摘""""" 要:活性氧(ROS)在化學(xué)、生物學(xué)和醫(yī)學(xué)上引起了許多研究人員的注意,它在許多關(guān)鍵的生理過(guò)程中起著重要的作用,活性氧在體內(nèi)的過(guò)量產(chǎn)生和積累會(huì)損害一些生物分子,直接或間接導(dǎo)致多種疾病,因此它們被認(rèn)為與各種病理?xiàng)l件有關(guān)。探究活性氧在體內(nèi)的具體致病機(jī)理,并且在了解該致病機(jī)理的基礎(chǔ)上研發(fā)相關(guān)藥物,變得尤為重要。檢測(cè)活性氧的近紅外熒光探針是一個(gè)新的有前途的工具,可以無(wú)創(chuàng)的情況下檢測(cè)體內(nèi)細(xì)胞系統(tǒng)中目標(biāo)生物分子的空間和時(shí)間信息,并在此基礎(chǔ)上提供一個(gè)較好的治療方案。
關(guān)" 鍵" 詞:活性氧;近紅外;熒光探針;生物成像
中圖分類號(hào):O657.3"""""" 文獻(xiàn)標(biāo)志碼:A""""" 文章編號(hào):1004-0935(2024)11-1761-03
活性氧(ROS)是一系列高活性氧物種,包括羥基自由基(·OH)、過(guò)氧化氫(H2O2)、次氯酸鹽(OCl-)、單線態(tài)氧(1 O2)、過(guò)氧亞硝酸鹽(ONOO?)、一氧化氮(NO)、超氧自由基(O2?)等[1-2]。傳統(tǒng)上,ROS被認(rèn)為是主要在宿主防御機(jī)制中產(chǎn)生的抗菌劑,如中性粒細(xì)胞的氧化爆發(fā)[3]。這些不同種類的活性氧也對(duì)機(jī)體代謝產(chǎn)生至關(guān)重要的作用[4]。他們可以降解環(huán)境中的各種化學(xué)物質(zhì)[5],也可以降解生物體內(nèi)的有機(jī)小分子等[6-7],可以防止病毒入侵,參與機(jī)體修復(fù),還可以作為反映炎癥等的信號(hào)[8]。當(dāng)然有的活性氧也會(huì)釋放有害物質(zhì)對(duì)生物體造成損害,例如生物體中的白細(xì)胞產(chǎn)生的氧化劑中,毒性最大和含量最高的是次氯酸,它可以快速攻擊多種與生理相關(guān)的分子,包括核苷酸、抗壞血酸、硫醇、胺、氨基酸、多烯酸、硫醚等,同時(shí)次氯酸在某些條件下可以產(chǎn)生其他具有很高反應(yīng)性的氧化劑[9]。生物體細(xì)胞內(nèi)的過(guò)氧化氫主要來(lái)自線粒體。它對(duì)細(xì)胞分化、增殖等許多生理過(guò)程具有一定的調(diào)節(jié)作用。然而,當(dāng)生物體內(nèi)過(guò)氧化氫含量異常時(shí)候可能導(dǎo)致心血管疾病、阿爾茨海默病等疾病。所以,快速檢測(cè)生物體內(nèi)細(xì)胞中活性氧的含量水平以對(duì)身體健康做出判斷變得尤為重要。
光譜熒光探針具有無(wú)侵入性、高靈敏度和優(yōu)越的時(shí)空采樣能力[10-13]。熒光探針可以在體內(nèi)細(xì)胞系統(tǒng)中實(shí)時(shí)地檢測(cè)小分子目標(biāo)的具體信息。熒光探針是揭示生物分子生物學(xué)作用的很有前途的工具??紤]到ROS的壽命短、快速轉(zhuǎn)化率高、反應(yīng)活性高、濃度低,能夠?qū)崟r(shí)原位檢測(cè)和監(jiān)測(cè)的探針對(duì)研究ROS的生物學(xué)功能具有重要意義,尤其是具有獨(dú)特設(shè)計(jì)策略和特殊識(shí)別組的熒光探針來(lái)區(qū)分不同的ROS是更可取的[14-18]。
1" 過(guò)氧化氫的檢測(cè)
過(guò)氧化氫(H2O2)作為活性氧(ROS)的一種,對(duì)細(xì)胞增殖、遷移、分化等許多代謝過(guò)程具有一定的調(diào)節(jié)作用。其物理化學(xué)過(guò)程會(huì)導(dǎo)致各種疾病的發(fā)生,如癌癥和阿茲海默癥等,目前檢測(cè)過(guò)氧化氫的主要方法為分光光度法、熒光法等[19-20]。
