收稿日期:2023-10-08
基金項目:山東省自然科學(xué)基金項目(ZR2020QC156);國家自然科學(xué)基金青年項目(32102405);大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計劃項目(X202310452399、X202110452278)
作者簡介:張 雨(2002-),女,山東菏澤人,本科生,主要從事蔬菜分子生物學(xué)研究。(E-mail)1291539023@qq.com
通訊作者:黃 瑩,(E-mail)hyhappy1314@163.com
摘要: SBP家族基因在植物生長發(fā)育過程中具有重要作用。為明確莖用萵苣SBP家族基因染色體分布、啟動子順式作用元件、莖膨大期表達特征及其編碼蛋白質(zhì)的理化性質(zhì),本研究以擬南芥SBP蛋白氨基酸序列為參考篩選鑒定萵苣SBP家族基因,進行萵苣SBP家族基因的染色體定位、進化樹構(gòu)建、啟動子順式作用元件分析,構(gòu)建其編碼蛋白質(zhì)的互作網(wǎng)絡(luò),并利用轉(zhuǎn)錄組測序技術(shù)及實時熒光定量PCR分析莖用萵苣莖膨大期SBP家族基因的表達模式。結(jié)果表明,在萵苣基因組中共鑒定到27個SBP基因,可分為7個亞族,不均勻分布于8條染色體上。多個SBP轉(zhuǎn)錄因子與植物開花相關(guān)蛋白LFY、乙烯響應(yīng)轉(zhuǎn)錄因子(TOE2、TOE3、SMZ、SNZ)存在互作。在莖用萵苣莖膨大過程中,13個SBP基因的表達模式存在差異。隨著莖用萵苣莖的膨大,LsSBP25的表達量呈增加趨勢,而LsSBP10、LsSBP22的表達量逐步降低。本研究結(jié)果可為進一步探究萵苣SBP家族基因在萵苣生長發(fā)育過程中的作用提供基礎(chǔ)。
關(guān)鍵詞: 萵苣;SBP家族轉(zhuǎn)錄因子;莖膨大期;表達模式
中圖分類號: S636.2"" 文獻標識碼: A"" 文章編號: 1000-4440(2024)10-1923-10
Identification of lettuce SBP transcription factor gene family and its expression analysis in stem expansion stage of stem lettuce
ZHANG Yu, MA Wenjuan, DING Yiru, LIU Tianyi, LIAN Rongqi, HUANG Ying
(College of Agriculture and Forestry, Linyi University, Linyi 276000, China)
Abstract: SBP family genes play important roles in the growth and development process of plants. In order to identify the chromosomal distribution, promoter cis-acting elements, expression characteristics in stem expansion stage and the physicochemical properties of proteins encoded by SBP family genes, the lettuce SBP family genes were screened and identified based on the amino acid sequence of SBP protein in Arabidopsis thaliana. The chromosome localization, evolutionary tree construction and promoter cis-acting element analysis of SBP family genes in lettuce were performed, and the interaction network of proteins encoded by SBP family genes was constructed. The expression patterns of SBP family genes were analyzed by transcriptome sequencing and quantitative real-time PCR. The results showed that there were 27 SBP genes in lettuce, and they could be classified into seven subgroups. The SBP genes were unevenly distributed on eight chromosomes. Some SBP transcription factors could interact with flowering related protein LFY, ethylene response transcription factors (TOE2, TOE3, SMZ, SNZ). The expression patterns of 13 SBP genes were changed in stem expansion stage of stem lettuce. The expression levels of LsSBP25 increased during the process of stem enlargement, while the expression levels of LsSBP10 and LsSBP22 decreased during the process of stem enlargement. The results of this study can provide a basis for further investigation of the role of SBP family genes in the growth and development of lettuce.
