摘要:預(yù)測隧道涌水量對于保障隧道施工安全、進(jìn)度、洞室穩(wěn)定和人身安全問題至關(guān)重要。國內(nèi)外學(xué)者已提出多種預(yù)測方法,但是存在不同適用條件,根據(jù)隧道的水文地質(zhì)條件選取恰當(dāng)?shù)姆椒苡行岣哳A(yù)測精度。對解析公式法、經(jīng)驗(yàn)公式法、數(shù)值法、隨機(jī)性數(shù)學(xué)模型預(yù)測法等多種涌水量預(yù)測方法進(jìn)行了系統(tǒng)梳理和分析,通過對這些方法的基本原理及適用條件進(jìn)行綜合分析,討論了當(dāng)前涌水量預(yù)測方法存在的不足之處,并提出改進(jìn)方向。結(jié)果表明:解析公式法應(yīng)用簡單,但結(jié)果偏差較大;經(jīng)驗(yàn)公式法源于工程案例總結(jié),適用于相似條件下隧道涌水量預(yù)測;數(shù)值法通過數(shù)學(xué)模型模擬,可以解決復(fù)雜水文地質(zhì)條件下的涌水量預(yù)測,但對勘察設(shè)計(jì)階段獲取的水文地質(zhì)參數(shù)提出更高的要求;隨機(jī)性數(shù)學(xué)模型方法需要大量數(shù)據(jù)來保證結(jié)果的準(zhǔn)確性;其他方法主要依賴于地理信息系統(tǒng)(GIS)技術(shù)、同位素分析法等手段,通過科學(xué)分析來識別并判斷地下水量及其流動(dòng)通道的地質(zhì)特征,需要充分的數(shù)據(jù)支持和詳盡的地下勘探結(jié)果作為依據(jù)。研究成果可為實(shí)際工程中選擇合適的涌水量預(yù)測方法提供參考。
關(guān) 鍵 詞:隧道涌水量預(yù)測; 經(jīng)驗(yàn)公式預(yù)測; 解析公式預(yù)測; 數(shù)值法預(yù)測; 隨機(jī)性數(shù)學(xué)模型預(yù)測; 復(fù)雜地質(zhì)條件
中圖法分類號: U456.3+2
文獻(xiàn)標(biāo)志碼: A
DOI:10.16232/j.cnki.1001-4179.2024.11.021
0 引 言
在隧道工程的實(shí)施過程中,地下水問題始終是其核心關(guān)注點(diǎn)之一,貫穿于項(xiàng)目建設(shè)的始終。隨著交通網(wǎng)絡(luò)的日益拓展與現(xiàn)代化升級,隧道工程所面對的隧址區(qū)環(huán)境日趨復(fù)雜多變。設(shè)計(jì)階段采用的解析公式法和經(jīng)驗(yàn)公式法得到的結(jié)果便捷,但通常與實(shí)際涌水量存在偏差。精確的涌水量預(yù)測結(jié)果對于降低潛在的安全風(fēng)險(xiǎn)和經(jīng)濟(jì)損失具有至關(guān)重要的作用。針對隧道涌水量預(yù)測問題,早先的學(xué)者們提出了解析公式法、比擬法、水均衡法等多種相關(guān)計(jì)算公式,并且劉佳等[1]對這些計(jì)算方法進(jìn)行了系統(tǒng)的總結(jié)。后續(xù),學(xué)者們結(jié)合解析公式和總結(jié)工程案例,推導(dǎo)出了一系列經(jīng)驗(yàn)公式,F(xiàn)renelus[2]、吳建[3]等對經(jīng)驗(yàn)公式等相關(guān)方法進(jìn)行了詳細(xì)的梳理。近年來,還有學(xué)者提出了其他多種創(chuàng)新方法,如基于GIS的評估法[4]、模糊數(shù)學(xué)評估法[5]、同位素分析法[6]、隧道涌水分類系統(tǒng)[7](TIC)以及現(xiàn)場地下水評級法[8](SGR),以期更有效地應(yīng)對隧道涌水量預(yù)測問題。隨著對隧道涌水量預(yù)測研究的日益深化與發(fā)展,合理選擇預(yù)測方法對實(shí)際工程的涌水量預(yù)測至關(guān)重要。
