液進(jìn)行后續(xù)實(shí)驗(yàn)。雙聯(lián)吡啶比色法測定小鼠腦組織中鐵含量;硫代巴比妥酸比色法(TBA)測定小鼠腦組織LPO和MDA含量;黃嘌呤氧化酶法測定小鼠腦組織SOD活性;二硫代二硝基苯甲酸(DTNB)直接法測定小鼠腦組織GSH含量,以上實(shí)驗(yàn)嚴(yán)格按照試劑盒說明書進(jìn)行操作。
1.2.5 BV2細(xì)胞培養(yǎng)和鐵死亡模型建立 小鼠小膠質(zhì)細(xì)胞BV2(美國ATCC細(xì)胞庫)使用含10%胎牛血清和1%青/鏈霉素的DMEM培養(yǎng)基在37 ℃、5%CO2的恒溫培養(yǎng)箱中培養(yǎng)。取對數(shù)生長期細(xì)胞進(jìn)行實(shí)驗(yàn)。將細(xì)胞分為Control組、Erastin組、Fer-1組和DFO組。Control組用完全培養(yǎng)基處理,Erastin組用Erastin(10 μmol/L)刺激BV2細(xì)胞建立鐵死亡模型,F(xiàn)er-1組和DFO組加入Erastin同時(shí)分別加入Fer-1(5 mmol/L)和DFO(50 mmol/L),24 h后進(jìn)行后續(xù)實(shí)驗(yàn)。
1.2.6 CCK-8法檢測細(xì)胞活性 細(xì)胞接種于96孔板(5 000個(gè)細(xì)胞/孔),按照1.2.5進(jìn)行分組處理,每組6個(gè)復(fù)孔,每孔加入100 μL培養(yǎng)液處理24 h后,向每孔加入10 μL CCK-8溶液,在培養(yǎng)箱內(nèi)孵育1~4 h,用多功能酶標(biāo)儀測定450 nm處的光密度(OD)值。細(xì)胞存活率=[(OD實(shí)驗(yàn)孔-OD空白孔)/(OD對照孔-OD空白孔)]×100%。
1.2.7 流式細(xì)胞術(shù)檢測細(xì)胞凋亡 細(xì)胞接種于6孔板(5×105個(gè)細(xì)胞/孔),按照1.2.5進(jìn)行分組處理,24 h后收集細(xì)胞。每管加入100 μL Binding Buffer重懸細(xì)胞,加入5 μL FITC避光孵育5 min后,加入5 μL PI染料,再加入300 μL Binding Buffer,混勻轉(zhuǎn)移到5 mL流式管中后,流式細(xì)胞儀上機(jī)檢測。用CtyExpert軟件進(jìn)行分析:起始細(xì)胞群的FSC/SSC門設(shè)定為10 000個(gè)事件。碎片(SSC-A vs. FSC-A)和多細(xì)胞團(tuán)(FSC-H vs. FSC-A)被排除。對于Annexin V-FITC和PI染色,“陽性”和“陰性”染色之間的界限被設(shè)定為1×104。
1.2.8 2,7-二氯熒光素二乙酸酯(DCFDA)法檢測細(xì)胞內(nèi)ROS水平 細(xì)胞接種于24孔板(1×104個(gè)細(xì)胞/孔),按照1.2.5進(jìn)行分組處理24 h后,清洗細(xì)胞,按照1∶1 000用無血清培養(yǎng)基稀釋DCFDA,每孔加入200 μL DCFDA稀釋液,于恒溫培養(yǎng)箱中孵育30~45 min,用稀釋緩沖液沖洗。使用激光共聚焦顯微鏡觀察細(xì)胞內(nèi)ROS熒光強(qiáng)度。
1.2.9 線粒體膜電位檢測 細(xì)胞鋪在24孔板上(10 000個(gè)細(xì)胞/孔),按照1.2.5進(jìn)行分組處理24 h,清洗細(xì)胞,按照1∶" " " " 1 000用無血清培養(yǎng)基稀釋線粒體紅色熒光探針,每孔加入200 μL探針稀釋液,于恒溫培養(yǎng)箱中孵育30~45 min,用稀釋緩沖液沖洗。使用激光共聚焦顯微鏡觀察細(xì)胞內(nèi)線粒體膜電位熒光強(qiáng)度。
1.3 統(tǒng)計(jì)學(xué)方法 采用GraphPad Prism 9.4.0軟件進(jìn)行數(shù)據(jù)分析。符合正態(tài)分布的計(jì)量數(shù)據(jù)以[[x] ±s]表示,多組間比較采用單因素方差分析,組間多重比較行LSD-t檢驗(yàn)。P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)果