Key words: lettuce;SBP family transcription factor;stem expansion stage;expression patterns
萵苣(Lactuca sativa),分為葉用萵苣(生菜)和莖用萵苣(萵筍),屬菊科萵苣屬一年生或二年生蔬菜。葉用萵苣是一種非常重要的綠葉蔬菜,具有消炎利尿的功效;莖用萵苣含有豐富的維生素、礦物質(zhì)及葉酸、β-胡蘿卜素、葉黃素和抗氧化物等活性物質(zhì),是一種經(jīng)濟價值和營養(yǎng)價值都很高的蔬菜[1-2]。目前對葉用萵苣的研究廣泛且深入,但對莖用萵苣的研究主要集中在栽培技術(shù)以及種質(zhì)資源遺傳多樣性等方面[3]。莖的生長過程直接影響莖用萵苣產(chǎn)量和品質(zhì),因此系統(tǒng)分析莖用萵苣莖膨大機理對于提高莖用萵苣產(chǎn)量和品質(zhì)具有重要的價值。但迄今為止,莖用萵苣莖膨大的調(diào)控機理還未被闡明。
SBP轉(zhuǎn)錄因子(Squamosa promoter binding protein-like,SBP)家族,也稱為SPL家族,是發(fā)現(xiàn)較晚且僅存在于植物中的1個轉(zhuǎn)錄因子家族,具有高度保守的SBP結(jié)構(gòu)域,參與植物生長發(fā)育過程及對非生物脅迫的響應(yīng)[4-5]。蘋果MdSPL13基因過表達能顯著提高蘋果耐鹽性[6]。水稻OsSPL10基因能正向調(diào)控毛狀體的形成,負向調(diào)控水稻植株的耐鹽性[7]。Li等[8]研究發(fā)現(xiàn)桑樹老葉中SPL基因的表達量高于新葉,且MnSPL7可促進MnTT2L2基因的轉(zhuǎn)錄進而調(diào)控兒茶素合成相關(guān)基因的表達,從而應(yīng)對植食現(xiàn)象。SPL9和SPL15可以調(diào)控擬南芥發(fā)育過程[9]。春蘭、黃石斛、天麻等植物中SPL轉(zhuǎn)錄因子功能富集于植物花和莖的發(fā)育[10]。十字花科芥菜型油菜SPL基因在花和莖中存在差異表達,BjuSPL3a-B、BjuSPL2b_B和BjuSPL2c_A基因在花中顯著表達;BjuSPL3b_B和BjuSPL10a_A基因在營養(yǎng)生長期的莖節(jié)中高表達[11]。目前人們對擬南芥[12]、水稻[13]、小麥[14]、大麥[15]、茶樹[16]、苜蓿[17]、黑胡椒[18]、甜橙[19]等植物中SBP家族基因全基因組水平的鑒定和分析已有一些研究,但對萵苣SBP家族基因的鑒定分析較少。由于莖是莖用萵苣的可食部分,因此分析鑒定莖用萵苣SBP家族基因并探究其在莖膨大過程中的作用機理對莖用萵苣的高產(chǎn)栽培和優(yōu)質(zhì)品種選育尤為重要。本研究以萵苣全基因組數(shù)據(jù)庫及本試驗測定的莖膨大期轉(zhuǎn)錄組數(shù)據(jù)為依據(jù),鑒定萵苣SBP家族基因,并分析萵苣SBP家族基因的染色體定位、啟動子順式作用元件,構(gòu)建系統(tǒng)進化樹,明確其編碼蛋白質(zhì)的理化性質(zhì),分析其在莖用萵苣莖膨大時期的表達模式,旨在為深入探究莖用萵苣SBP家族基因的調(diào)控機制奠定基礎(chǔ)。
1 材料與方法
1.1 萵苣SBP家族基因鑒定及其編碼蛋白質(zhì)的理化性質(zhì)分析
以擬南芥SBP氨基酸序列作為參考序列,利用BLASTP在線網(wǎng)站(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PROGRAM=blastpamp;PAGE_TYPE=BlastSearchamp;LINK_LOC=blasthome)對萵苣基因組數(shù)據(jù)庫(https://www.ncbi.nlm.nih.gov/datasets/genome/GCF_002870075.4/)進行檢索,初步篩選出萵苣SBP家族基因。利用Pfam數(shù)據(jù)庫、SMART數(shù)據(jù)庫和NCBI保守域數(shù)據(jù)庫進行保守域的驗證,以確保篩選的SBP家族基因編碼的蛋白質(zhì)均含有該家族特有的結(jié)構(gòu)域。利用ExPASy在線網(wǎng)站進行萵苣SBP家族基因編碼蛋白質(zhì)的理化性質(zhì)分析。