線粒體是細(xì)胞的引擎,是細(xì)胞的能量來(lái)源[21]。" 最常見(jiàn)的方法是傳遞分子探針到細(xì)胞線粒體,如三苯基膦(TPP),還有比如花菁染料和羅丹明,這些帶有陽(yáng)離子的熒光團(tuán)也可以用來(lái)靶向線粒體。這些基團(tuán)在進(jìn)入機(jī)體后,通過(guò)血液循環(huán)進(jìn)入各個(gè)細(xì)胞,最終因?yàn)閹в姓姾傻脑?,在線粒體中逐步積累。具有靶向性的熒光探針由3部分組成,分別是熒光團(tuán)、識(shí)別單元和靶向基團(tuán)。當(dāng)反應(yīng)位點(diǎn)滿足過(guò)氧化氫時(shí),探針的熒光強(qiáng)度會(huì)增強(qiáng)或減弱,從而實(shí)現(xiàn)對(duì)過(guò)氧化氫的檢測(cè)。
MASANTA等[22]合成了可以靶向線粒體的雙光子熒光探針,此探針是以6-(苯并[d]噻唑-2-?;?2-(N,N-二甲基胺)萘為熒光團(tuán),過(guò)氧化氫的響應(yīng)位點(diǎn)為硼酸基氨基甲酸酯,線粒體靶向基團(tuán)為三苯基膦鹽(TPP)。氨基甲酸鍵硼酸基會(huì)降低熒光團(tuán)的電子云密度,而H2O2可以在探針中硼酸鹽位置導(dǎo)致裂解,然后探針斷裂釋放熒光團(tuán)更豐富的電子,熒光發(fā)射產(chǎn)生紅移。探針1與過(guò)氧化氫相互作用后的熒光發(fā)射光譜從 470 nm紅移到 545 nm。在pH為7.4的MOPS緩沖液中,隨著過(guò)氧化氫濃度的逐漸增加,熒光強(qiáng)度在470 nm處逐漸降低,并且在 545 nm處逐漸增加。探針1在接觸過(guò)氧化氫前后,熒光強(qiáng)度增強(qiáng)了67倍,被認(rèn)為探針1對(duì)過(guò)氧化氫檢測(cè)能取得較好的效果,檢測(cè)限可達(dá)到4.6 μmol·L-1。他們還評(píng)估了靶向選擇性,熒光檢測(cè)圖結(jié)果顯示探針1對(duì)過(guò)氧化氫的選擇性最高。此外評(píng)估了在生物學(xué)中不同pH時(shí)探針1的活性,檢測(cè)顯示在不同pH范圍下,探針1具有良好的熒光發(fā)射強(qiáng)度,結(jié)果表明此探針可以用于活體生物的線粒體中過(guò)氧化氫檢測(cè)。以上結(jié)果表明,探針1對(duì)線粒體中過(guò)氧化氫有較高的檢測(cè)性能。
2" 次氯酸的檢測(cè)
在生物機(jī)體中,次氯酸作為氧化劑,使得中性粒細(xì)胞和單核細(xì)胞等白細(xì)胞產(chǎn)生毒性,并快速攻擊生物分子,如胺、氨基酸、抗壞血酸、多烯酸、硫醇、硫醚等。因此,實(shí)現(xiàn)對(duì)生物體中次氯酸的實(shí)時(shí)監(jiān)測(cè)和準(zhǔn)確檢測(cè)具有重要意義。傳統(tǒng)的檢測(cè)次氯酸方法有很多,如比色法、化學(xué)發(fā)光法、庫(kù)侖滴定法、碘量滴定法、放射分解法等。然而,熒光探針檢測(cè)次氯酸具有較快的響應(yīng)時(shí)間、高的選擇性、低的檢測(cè)限等,并且能做到無(wú)創(chuàng)檢測(cè),對(duì)生物體的傷害微乎其微[23-24]。羅丹明被認(rèn)為是一種可以檢測(cè)次氯酸的熒光染料,由于它具有獨(dú)特的螺旋結(jié)構(gòu)特性,因此在沒(méi)有與外界發(fā)生反應(yīng)時(shí)沒(méi)有熒光發(fā)射。在與次氯酸反應(yīng)后,其螺旋環(huán)結(jié)構(gòu)發(fā)生裂解被打開(kāi),會(huì)發(fā)出強(qiáng)烈的熒光,這一過(guò)程并伴有明顯的顏色變化。其熒光發(fā)射波長(zhǎng)通常在500 nm以上,并且由于其具有較高的量子產(chǎn)率,光穩(wěn)定性能較好,是一種良好的熒光染料。