如圖1所示,本文對解析公式法、經(jīng)驗(yàn)公式法、數(shù)值法、隨機(jī)性數(shù)學(xué)模型預(yù)測法等多種涌水量預(yù)測方法進(jìn)行了系統(tǒng)梳理和分析,并對新方法進(jìn)行了總結(jié)。通過對這些方法的基本原理及適用條件進(jìn)行綜合分析,討論了當(dāng)前涌水量預(yù)測方法存在的不足之處,并提出了改進(jìn)方向。研究成果可為實(shí)際工程中選擇合適的涌水量預(yù)測方法提供參考,同時(shí)為涌水問題的深入研究奠定基礎(chǔ)。
1 解析公式法
解析公式法是在圖2所示理論模型的基礎(chǔ)上,結(jié)合水力和地下水運(yùn)動(dòng)學(xué)知識,運(yùn)用鏡像法、豎井法、保角變化法等推導(dǎo)出的;部分學(xué)者結(jié)合理論與數(shù)值模擬軟件推導(dǎo)出半解析公式。各國學(xué)者推導(dǎo)公式原理和公式結(jié)構(gòu)類似,可概括為Q=2πmkh·f(h,r)[9-11],此類公式明確了隧道涌水量與隧址區(qū)地下水位、圍巖滲透系數(shù)、地下水補(bǔ)給范圍、補(bǔ)給時(shí)間等因素的定量關(guān)系。表1總結(jié)了此方法的主要相關(guān)公式。
盡管解析公式能夠便捷地提供一個(gè)涌水量的近似解,但很多情況下,這些值與實(shí)際情況并不完全吻合。其中一個(gè)主要原因是,由于水力傳導(dǎo)的非均勻性,解析公式是在眾多假設(shè)的基礎(chǔ)上推導(dǎo)得到的,不能完全反映巖體的復(fù)雜性。為此,Zhu等[28]提出了動(dòng)態(tài)參數(shù)效準(zhǔn)(DPC)方法,該方法通過對劃分為若干扇形區(qū)域的隧道模型的水文地質(zhì)參數(shù)進(jìn)行優(yōu)化,提高了解析公式的計(jì)算精度。Peng等[29]結(jié)合數(shù)值方法,得到評估水力傳導(dǎo)系數(shù)的方法,以此改進(jìn)了解析公式的精度。陳令強(qiáng)[30]、殷保國[31]等提出將多種預(yù)測方法組合后得到新的預(yù)測方法,以獲得更為準(zhǔn)確的組合預(yù)測結(jié)果。
2 經(jīng)驗(yàn)公式法
經(jīng)驗(yàn)公式是在具體工程經(jīng)驗(yàn)中,對影響參數(shù)進(jìn)行考量,通過修正解析公式或運(yùn)用曲線插值法而得到。相較于解析公式法,經(jīng)驗(yàn)公式能更快速地得出結(jié)果,對于特定工程項(xiàng)目在排水系統(tǒng)規(guī)劃方面,具有顯著的實(shí)用價(jià)值。然而,其適用性受限于特定條件,缺乏普遍通用性。表2匯總了經(jīng)驗(yàn)公式的相關(guān)內(nèi)容。此外,還有鐵路勘測規(guī)范經(jīng)驗(yàn)公式、大島洋志公式、佐藤邦明公式、朱大力公式等,劉佳[1]、吳建[3]等已作出總結(jié)。
3 數(shù)值法
數(shù)值法以水文地質(zhì)條件為基礎(chǔ),建立隧址區(qū)水文地質(zhì)模型,通過數(shù)值方法來求解隧道涌水量。目前常用的數(shù)學(xué)模型方法包括離散裂隙網(wǎng)絡(luò)模型(DFN)[35]、等效連續(xù)模型(ECM)[36]、有限元法(FEM)[37]、邊界元法(BEM)[38]、離散單元法(DEM)[39]。表3總結(jié)了目前用于預(yù)測隧道涌水量的相關(guān)數(shù)值方法。
4 隨機(jī)性數(shù)學(xué)模型預(yù)測法
此類方法主要分為3類:
(1) 相關(guān)因素分析法(回歸分析法)[9]。Q=f(xi);其中xi為影響因素,f是影響因素與涌水量之間函數(shù)關(guān)系。根據(jù)隧道的水文地質(zhì)資料和隧道掘進(jìn)過程中的資料,建立隧道涌水量及其影響因素的內(nèi)在聯(lián)系,確定主要影響因素與涌水量之間的相關(guān)性,采用合適的回歸方程進(jìn)行預(yù)測。