1.2 萵苣SBP家族基因序列比對及進化樹分析
采用MEGA7.0軟件對萵苣、擬南芥、水稻SBP家族基因進行多序列比對,并構(gòu)建萵苣、擬南芥、水稻SBP家族基因進化樹。
1.3 染色體定位分析
利用NCBI在線數(shù)據(jù)庫檢索萵苣SBP家族基因在染色體上的具體位置,并利用Mapchart軟件繪制萵苣SBP家族基因染色體分析圖。
1.4 SBP轉(zhuǎn)錄因子互作網(wǎng)絡(luò)圖
以擬南芥SBP家族轉(zhuǎn)錄因子為參考,通過STRING在線網(wǎng)站預(yù)測萵苣SBP轉(zhuǎn)錄因子間及其與其他蛋白質(zhì)可能存在的相互作用。
1.5 萵苣SBP基因啟動子順式作用元件分析
利用NCBI數(shù)據(jù)庫獲取萵苣SBP家族基因啟動子堿基序列(起始密碼子ATG上游2 000 bp),通過PlantCARE在線網(wǎng)站進行啟動子順式作用元件預(yù)測,利用TBtools軟件進行啟動子順式作用元件可視化。
1.6 莖膨大期萵苣SBP家族基因表達模式分析
以莖用萵苣品種永安紅為材料,于2023年2月進行種子催芽,并種植于臨沂大學(xué)試驗溫室中,種植期間按照常規(guī)栽培措施進行萵苣的栽培管理。肉質(zhì)莖開始膨大后,采用游標卡尺測定肉質(zhì)莖的最大粗度,當肉質(zhì)莖最大粗度分別達到為1 cm(S1)、2 cm(S2)、3 cm(S3)、4 cm(S4)時,采集最粗莖段樣品速凍于液氮中,每個時期采集10棵萵苣,設(shè)置3次生物學(xué)重復(fù)。將采集的4個時期樣品進行轉(zhuǎn)錄組測序(NCBI: PRJNA844256)分析差異表達的SBP家族基因。為驗證轉(zhuǎn)錄組數(shù)據(jù)的準確性,進一步選取G6和G7亞族的SBP基因進行熒光定量PCR分析(Quantitative real-time PCR,qRT-PCR)。qRT-PCR分析中以萵苣LsTIP41基因為內(nèi)參基因,反應(yīng)程序及相對表達量計算參照文獻[20]進行。本研究中所用引物見表1。
2 結(jié)果與分析
2.1 萵苣SBP家族基因及其編碼蛋白質(zhì)理化性質(zhì)
在萵苣基因組數(shù)據(jù)庫中共鑒定到27個SBP家族基因,分別命名為LsSBP1~LsSBP27(表2)。27個SBP基因的開放閱讀框長度為252~4 086 bp;編碼的蛋白質(zhì)氨基酸殘基數(shù)為83~1 361個,相對分子量為9 394.56~150 845.17,等電點為5.67~9.78,酸性氨基酸占比9.1%~19.6%,堿性氨基酸占比8.2%~14.5%,脂肪族氨基酸占比37.25%~81.04%,芳香族氨基酸占比3.6%~9.6%,總平均疏水性為-1.136~-0.336。
2.2 萵苣SBP家族基因進化樹
萵苣、擬南芥、水稻SBP家族基因系統(tǒng)進化樹如圖1所示。59個SBP基因(15個擬南芥SBP基因,27個萵苣SBP基因,17個水稻SBP基因)可劃分為G1~G7 7個亞族。其中G1亞族含有最多的SBP家族成員,包括AtSPL2、AtSPL10、AtSPL11、LsSBP1、LsSBP2、LsSBP3、OsSPL3、OsSPL4等16個成員;G2亞族含有14個SBP家族成員,包括AtSPL1、AtSPL7、OsSPL1、OsSPL6、LsSBP6、LsSBP20等。G4和G5亞族分別含有6個和5個SBP基因。G6亞族含有LsSBP10、LsSBP13、LsSBP15、LsSBP16、LsSBP22 5個萵苣SBP基因。LsSBP11、LsSBP14和LsSBP25屬于G7亞族。G3亞族僅含AtSPL4和AtSPL5 2個SBP基因,無萵苣SBP家族基因。