ZHU等[25]設(shè)計(jì)了一種基于羅丹明的熒光探針2。該探針以1,8-萘酰亞胺熒光團(tuán)作為供體、羅丹明熒光團(tuán)作為受體。與傳統(tǒng)意義上的單一熒光傳感器相比,比率熒光化學(xué)傳感器在探測(cè)器的靈敏度等方面都有較大程度上的提升,甚至可以通過(guò)自校準(zhǔn)兩個(gè)熒光發(fā)射來(lái)實(shí)現(xiàn)定量檢測(cè)。在360 nm光譜激發(fā)下1,8-萘酰亞胺熒光團(tuán)在477 nm處的藍(lán)色熒光發(fā)射減少,因?yàn)楣w的能量轉(zhuǎn)移到受體,所以羅丹明熒光團(tuán)在618 nm處的橙色熒光發(fā)射增強(qiáng)。在此探針中次氯酸誘導(dǎo)氨基硫脲脫硫,使得羅丹明開(kāi)環(huán),并在開(kāi)環(huán)的過(guò)程中釋放熒光。該羅丹明探針對(duì)次氯酸的檢測(cè)限低至4.5 nmol·L-1,是一種有前景的熒光探針。
3" 過(guò)氧亞硝酸鹽的檢測(cè)
作為活性氧的重要成員,過(guò)氧亞硝酸鹽的半衰期極短,只有10~20 ms。過(guò)氧亞硝酸鹽對(duì)生物機(jī)體中的新陳代謝起著至關(guān)重要的作用,它可以傳遞信號(hào),但是當(dāng)它的濃度升高的時(shí)候,會(huì)產(chǎn)生有害影響,例如氧化DNA、蛋白質(zhì)等。因此,研發(fā)一種可以快速檢測(cè)過(guò)氧亞硝酸鹽選擇性熒光分子探針尤為重要。經(jīng)過(guò)近20年的發(fā)展,目前已經(jīng)有用于檢測(cè)過(guò)氧亞硝酸鹽的探針,包括羥基苯基熒光素(HPF)和氨基苯基熒光素(APF)等。
LI等[26]開(kāi)發(fā)了一種新型的熒光探針3,用于利用缺血誘導(dǎo)的神經(jīng)血管損傷跟蹤細(xì)胞和小鼠中過(guò)氧亞硝酸鹽的原位生成。苯并噻唑是一種良好的熒光探針,具有對(duì)過(guò)氧亞硝酸鹽的高選擇性。其正常形式(中間狀態(tài))是弱熒光,但當(dāng)激發(fā)時(shí),它可以通過(guò)激發(fā)態(tài)分子內(nèi)質(zhì)子轉(zhuǎn)移(ESIPT)異構(gòu)化,導(dǎo)致熒光大幅增加。
4" 結(jié)束語(yǔ)
綜述了目前關(guān)于熒光探針檢測(cè)體內(nèi)過(guò)氧化氫、次氯酸鹽、過(guò)氧亞硝酸鹽的研究進(jìn)展,并且敘述了相關(guān)探針對(duì)于檢測(cè)不同活性氧時(shí)的設(shè)計(jì)機(jī)理,包括光電子轉(zhuǎn)移(PET)、分子內(nèi)電荷轉(zhuǎn)移(ICT)、熒光共振能量轉(zhuǎn)移(FRET)等,探討了相關(guān)活性氧在生物體內(nèi)的積極、消極的作用,分析了探針的設(shè)計(jì)策略、光學(xué)性能等。這些探針各有自己的優(yōu)異性能,如選擇性極高、反應(yīng)時(shí)間短、光物理性質(zhì)穩(wěn)定等。但是,也迫切需要研發(fā)適用于更加復(fù)雜條件、檢測(cè)限更低、建立多通道同時(shí)檢測(cè)的熒光探針。
參考文獻(xiàn):
[1] WU T D, LI L, SONG G J, et al. An ultrasensitive electrochemical sensor based on cotton carbon fiber composites for the determination of superoxide anion release from cells[J]. Microchimica Acta, 2019, 186(3): 198.
[2] VEDAMALAI M, KEDARIA D, VASITA R, et al. Oxidation of phenothiazine based fluorescent probe for hypochlorite and its application to live cell imaging[J]. Sensors and Actuators B: Chemical, 2018, 263: 137-142.
[3] HUANG X, HE D, PAN Z, et al. Reactive-oxygen-species-scavenging nanomaterials for resolving inflammation[J]. Materials Today. Bio, 2021, 11: 100124.