(2) 數(shù)據(jù)驅(qū)動(dòng)預(yù)測法。這種方法主要依賴于隧道涌水量的數(shù)據(jù),通過特定的算法對這些數(shù)據(jù)進(jìn)行預(yù)測。雷波等[55]將監(jiān)測到的隧道涌水量做歸一化處理后作為BP神經(jīng)網(wǎng)絡(luò)的輸入層,預(yù)測隧道未來的涌水量。這種方法不必考慮隧道涌水的影響因素,實(shí)現(xiàn)了一定精度內(nèi)的涌水量預(yù)測。然而,由于其輸入和輸出都是涌水量數(shù)據(jù),所以在隧道工程前期缺乏涌水量數(shù)據(jù)情況下無法應(yīng)用。此外,在訓(xùn)練涌水量數(shù)據(jù)的過程中,可能會出現(xiàn)局部最小且達(dá)不到全局最優(yōu)的情況,以及預(yù)測結(jié)果不連續(xù)問題,這使得基于涌水量數(shù)據(jù)的隨機(jī)預(yù)測方法難以得到推廣應(yīng)用。
(3) 基于涌水影響因素的機(jī)器學(xué)習(xí)方法。這種方法最早出現(xiàn)在神經(jīng)網(wǎng)絡(luò)專家系統(tǒng)中的系統(tǒng)辨識法[9]。此方法將隧道的標(biāo)高及空間范圍內(nèi)的水體進(jìn)行標(biāo)識和劃分,根據(jù)系統(tǒng)與隧道的空間關(guān)系及影響關(guān)系,確定涌水的可能性分級;依據(jù)隧道補(bǔ)水來源系統(tǒng)的徑流量和導(dǎo)水通道的水力學(xué)特征對涌水量進(jìn)行預(yù)測。表4總結(jié)了機(jī)器學(xué)習(xí)預(yù)測涌水量的常見方法。
5 其他方法
由于上述辦法在預(yù)測隧道涌水方面的不足,工程人員和學(xué)者基于施工現(xiàn)場的深入分析和綜合考量,結(jié)合其他專業(yè)技術(shù)方法,探索并發(fā)展了多種隧道涌水量預(yù)測計(jì)算方法。表5詳細(xì)歸納了主流的其他計(jì)算方法。
6 結(jié)論與展望
6.1 結(jié) 論
基于國內(nèi)外學(xué)者在隧道涌水預(yù)測問題上的研究成果,分類總結(jié)了解析公式法、經(jīng)驗(yàn)公式法、數(shù)值法、隨機(jī)性數(shù)學(xué)模型預(yù)測法和其他方法,通過分析不同方法適用條件和原理,得出以下結(jié)論:
(1) 解析公式法推導(dǎo)過程中做出的假設(shè)不能反映隧址區(qū)真實(shí)的水文地質(zhì)條件,簡化了隧道實(shí)際的水文地質(zhì)條件。隨著隧道施工的進(jìn)行,未考慮相應(yīng)的參數(shù)變化,因此預(yù)測結(jié)果與實(shí)際結(jié)果偏差較大。
(2) 經(jīng)驗(yàn)公式是通過總結(jié)工程案例的實(shí)際涌水量,結(jié)合對解析公式的修正或綜合評估涌水影響因素得出的方法。隧道涌水受到客觀水文地質(zhì)條件和施工的影響,因此這種方法與實(shí)際值存在一定的偏差。
(3) 數(shù)值法是目前在復(fù)雜條件下評估隧道涌水量的有效手段,通過有限元方法、離散單元法等方法來模擬隧址區(qū)實(shí)際水文地質(zhì)條件。然而,在勘察設(shè)計(jì)階段獲取的水文地質(zhì)參數(shù)仍需進(jìn)一步優(yōu)化以提高對地質(zhì)環(huán)境模擬的準(zhǔn)確性,這需要投入大量的精力。
(4) 隨機(jī)性數(shù)學(xué)模型的預(yù)測方法需要充分考慮涌水影響因素的作用,或者依賴于真實(shí)的涌水量數(shù)據(jù),以提高預(yù)測的準(zhǔn)確性。然而,不同的數(shù)據(jù)處理方法也對結(jié)果產(chǎn)生重要影響。
(5) 其他研究方法主要依賴于地理信息系統(tǒng)(GIS)技術(shù)、同位素分析法等手段,通過科學(xué)分析來識別并判斷地下水量及其流動(dòng)通道的地質(zhì)特征。這些方法對于預(yù)測地下水的分布和流動(dòng)情況具有較高的準(zhǔn)確性,但需要充分的數(shù)據(jù)支持和詳盡的地下勘探結(jié)果作為依據(jù),以確保預(yù)測結(jié)果的科學(xué)性和可靠性。