2.1 各組小鼠腦組織病理學(xué)改變 PB染色(圖1A)和HE染色(圖1B)結(jié)果顯示,Control組小鼠腦組織神經(jīng)細(xì)胞排列整齊,結(jié)構(gòu)清晰,細(xì)胞核、細(xì)胞漿完整,可見少量鐵沉積;與Control組相比,SII組小鼠腦組織有明顯出血癥狀、炎性細(xì)胞浸潤和鐵沉積;與SII組相比,F(xiàn)er-1組、DFO組小鼠腦組織炎性細(xì)胞浸潤和鐵沉積明顯緩解;Fer-1組與DFO組在緩解小鼠腦組織鐵沉積和炎性細(xì)胞浸潤方面未見明顯差異。
2.2 各組小鼠腦組織炎性和腦損傷因子表達(dá)水平比較 與Control組相比,SII組小鼠腦組織炎性因子和腦損傷因子mRNA表達(dá)水平升高,鐵死亡因子ACSL4、NCOA4 mRNA表達(dá)水平升高,GPX4、SLC7A11 mRNA表達(dá)水平下降(P<0.05);與SII組相比,F(xiàn)er-1組、DFO組小鼠腦組織炎性因子和腦損傷因子mRNA以及鐵死亡因子ACSL4、NCOA4 mRNA表達(dá)水平降低,GPX4、SLC7A11 mRNA表達(dá)水平升高(P<0.05);與Fer-1組相比,DFO組小鼠腦組織炎性因子、腦損傷因子和鐵死亡因子mRNA表達(dá)水平差異無統(tǒng)計(jì)學(xué)意義,見表2—4。
2.3 各組小鼠腦組織鐵死亡相關(guān)因子水平比較 與Control組相比,SII組小鼠腦組織出現(xiàn)鐵沉積,LPO和MDA含量升高,SOD和GSH含量降低(P<0.05);與SII組相比,F(xiàn)er-1組、DFO組小鼠腦組織鐵沉積減少,LPO、MDA含量降低,SOD、GSH含量升高(P<0.05);與Fer-1組相比,DFO組小鼠腦組織鐵死亡相關(guān)因子水平差異無統(tǒng)計(jì)學(xué)意義(P>0.05),見表5。
2.4 各組細(xì)胞存活率和凋亡率比較 與Control組相比,Erastin組BV2細(xì)胞存活率降低、凋亡率升高(P<0.05);與Erastin組相比,F(xiàn)er-1組、DFO組BV2細(xì)胞存活率升高、凋亡率降低;與Fer-1組相比,DFO組BV2細(xì)胞存活率和凋亡率差異無統(tǒng)計(jì)學(xué)意義(P>0.05),見表6、圖2。
2.5 各組細(xì)胞氧化應(yīng)激水平比較 與對照組相比,Erastin組BV2細(xì)胞ROS含量增加,線粒體膜電位降低;與Erastin組相比,F(xiàn)er-1組、DFO組BV2細(xì)胞ROS的產(chǎn)生減少,線粒體膜電位升高;與Fer-1組相比,DFO組BV2細(xì)胞ROS含量較高,線粒體膜電位較低,見圖3。
3 討論
SII是指在火災(zāi)等高溫?zé)熿F環(huán)境中暴露后導(dǎo)致身體損傷的一種情況。在這種環(huán)境中,煙霧中的多種有害物質(zhì)和高溫氣體會造成缺氧、中毒、呼吸道燒傷等癥狀。嚴(yán)重的情況下,SII還可能導(dǎo)致神經(jīng)系統(tǒng),心臟、肺等器官的損傷[15-16]。鐵死亡特點(diǎn)是細(xì)胞死亡過程中伴隨著細(xì)胞內(nèi)鐵離子的異常積聚和脂質(zhì)過氧化反應(yīng)的增加,最終導(dǎo)致膜結(jié)構(gòu)的破壞和細(xì)胞死亡[9-10,17]。探究鐵死亡機(jī)制為相關(guān)疾病的研究提供了新的思路和方法,例如肝炎、心肌梗死、腦卒中等疾病均與鐵死亡有關(guān)[18-19]。目前研究發(fā)現(xiàn),鐵死亡與神經(jīng)炎癥和腦損傷有密切的關(guān)系,鐵離子的異常積聚和脂質(zhì)過氧化反應(yīng)是引起神經(jīng)細(xì)胞死亡的主要原因之一[20]。研究發(fā)現(xiàn),在神經(jīng)系統(tǒng)炎癥模型中,抑制鐵死亡可以減輕神經(jīng)細(xì)胞的死亡和炎癥反應(yīng),保護(hù)神經(jīng)系統(tǒng)免受損傷[21]。此外,鐵死亡在腦損傷中亦發(fā)揮著重要的作用。有研究發(fā)現(xiàn),抑制鐵死亡可以減輕腦損傷的程度,促進(jìn)腦損傷的修復(fù)[22-23]。