[4] YANG B W, CHEN Y, SHI J L. Reactive oxygen species (ROS)-based nanomedicine[J]. Chemical Reviews, 2019, 119(8): 4881-4985.
[5] YU W C, ZHAO L X. Chemiluminescence detection of reactive oxygen species generation and potential environmental applications[J]. TrAC Trends in Analytical Chemistry, 2021, 136: 116197.
[6] KUMARI R, DKHAR D S, MAHAPATRA S, et al. Nano-bioengineered sensing technologies for real-time monitoring of reactive oxygen species in in vitro and in vivo models[J]. Microchemical Journal, 2022, 180: 107615.
[7] ZHANG Y F, DAI M H, YUAN Z H. Methods for the detection of reactive oxygen species[J]. Analytical Methods, 2018, 10(38): 4625-4638.
[8] HOLMSTR?M K M, FINKEL T. Cellular mechanisms and physiological consequences of redox-dependent signalling[J]. Nature Reviews Molecular Cell Biology, 2014, 15: 411-421.
[9] YE Z, ZHANG R, SONG B, et al. Development of a functional ruthenium(II) complex for probing hypochlorous acid in living cells[J]. Dalton Transactions (Cambridge, England, 2014, 43(22): 8414-8420.
[10] KAILASA S K, KODURU J R, DESAI M L, et al. Recent progress on surface chemistry of plasmonic metal nanoparticles for colorimetric assay of drugs in pharmaceutical and biological samples[J]. TrAC Trends in Analytical Chemistry, 2018, 105: 106-120.
[11] MEHTA V N, GHINAIYA N, ROHIT J V, et al. Ligand chemistry of gold, silver and copper nanoparticles for visual read-out assay of pesticides: a review[J]. TrAC Trends in Analytical Chemistry, 2022, 153: 116607.
[12] KAILASA S K, KODURU J R. Perspectives of magnetic nature carbon dots in analytical chemistry: From separation to detection and bioimaging[J]. Trends in Environmental Analytical Chemistry, 2022, 33: e00153.
[13] BORSE S, RAFIQUE R, MURTHY Z V P, et al. Applications of upconversion nanoparticles in analytical and biomedical sciences: a review[J]. The Analyst, 2022, 147(14): 3155-3179.