6.2 展 望
盡管各國學(xué)者進(jìn)行了大量的研究,但精確地評估隧道地下涌水量仍然是一項(xiàng)有挑戰(zhàn)的任務(wù)。未來的研究趨勢如下:
(1) 研究隨時(shí)間變化的地下水和水文地質(zhì)參數(shù)的規(guī)律性以及多參數(shù)分析,是改進(jìn)解析公式、經(jīng)驗(yàn)公式和數(shù)值方法預(yù)測精度的一個(gè)發(fā)展趨勢;此外,通過組合模型綜合考慮不同公式的優(yōu)缺點(diǎn),尋找更精確的預(yù)測模型也是一個(gè)重要的研究方向。
(2) 開展對隧道涌水量的監(jiān)測研究。通過監(jiān)測系統(tǒng)對相關(guān)地質(zhì)水文參數(shù)和涌水量實(shí)時(shí)監(jiān)測,結(jié)合相關(guān)的數(shù)值模型和相關(guān)算法模型,將監(jiān)測的地質(zhì)參數(shù)與預(yù)測模型結(jié)合,實(shí)現(xiàn)對隧道涌水量情況實(shí)時(shí)分析。
(3) 對于隨機(jī)性數(shù)學(xué)模型方法,必須有充分的數(shù)據(jù)支持。建立針對隧道涌水量、地質(zhì)參數(shù)和水文條件的特定公共數(shù)據(jù)庫,提供有效的數(shù)據(jù)支持,是改進(jìn)相關(guān)隨機(jī)性數(shù)學(xué)預(yù)測模型精度的有效方法。
參考文獻(xiàn):
[1] 劉佳,劉哂搏,曹文翰,等.隧道涌水量預(yù)測計(jì)算方法總結(jié)探討[J].甘肅水利水電技術(shù),2018,54(2):33-37.
[2] FRENELUS W,PENG H,ZHANG J.Evaluation methods for groundwater inflows into rock tunnels:a state of the art review[J].International Journal of Hydrology,2021,5(4):152-168.
[3] 吳建,周志芳,李鳴威,等.隧洞涌水量預(yù)測計(jì)算方法研究進(jìn)展[J].工程地質(zhì)學(xué)報(bào),2019,27(4):890-902.
[4] 劉桂衛(wèi),王飛,孫琪皓,等.基于GIS的巖溶隧道富水程度評價(jià)技術(shù)研究[J].鐵道工程學(xué)報(bào),2023,40(10):93-98.
[5] 蘇培東,趙熠,邱鵬,等.花崗巖蝕變帶隧道涌水量預(yù)測研究[J].地下空間與工程學(xué)報(bào),2023,19(1):291-301,318.
[6] 張俊鋒,李強(qiáng),史永躍,等.西南某隧道巖溶水發(fā)育規(guī)律及涌水量預(yù)測[J].現(xiàn)代隧道技術(shù),2021,58(2):14-21,50.
[7] ZAREI H R,UROMEIHY A,SHARIFZADEH M.A new tunnel inflow classification (TIC) system through sedimentary rock masses[J].Tunnelling and Underground Space Technology,2013,34:1-12.
[8] KATIBEH H,AALIANVARI A.Development of a new method for tunnel site rating from[J].Journal of Applied Sciences,2009,9(8):1496-1502.
[9] 王振宇,陳銀魯,劉國華,等.隧道涌水量預(yù)測計(jì)算方法研究[J].水利水電技術(shù),2009,40(7):41-44.