因此,鐵死亡在神經(jīng)炎癥和腦損傷中的作用不可忽視。本研究結(jié)果顯示,與Control組相比,SII組小鼠腦組織出現(xiàn)明顯的炎性細(xì)胞浸潤和鐵沉積以及腦損傷因子含量上升,提示鐵死亡可能參與煙霧吸入性腦損傷。為了驗(yàn)證這一猜想,本研究進(jìn)一步比較各組腦組織鐵死亡因子含量,結(jié)果顯示,與Control組相比,SII組小鼠腦組織GSH、SOD含量下降,LPO、MDA含量升高,與Wu等[24]研究結(jié)果一致。筆者推測,抑制鐵死亡發(fā)生能夠緩解煙霧暴露誘發(fā)的腦組織損傷。目前常見的鐵死亡抑制劑主要針對鐵死亡的兩個(gè)重要特征:亞鐵離子過載和LPO積累,通過減少游離鐵、消除自由基、抑制脂質(zhì)過氧化發(fā)揮作用。鑒于此,本研究選擇常用的Fer-1和DFO。Fer-1可以通過抑制過氧化物酶體降低鐵離子的積累,從而降低ROS的生成,從而減緩細(xì)胞死亡。研究發(fā)現(xiàn),F(xiàn)er-1在缺氧缺血性損傷、神經(jīng)退行性疾病、肝損傷發(fā)揮著重要作用,能夠維持GSH水平,中和氧化應(yīng)激過程中產(chǎn)生的自由基,從而增加細(xì)胞對氧化應(yīng)激的抵抗能力,抑制鐵死亡的發(fā)生[25]。Li等[26]研究發(fā)現(xiàn)Fer-1通過恢復(fù)缺血性腦損傷中GSH水平發(fā)揮腦保護(hù)作用。DFO是一種鐵螯合劑,它可以通過結(jié)合游離鐵離子來降低血液中的鐵含量,抑制鐵離子與氧分子反應(yīng),從而減緩氧化應(yīng)激的程度,抑制鐵死亡的發(fā)生[27]。Cheng等[28]研究發(fā)現(xiàn)DFO能通過抑制鐵相關(guān)氧化還原失衡發(fā)揮神經(jīng)保護(hù)作用。本研究結(jié)果顯示,與SII組相比,腹腔注射鐵死亡抑制劑Fer-1和DFO能夠顯著緩解煙霧吸入引發(fā)的小鼠腦組織鐵沉積、腦損傷以及炎癥反應(yīng);降低鐵死亡因子ACSL4、NCOA4 mRNA表達(dá)水平,升高GPX4、SLC7A11 mRNA表達(dá)水平;升高小鼠腦組織GSH和SOD含量,降低LPO和MDA含量,進(jìn)一步證實(shí)鐵死亡在煙霧吸入性腦損傷中發(fā)揮著重要的作用。
小膠質(zhì)細(xì)胞是一類主要存在于中樞神經(jīng)系統(tǒng)的神經(jīng)膠質(zhì)細(xì)胞,在維持神經(jīng)系統(tǒng)穩(wěn)態(tài)、調(diào)節(jié)神經(jīng)元活動(dòng)、清除代謝產(chǎn)物等方面發(fā)揮著重要的作用。研究表明,鐵過載會導(dǎo)致小膠質(zhì)細(xì)胞內(nèi)部的氧化應(yīng)激反應(yīng)、凋亡信號通路的激活和自噬途徑的抑制,從而誘導(dǎo)小膠質(zhì)細(xì)胞鐵死亡[11-13]。Erastin是一種化合物,通過抑制細(xì)胞內(nèi)GPX4活性促進(jìn)鐵依賴性細(xì)胞死亡通路的激活,從而誘導(dǎo)細(xì)胞死亡[29]。本研究結(jié)果顯示,Erastin組細(xì)胞存活率下降、凋亡率上升,ROS含量增多,線粒體膜電位降低,提示Erastin可誘導(dǎo)BV2細(xì)胞發(fā)生鐵死亡。使用鐵死亡抑制劑Fer-1和DFO后,BV2細(xì)胞存活率上升,ROS含量減少,線粒體膜電位升高,提示鐵死亡在小膠質(zhì)細(xì)胞損傷中發(fā)揮著重要作用。
綜上所述,抑制鐵死亡細(xì)胞通路的激活能夠緩解小膠質(zhì)細(xì)胞BV2細(xì)胞死亡和氧化損傷,改善煙霧暴露引發(fā)腦損傷和炎癥反應(yīng)。抑制鐵死亡信號通路的激活可能有望為腦損傷疾病提供新的治療策略。
參考文獻(xiàn)
[1] SONG M,LV Q,ZHANG X,et al. Dynamic tracking human mesenchymal stem cells tropism following smoke inhalation injury in NOD/SCID mice[J]. Stem Cells Int,2016,2016:1691856. doi:10.1155/2016/1691856.