[14] NGUYEN V N, HA J, CHO M, et al. Recent developments of BODIPY-based colorimetric and fluorescent probes for the detection of reactive oxygen/nitrogen species and cancer diagnosis[J]. Coordination Chemistry Reviews, 2021, 439: 213936.
[15] HERMAN J, ZHANG Y N, CASTRANOVA V, et al. Emerging technologies for optical spectral detection of reactive oxygen species[J]. Analytical and Bioanalytical Chemistry, 2018, 410(24): 6079-6095.
[16] WU L, SEDGWICK A C, SUN X, et al. Reaction-based fluorescent probes for the detection and imaging of reactive oxygen, nitrogen, and sulfur species[J]. Accounts of Chemical Research, 2019, 52(9): 2582-2597.
[17] HUYNH G T, KESARWANI V, WALKER J A, et al. Review: nanomaterials for reactive oxygen species detection and monitoring in biological environments[J]. Frontiers in Chemistry, 2021, 9: 728717.
[18] KANT T, DAHARIYA N S, JAIN V K, et al. Application of silver nanoparticles as a chemical sensor for detection of pesticides and metal ions in environmental samples[M].Silver nanomaterials for agri-food applications. Amsterdam: Elsevier, 2021: 429-452.
[19] COLLIN F. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases[J]. International Journal of Molecular Sciences, 2019, 20(10): 2407.
[20] AHMED A, JOHN P, NAWAZ M H, et al. Zinc-doped mesoporous graphitic carbon nitride for colorimetric detection of hydrogen peroxide[J]. ACS Applied Nano Materials, 2019, 2(8): 5156-5168.
[21] CHEN Q X, SHAO X T, HAO M G, et al. Quantitative analysis of interactive behavior of mitochondria and lysosomes using structured illumination microscopy[J]. Biomaterials, 2020, 250: 120059.
[22] MASANTA G, HEO C H, LIM C S, et al. A mitochondria-localized two-photon fluorescent probe for ratiometric imaging of hydrogen peroxide in live tissue[J]. Chemical Communications (Cambridge, England), 2012, 48(29): 3518-3520.
[23] DUANGHATHAIPORNSUK S, FARRELL E J, ALBA-RUBIO A C, et al. Detection technologies for reactive oxygen species: fluorescence and electrochemical methods and their applications[J]. Biosensors, 2021, 11(2): 30.
[24] JIAO X, LI Y, NIU J, et al. Small-molecule fluorescent probes for imaging and detection of reactive oxygen, nitrogen, and sulfur species in biological systems[J]. Analytical Chemistry, 2018, 90(1): 533-555.
[25] ZHU Z F, DING H C, WANG Y S, et al. Rational design of a FRET-based ratiometric fluorescent chemosensor for detecting ClO? with large Stokes based on rhodamine and naphthalimide fluorophores[J]. Tetrahedron, 2020, 76(26): 131291.
[26] LI X, TAO R R, HONG L J, et al. Visualizing peroxynitrite fluxes in endothelial cells reveals the dynamic progression of brain vascular injury[J]. Journal of the American Chemical Society, 2015, 137(38): 12296-12303.
Research Progress in Near-Infrared Fluorescence Probes
for Detecting Reactive Oxygen Species
XIAO Bin, WANG Chunmei, HAN Zhenghao
(College of Chemistry amp; Chemical Engineering, Yunnan Normal University, Kunming Yunnan 650500, China)
Abstract: Reactive oxygen species (ROS) have attracted the attention of many researchers in chemistry, biology and medicine, it plays important role in many key physiological processes, the excessive production and accumulation of ROS in the body can damage some biomolecules, directly or indirectly cause a variety of diseases, so they are considered to be related to various pathological conditions. it is important to explore the specific pathogenic mechanism of reactive oxygen species in the body to develop related drugs based on the understanding of this pathogenic mechanism. Near-infrared fluorescent probes for the detection of reactive oxygen species is a promising tool for non-invasive detection of spatial and temporal information of target biomolecules in vivo cellular systems, providing a more promising treatment based on this.
Key words: Reactive oxygen species; Near-infrared spectroscopy; Fluorescent probes; Biological imaging