[10]顧博淵,史寶童,黃嫚.山嶺隧道涌水量預(yù)測方法分類及相關(guān)因素分析[J].隧道建設(shè),2015,35(12):1258-1263.
[11]李鵬飛,張頂立,周燁.隧道涌水量的預(yù)測方法及影響因素研究[J].北京交通大學(xué)學(xué)報(bào),2010,34(4):11-15.
[12]陳云娟,王樂寧,周宗青,等.基于海底隧道襯砌孔隙水壓力的涌水量預(yù)測方法及工程應(yīng)用[J].應(yīng)用基礎(chǔ)與工程科學(xué)學(xué)報(bào),2024,32(1):288-300.
[13]傅鶴林,李鮚,成國文,等.基于保角映射的斷層影響區(qū)內(nèi)隧道涌水量預(yù)測[J].華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,49(1):86-92.
[14]GUO Y F,WANG H N,JIANG M J.An exact analytical approach for determining the seepage field around underwater twin tunnels with linings[J].Transportation Geotechnics,2023,42:101050.
[15]LIU H B,ZHOU J Q,LI C,et al.Semi-empirical models for predicting stable water inflow and influence radius of a tunnel considering non-darcian effect[J].Journal of Hydrology,2023,621:129574.
[16]ZHANG W,ZHOU X,WANG B,et al.Methodology for the prediction of water gushing in tunnels in igneous fracture tectonic zones:a case study of a tunnel in Guangdong Province,China[J].Applied Sciences,2022,12(20):10438.
[17]JIANG C,HAN H,XIE H,et al.Karst aquifer water inflow into tunnels:an analytical solution[J].Geofluids,2021:6672878.
[18]LIU J,LI X.Analytical solution for estimating groundwater inflow into lined tunnels considering waterproofing and drainage systems[J].Bulletin of Engineering Geology and the Environment,2021,80:6827-6839.
[19]QIN Z,WANG Y,SONG Y,et al.The analysis on seepage field of grouted and shotcrete lined underwater tunnel[J].Mathematical Problems in Engineering,2020,2020:7319054.
[20]EL TANI M,KAMALI A,GHOLAMI M A.Analytic assessment of the water table drawdown,seepage,and back pressure at Rudbar PSPP[J].Rock Mechanics and Rock Engineering,2019,52(7):2227-2243.
[21]LI P,WANG F,LONG Y,et al.Investigation of steady water inflow into a subsea grouted tunnel[J].Tunnelling and Underground Space Technology,2018,80:92-102.
[22]XU Z,WANG X,LI S,et al.Parameter optimization for the thickness and hydraulic conductivity of tunnel lining and grouting rings[J].KSCE Journal of Civil Engineering,2019,23:2772-2783.
[23]CHENG P,ZHAO L,LI Q,et al.Water inflow prediction and grouting design for tunnel considering nonlinear hydraulic conductivity[J].KSCE Journal of Civil Engineering,2019,23:4132-4140.
[24]MALEKI M R.Groundwater Seepage Rate (GSR):a new method for prediction of groundwater inflow into jointed rock tunnels[J].Tunnelling and Underground Space Technology,2018,71:505-517.
[25]YING H,ZHU C,SHEN H,et al.Semi-analytical solution for groundwater ingress into lined tunnel[J].Tunnelling and Underground Space Technology,2018,76:43-47.
[26]SU K,ZHOU Y,WU H,et al.An analytical method for groundwater inflow into a drained circular tunnel[J].Groundwater,2017,55(5):712-721.
[27]EL TANI M.Helmholtz evolution of a semi-infinite aquifer drained by a circular tunnel[J].Tunnelling and Underground Space Technology,2010,25(1):54-62.
[28]ZHU R,XIA Q,ZHANG Q,et al.Dynamic parameter calibration of an analytical model to predict transient groundwater inflow into a tunnel[J].Water,2023,15(15):2702.
[29]PENG H,F(xiàn)RENELUS W,ZHANG J.Key factors influencing analytical solutions for predicting groundwater inflows in rock tunnels[J].Water Supply,2022,22(11):7982-8013.
[30]陳令強(qiáng),潘以恒,陳建平,等.基于漂移度的隧道涌水量組合解析預(yù)測方法[J].人民長江,2019,50(9):124-128,208.