[2] ZHANG H H,ZHOU X J,ZHONG Y S,et al. Naringin suppressed airway inflammation and ameliorated pulmonary endothelial hyperpermeability by upregulating Aquaporin1 in lipopolysaccharide/cigarette smoke-induced mice[J]. Biomed Pharmacother,2022,150:113035. doi:10.1016/j.biopha.2022.113035.
[3] MURAKAMI K,TRABER D L. Pathophysiological basis of smoke inhalation injury[J]. News Physiol Sci,2003,18(3):125-129. doi:10.1152/nips.01427.2002.
[4] KIMMEL E C,STILL K R. Acute lung injury,acute respiratory distress syndrome and inhalation injury:an overview[J]. Drug Chem Toxicol,1999,22(1):91-128. doi:10.3109/01480549909029726.
[5] GUO B,BAI Y,MA Y,et al. Preclinical and clinical studies of smoke-inhalation-induced acute lung injury:update on both pathogenesis and innovative therapy[J]. Ther Adv Respir Dis,2019,13:1753466619847901. doi:10.1177/1753466619847901.
[6] MILTON-JONES H,SOUSSI S,DAVIES R,et al. An international RAND/UCLA expert panel to determine the optimal diagnosis and management of burn inhalation injury[J]. Crit Care,2023,27(1):459. doi:10.1186/s13054-023-04718-w.
[7] COLONNA M,BUTOVSKY O. Microglia function in the central nervous system during health and neurodegeneration[J]. Annu Rev Immunol,2017,35:441-468. doi:10.1146/annurev-immunol-051116-052358.
[8] YANG R Q,GUO P F,MA Z,et al. Effects of simvastatin on iNOS and caspase-3 levels and oxidative stress following smoke inhalation injury[J]. Mol Med Rep,2020,22(6):5479. doi:10.3892/mmr.2020.11413.
[9] 毛權(quán)西,李作孝. 依達(dá)拉奉右莰醇通過鐵死亡-脂質(zhì)過氧化通路對腦出血大鼠神經(jīng)保護(hù)的作用機(jī)制[J]. 天津醫(yī)藥,2023,51(11):1199-1205. MAO Q X,LI Z X. Neuroprotective mechanism of edaravone dexborneol in rats with cerebral hemorrhage through ferroptosis-lipid peroxidation pathway[J]. Tianjin Med J,2023,51(11):1199-1205. doi:10.11958/20221777.
[10] FANG X,ARDEHALI H,MIN J,et al. The molecular and metabolic landscape of iron and ferroptosis in cardiovascular disease[J]. Nat Rev Cardiol,2023,20(1):7-23. doi:10.1038/s41569-022-00735-4.
[11] LI J,LI M,GE Y,et al. β-amyloid protein induces mitophagy-dependent ferroptosis through the CD36/PINK/PARKIN pathway leading to blood-brain barrier destruction in Alzheimer's disease[J]. Cell Biosci,2022,12(1):69. doi:10.1186/s13578-022-00807-5.
[12] RYAN S K,ZELIC M,HAN Y,et al. Microglia ferroptosis is regulated by SEC24B and contributes to neurodegeneration[J]. Nat Neurosci,2023,26(1):12-26. doi:10.1038/s41593-022-01221-3.
[13] 張赟,李珂,補(bǔ)王珍. 電針調(diào)控Nrf2/HO-1通路對缺血缺氧性腦損傷大鼠小膠質(zhì)細(xì)胞活化的影響[J]. 天津醫(yī)藥,2023,51(2):149-154. ZHANG Y,LI K,BU W Z,Effect of electroacupuncture on the activation of microglia in rats with hypoxia-ischemia brain damage by regulating Nrf2/HO-1 pathway[J]. Tianjin Med J,2023,51(2):149-154. doi:10.11958/20220792.