2.3 萵苣SBP家族基因在染色體上的分布
萵苣SBP家族基因的染色體定位分布如圖2所示。27個萵苣SBP基因分布于8條染色體上。其中,染色體4上分布數(shù)量最多,有LsSBP9、LsSBP10、LsSBP11、LsSBP12、LsSBP13、LsSBP14、LsSBP15等7個LsSBP基因。染色體1上分布6個LsSBP基因。染色體3、染色體6、染色體7和染色體8上各有2個LsSBP基因,染色體5與染色體9上各有3個LsSBP基因。染色體2上沒有LsSBP基因。
2.4 SBP轉(zhuǎn)錄因子互作網(wǎng)絡(luò)
萵苣SBP轉(zhuǎn)錄因子互作網(wǎng)絡(luò)如圖3所示。多個LsSBP轉(zhuǎn)錄因子(LsSBP1、LsSBP2、LsSBP3、LsSBP4、LsSBP13、LsSBP22、LsSBP17、LsSBP27、LsSBP26)與植物花發(fā)育相關(guān)蛋白LFY存在相互作用[21]。除了LFY外,SPL4(或LsSBP1、LsSBP2、LsSBP3)轉(zhuǎn)錄因子與AP2類型的乙烯響應(yīng)轉(zhuǎn)錄因子(TOE2、TOE3、SMZ、SNZ)、花發(fā)育相關(guān)MADS-box蛋白AGL8等存在相互作用,表明LsSBP1、LsSBP2、LsSBP3可能參與了萵苣花發(fā)育過程。多個SBP轉(zhuǎn)錄因子如SPL2(或LsSBP7、LsSBP12、LsSBP18、LsSBP24)、SPL16(或LsSBP5)、SPL6(或LsSBP4、LsSBP9)、SPL1-2(或LsSBP6、LsSBP19)、SPL14(或LsSBP17、LsSBP27)、SPL4(或LsSBP1、LsSBP2、LsSBP3)、SPL8(或LsSBP13、LsSBP22)及SPL10(或LsSBP21)與硒結(jié)合蛋白SBP2均存在相互作用。
每個圓圈代表不同的蛋白質(zhì)。線條的寬度和陰影表示蛋白質(zhì)間的相關(guān)強度。圖中編碼SPL14蛋白的基因ID號為At1g20980,編碼SPL8蛋白的基因ID號為At1g02065,編碼SPL1-2蛋白的基因ID號為At2g47070/At2g47080,編碼SPL2蛋白的基因ID號為At5g43270,編碼SPL16蛋白的基因ID號為At1g76580,編碼SBP2蛋白的基因ID號為At4g14040,編碼LFY蛋白的基因ID號為At5g61850,編碼SOC1蛋白的基因ID號為At2g45660,編碼AGL8蛋白的基因ID號為At5g60910,編碼SPL6蛋白的基因ID號為At1g69170,編碼SMZ蛋白的基因ID號為At3g54990,編碼SNZ蛋白的基因ID號為At2g39250,編碼SPL4蛋白的基因ID號為At1g53160,編碼SPL10蛋白的基因ID號為At1g27370,編碼SPL13B蛋白的基因ID號為At5g50670,編碼SPL9蛋白的基因ID號為At2g42200,編碼SPL5蛋白的基因ID號為At3g15270,編碼TCL1蛋白的基因ID號為At2g30432,編碼TOE3蛋白的基因ID號為At5g67180,編碼TOE2蛋白的基因ID號為At5g60120,編碼RAP2-7蛋白的基因ID號為At2g28550。
2.5 萵苣SBP家族基因啟動子的順式作用元件