[31]殷保國,左昌群,李慶年,等.基于有效度評價(jià)的隧道最大涌水量預(yù)測模型研究[J].人民長江,2022,53(8):106-111.
[32]WANG Z,BI L,KWON S,et al.The effects of hydro-mechanical coupling in fractured rock mass on groundwater inflow into underground openings[J].Tunnelling and Underground Space Technology,2020,103:103489.
[33]FARHADIAN H,KATIBEH H.New empirical model to evaluate groundwater flow into circular tunnel using multiple regression analysis[J].International Journal of Mining Science and Technology,2017,27(3):415-421.
[34]FARHADIAN H,KATIBEH H,HUGGENBERGER P.Empirical model for estimating groundwater flow into tunnel in discontinuous rock masses[J].Environmental Earth Sciences,2016,75:1-16.
[35]LI X,LI D,XU Y,et al.A DFN based 3D numerical approach for modeling coupled groundwater flow and solute transport in fractured rock mass[J].International Journal of Heat and Mass Transfer,2020,149:119179.
[36]JIANG Q,YAO C,YE Z,et al.Seepage flow with free surface in fracture networks[J].Water Resources Research,2013,49(1):176-186.
[37]HASSANI A N,F(xiàn)ARHADIAN H,KATIBEH H.A comparative study on evaluation of steady-state groundwater inflow into a circular shallow tunnel[J].Tunnelling and Underground Space Technology,2018,73:15-25.
[38]RASMUSSEN T C,YU G.Determination of groundwater flownets,fluxes,velocities,and travel times using the complex variable boundary element method[J].Engineering Analysis with Boundary Elements,2006,30(12):1030-1044.
[39]JING L.A review of techniques,advances and outstanding issues in numerical modelling for rock mechanics and rock engineering[J].International Journal of Rock Mechanics and Mining Sciences,2003,40(3):283-353.
[40]LI G,LI C,LIAO J,et al.A new hydro-mechanical coupling numerical model for predicting water inflow in karst tunnels considering deformable fracture[J].Sustainability,2023,15(20):14703.
[41]KOLYMBAS D,WAGNER P.Groundwater ingress to tunnels-the exact analytical solution[J].Tunnelling and Underground Space Technology,2007,22(1):23-27.
[42]SURINAIDU L,RAO V V S G,RAO N S,et al.Hydrogeological and groundwater modeling studies to estimate the groundwater inflows into the coal mines at different mine development stages using MODFLOW,Andhra Pradesh,India[J].Water Resources and Industry,2014,7:49-65.
[43]SURINAIDU L,RAO V V S G,NANDAN M J,et al.Application of modflow for groundwater seepage problems in the subsurface tunnels[J].Journal of Indian Geophysical Union,2015,19(4):422-432.
[44]GOLIAN M,TESHNIZI E S,NAKHAEI M.Prediction of water inflow to mechanized tunnels during tunnel-boring-machine advance using numerical simulation[J].Hydrogeology Journal,2018,26(8):2827-2851.
[45]LI D,LI X,LI C C,et al.Case studies of groundwater flow into tunnels and an innovative water-gathering system for water drainage[J].Tunnelling and Underground Space Technology,2009,24(3):260-268.
[46]WU Q,WANG M,WU X.Investigations of groundwater bursting into coal mine seam floors from fault zones[J].International Journal of Rock Mechanics and Mining Sciences,2004,41(4):557-571.
[47]NIKAKHTAR L,ZARE S.Evaluation of underground water flow into tabriz metro tunnel first line by hydro-mechanical coupling analysis[J].International Journal of Geotechnical and Geological Engineering,2020,14(1):1-7.
[48]GHOLIZADEH H,BEHROUJ P A,KARNEY B W,et al.Assessment of groundwater ingress to a partially pressurized water-conveyance tunnel using a conduit-flow process model:a case study in Iran[J].Hydrogeology Journal,2020,28(7):2573-2585.
[49]LI L C,YANG T H,LIANG Z Z,et al.Numerical investigation of groundwater outbursts near faults in underground coal mines[J].International Journal of Coal Geology,2011,85(3/4):276-288.
[50]HASSANI A N,F(xiàn)ARHADIAN H,KATIBEH H.A comparative study on evaluation of steady-state groundwater inflow into a circular shallow tunnel[J].Tunnelling and Underground Space Technology,2018,73:15-25.