[14] XIAO P,SUN S,CAO J,et al. Expression profile of microRNAs in bronchoalveolar lavage fluid of rats as predictors for smoke inhalation injury[J]. Burns,2018,44(8):2042-2450. doi:10.1016/j.burns.2018.07.009.
[15] GUPTA K,MEHROTRA M,KUMAR P,et al. Smoke inhalation injury:etiopathogenesis,diagnosis,and management[J]. Indian J Crit Care Med,2018,22(3):180-188. doi:10.4103/ijccm.IJCCM_460_17.
[16] SOLEIMANI F,DOBARADARAN S,DE-LA-TORRE G E,et al. Content of toxic components of cigarette,cigarette smoke vs cigarette butts:a comprehensive systematic review[J]. Sci Total Environ,2022,813:152667. doi:10.1016/j.scitotenv.2021.152667.
[17] GALARIS D,BARBOUTI A,PANTOPOULOS K. Iron homeostasis and oxidative stress:An intimate relationship[J]. Biochim Biophys Acta Mol Cell Res,2019,1866(12):118535. doi:10.1016/j.bbamcr.2019.118535.
[18] HAN C,LIU Y,DAI R,et al. Ferroptosis and its potential role in human diseases[J]. Front Pharmacol,2020,11:239. doi:10.3389/fphar.2020.00239.
[19] ZHANG C,LIU X,JIN S,et al. Ferroptosis in cancer therapy:a novel approach to reversing drug resistance[J]. Mol Cancer,2022,21(1):47. doi:10.1186/s12943-022-01530-y.
[20] DU L,WU Y,F(xiàn)AN Z,et al. The role of ferroptosis in nervous system disorders[J]. J Integr Neurosci,2023,22(1):19. doi:10.31083/j.jin2201019.
[21] LIU S,GAO X,ZHOU S. New target for prevention and treatment of neuroinflammation: microglia iron accumulation and ferroptosis[J]. ASN Neuro,2022,14:17590914221133236. doi:10.1177/17590914221133236.
[22] HU X,ZHANG H,ZHANG Q,et al. Emerging role of STING signalling in CNS injury:inflammation,autophagy,necroptosis,ferroptosis and pyroptosis[J]. J Neuroinflammation,2022,19(1):242. doi:10.1186/s12974-022-02602-y.
[23] LI Q S,JIA Y J. Ferroptosis:a critical player and potential therapeutic target in traumatic brain injury and spinal cord injury[J]. Neural Regen Res,2023,18(3):506-512. doi:10.4103/1673-5374.350187.
[24] WU Q,LIU C,LIU D,et al. Polystyrene nanoplastics-induced lung apoptosis and ferroptosis via ROS-dependent endoplasmic reticulum stress[J]. Sci Total Environ,2024,912:169260. doi:10.1016/j.scitotenv.2023.169260.
[25] SCARPELLINI C,KLEJBOROWSKA G,LANTHIER C,et al. Beyond ferrostatin-1:a comprehensive review of ferroptosis inhibitors[J]. Trends Pharmacol Sci,2023,44(12):902-916. doi:10.1016/j.tips.2023.08.012.
[26] LI C,WU Z,XUE H,et al. Ferroptosis contributes to hypoxic-ischemic brain injury in neonatal rats:role of the SIRT1/Nrf2/GPx4 signaling pathway[J]. CNS Neurosci Ther,2022,28(12):2268-2280. doi:10.1111/cns.13973.
[27] ENTEZARI S,HAGHI S M,NOROUZKHANI N,et al. Iron chelators in treatment of iron overload[J]. J Toxicol,2022,2022:4911205. doi:10.1155/2022/4911205.
[28] CHENG H,WANG P,WANG N,et al. Neuroprotection of NRF2 against ferroptosis after traumatic brain injury in mice[J]. Antioxidants,2023,12(3):731. doi:10.3390/antiox12030731.
[29] ADAMIEC-ORGANISCIOK M,WEGRZYN M,CIENCIALA L,et al. Compensative resistance to erastin-induced ferroptosis in GPX4 knock-out mutants in HCT116 cell lines[J]. Pharmaceuticals,2023,16(12):1710. doi:10.3390/ph16121710.
(2023-11-03收稿 2024-03-25修回)
(本文編輯 陳麗潔)