[51]FARHADIAN H,KATIBEH H,HUGGENBERGER P.Empirical model for estimating groundwater flow into tunnel in discontinuous rock masses[J].Environmental Earth Sciences,2016,75:1-16.
[52]LI Q,ITO K,WU Z,et al.COMSOL Multiphysics:a novel approach to ground water modeling[J].Groundwater,2009,47(4):480-487.
[53]CHEN Y,SELVADURAI A P S,LIANG W.Computational modelling of groundwater inflow during a longwall coal mining advance:a case study from the Shanxi Province,China[J].Rock Mechanics and Rock Engineering,2019,52:917-934.
[54]XU Z H,BU Z H,GAO B,et al.Sensitivity analysis and prediction method for water inflow of underground oil storage caverns in fractured porous media[J].International Journal of Geomechanics,2021,21(2):04020251.
[55]雷波,漆泰岳,王睿,等.長大山嶺隧道涌水量的BP神經(jīng)網(wǎng)絡(luò)時(shí)間序列預(yù)測模型[J].鐵道建筑,2014(6):82-84.
[56]ZHOU J,ZHANG Y,LI C,et al.Enhancing the performance of tunnel water inflow prediction using random forest optimized by grey wolf optimizer[J].Earth Science Informatics,2023,16(3):2405-2420.
[57]MAHMOODZADEH A,GHAFOURIAN H,MOHAMMED A H,et al.Predicting tunnel water inflow using a machine learning-based solution to improve tunnel construction safety[J].Transportation Geotechnics,2023,40:100978.
[58]CHEN J,ZHOU M,ZHANG D,et al.Quantification of water inflow in rock tunnel faces via convolutional neural network approach[J].Automation in Construction,2021,123:103526.
[59]LIU D,XU Q,TANG Y,et al.Prediction of water inrush in long-lasting shutdown karst tunnels based on the HGWO-SVR model[J].IEEE Access,2020,9:6368-6378.
[60]CHEN S,DONG S.A sequential structure for water inflow forecasting in coal mines integrating feature selection and multi-objective optimization[J].IEEE Access,2020,8:183619-183632.
[61]MAHMOODZADEH A,MOHAMMADI M,NOORI K M G,et al.Presenting the best prediction model of water inflow into drill and blast tunnels among several machine learning techniques[J].Automation in Construction,2021,127:103719.
[62]LI S,HE P,LI L,et al.Gaussian process model of water inflow prediction in tunnel construction and its engineering applications[J].Tunnelling and Underground Space Technology,2017,69:155-161.
[63]DONG D L,SUN W J,XIA S.Water-inrush assessment using a GIS-based Bayesian network for the 12-2 coal seam of the Kailuan Donghuantuo coal mine in China[J].Mine Water and the Environment,2012,31(2):138-146.
[64]YANG Z.Risk prediction of water inrush of karst tunnels based on BP neural network[C]∥2016 4th International Conference on Mechanical Materials and Manufacturing Engineering.Paris:Atlantis Press,2016:327-330.
[65]劉桂衛(wèi),王飛,孫琪皓,等.基于GIS的巖溶隧道富水程度評價(jià)技術(shù)研究[J].鐵道工程學(xué)報(bào),2023,40(10):93-98.
[66]蘇培東,趙熠,邱鵬,等.花崗巖蝕變帶隧道涌水量預(yù)測研究[J].地下空間與工程學(xué)報(bào),2023,19(1):291-301,318.
[67]DALL’ALBA V,NEVEN A,DE ROOIJ R,et al.Probabilistic estimation of tunnel inflow from a karstic conduit network[J].Engineering Geology,2023,312:106950.
[68]張俊鋒,李強(qiáng),史永躍,等.西南某隧道巖溶水發(fā)育規(guī)律及涌水量預(yù)測[J].現(xiàn)代隧道技術(shù),2021,58(2):14-21,50.
[69]WU J,WU L,LU Y,et al.Prediction of water inflow into tunnel crossing intersecting faults based on IDB seepage model[J].Geotechnical and Geological Engineering,2022,40(8):4041-4056.
[70]ZHANG L,ZHAO D,WU J,et al.Prediction of water inflow in Tsingtao subsea tunnel based on the superposition principle[J].Tunnelling and Underground Space Technology,2020,97:103243.
[71]ZABIDI H,RAHIM A,TRISUGIWO M.Structural controls on groundwater inflow analysis of hardrock TBM[J].Cogent Geoscience,2019,5(1):1637556.
[72]LIU R,LIU Y,XIN D,et al.Prediction of water inflow in subsea tunnels under blasting vibration[J].Water,2018,10(10):1336.
[73]李嘉誠,王渭明,呂顯州,等.爆破振動(dòng)下海底隧道涌水量預(yù)測研究[J].水文地質(zhì)工程地質(zhì),2023,50(4):127-136.
[74]HEIDARI M,SHARAFI M,KHAZAEI S.Study of morphology fractures in prediction of high local groundwater flow into tunnels using aster satellite images[J].Journal of the Indian Society of Remote Sensing,2016,44:253-268.
[75]ZAREI H R,UROMEIHY A,SHARIFZADEH M.A new tunnel inflow classification (TIC) system through sedimentary rock masses[J].Tunnelling and Underground Space Technology,2013,34:1-12.
[76]FONT-CAP J,VZQUEZ-SU E,CARRERA J,et al.Groundwater inflow prediction in urban tunneling with a tunnel boring machine (TBM)[J].Engineering Geology,2011,121(1/2):46-54.
[77]ZAREI H R,UROMEIHY A,SHARIFZADEH M.Evaluation of high local groundwater inflow to a rock tunnel by characterization of geological features[J].Tunnelling and Underground Space Technology,2011,26(2):364-373.
[78]JIANG X W,WAN L,YEH T C J,et al.Steady-state discharge into tunnels in formations with random variability and depth-decaying trend of hydraulic conductivity[J].Journal of Hydrology,2010,387(3/4):320-327.
[79]KATIBEH H,AALIANVARI A.Development of a new method for tunnel site rating from[J].Journal of Applied Sciences,2009,9(8):1496-1502.
[80]MABEE S B,CURRY P J,HARDCASTLE K C.Correlation of lineaments to ground water inflows in a bedrock tunnel[J].Groundwater,2002,40(1):37-43.
(編輯:劉 媛)
Research progress on predictive calculation methods for tunnel water inflow
ZHANG Xingbo1,LI Jun 2 ,LI Yanbing1,WEI Xiang3,HUANG Xiaomin2
(1.Yunnan Investment Group Road Construction Co.,Ltd.,Kunming 650032,China; 2.School of Architecture and Engineering,Kunming University of Science and Technology,Kunming 650500,China; 3.Yunnan Communications Investment Group Highway Construction Fourth Engineering Co.,Ltd.,Kunming 650100,China)
Abstract:
Prediction on tunnel water inflow is a critical factor for ensuring the safety,progress,and stability of tunnel construction,as well as for addressing issues related to personnel safety.Numerous prediction methods have been proposed by scholars both domestically and internationally;however,each method is subject to specific conditions to obtain optimal applicability.The accurate selection of an appropriate prediction method based on the hydrogeological conditions of the tunnel is essential for improving prediction accuracy.This paper presents a systematic review and analysis of various prediction methods for tunnel water inflow,including analytical formulas,empirical formulas,numerical methods,and stochastic mathematical model methods.Through a comprehensive examination of the fundamental principles and applicable conditions of these methods,the paper highlights the limitations of current water inflow prediction techniques and discusses potential directions for their improvement.The findings indicate that while analytical formula methods are straightforward to apply,they often result in significant deviations.Empirical formula methods derived from analysis of engineering cases are most suitable for predicting water inflow in scenarios with similar hydrogeological conditions.Numerical methods can predict water inflow under complex hydrogeological conditions using mathematical models,but these methods require high-quality hydrogeological parameters from the survey and design phases.Stochastic mathematical model methods,although promising,demand extensive datasets to ensure the accuracy of predictions.Furthermore,other methods such as those relying on Geographic Information Systems (GIS),isotope analysis,and other advanced techniques,require substantial data support and detailed underground exploration results to accurately assess groundwater volume and flow paths.The findings of this review provide valuable insights for selecting the most appropriate prediction method based on the specific requirements of practical engineering applications.
Key words:
tunnel water inflow prediction; empirical formula prediction; analytical formula prediction; numerical method prediction; stochastic mathematical model prediction; complex geological conditions