萵苣27個SBP家族基因啟動子順式作用元件如圖4所示。從圖中可以看出,27個SBP基因啟動子含有多個順式作用元件,包括干旱相關(guān)MYB結(jié)合位點、分生組織表達相關(guān)元件、脫落酸(ABA)響應(yīng)元件、蛋白質(zhì)結(jié)合位點等。例如在LsSBP4、LsSBP20、LsSBP27等基因啟動子中檢測到蛋白質(zhì)結(jié)合位點;在LsSBP4、LsSBP5、LsSBP6、LsSBP7、LsSBP11、LsSBP12、LsSBP13、LsSBP17、LsSBP20等基因啟動子中檢測到干旱相關(guān)MYB結(jié)合位點。
2.6 莖用萵苣莖膨大期SBP家族基因的表達模式
莖膨大過程中,萵苣27個SBP家族基因的表達熱圖如圖5所示。27個SBP基因中,14個SBP基因的表達水平在莖膨大過程中無明顯變化,其中,LsSBP5、LsSBP8、LsSBP17、LsSBP18、LsSBP24始終維持低表達水平,即log2(FPKM+1)為0(FPKM為每1×106映射片段的外顯子模型的每1 000個堿基片段數(shù)),而LsSBP6、LsSBP12、LsSBP14、LsSBP19、LsSBP20、LsSBP27等基因的表達水平始終較高,[log2(FPKM+1)]值大于3。其他13個SBP基因的表達水平在莖膨大過程中(S1~S4)顯示出較大的變化。LsSBP1、LsSBP7、LsSBP14、LsSBP25、LsSBP26基因在莖膨大過程中表達水平均很高;隨著莖的增粗,LsSBP13、LsSBP16基因的表達水平逐漸降低;在莖膨大初期(S1),LsSBP10、LsSBP11、LsSBP15、LsSBP22基因的表達水平較高,而在莖膨大中后期表達水平較低;LsSBP9的表達水平即在4個時期均比較低。
莖膨大期8個SBP基因(LsSBP10、LsSBP11、LsSBP13、LsSBP14、LsSBP15、LsSBP16、LsSBP22、LsSBP25)的相對表達量變化如圖6所示。從圖中可以看出,在莖膨大初期(S1),LsSBP10和LsSBP22的表達量較高,在莖膨大中后期(S2~S4)表達量均明顯降低;而LsSBP14和LsSBP25在莖膨大中后期(S2~S4)的表達量明顯高于莖膨大初期(S1)。隨著莖的膨大,LsSBP16的表達量呈降低趨勢。莖膨大過程中,LsSBP13和LsSBP15的表達量呈先增加后減少的趨勢;LsSBP11的表達量呈波動變化,在S3時最高??傮w來看,實時熒光定量PCR的基因表達特征與轉(zhuǎn)錄組分析結(jié)果基本一致。
3 討論
SBP是植物重要的轉(zhuǎn)錄因子。目前,多個物種的SBP家族轉(zhuǎn)錄因子已經(jīng)得到鑒定。其中,擬南芥基因組大小(核苷酸堿基對數(shù)量)為125 Mb,含有16個SBP轉(zhuǎn)錄因子;藍莓基因組大小約為570 Mb,含有20個SBP轉(zhuǎn)錄因子;二穗短柄草基因組大小為272 Mb,含有18個SBP轉(zhuǎn)錄因子;番茄基因組大小約800 Mb,含有15個SBP轉(zhuǎn)錄因子;蘋果基因組大小約為742 Mb,含有18個SBP轉(zhuǎn)錄因子[22-25]。本研究中萵苣基因組大小約為2.5 Gb,鑒定到27個SBP轉(zhuǎn)錄因子。上述結(jié)果表明,植物基因組的大小不能直接決定本物種SBP轉(zhuǎn)錄因子的數(shù)量。
SBP(又稱SPL)轉(zhuǎn)錄因子在植物花青素生物合成以及銅離子過量、鹽脅迫、溫度脅迫和干旱脅迫等響應(yīng)過程中發(fā)揮重要作用[26-28]。擬南芥AtSPL3參與光周期過程從而影響擬南芥開花進程[27],AtSPL8參與擬南芥雌雄蕊的發(fā)育,SPL8突變后導(dǎo)致擬南芥花粉囊發(fā)育異常[28-29]。過表達OsSPL14能促進水稻穗分化進程而提高水稻產(chǎn)量[30]。OsSPL16參與水稻籽粒形狀的調(diào)控及稻米品質(zhì)的形成過程[31]。玉米SBP基因能調(diào)控側(cè)根原基發(fā)育從而影響玉米的產(chǎn)量性狀[32]。相對其他轉(zhuǎn)錄因子家族,SBP轉(zhuǎn)錄因子家族的發(fā)現(xiàn)相對較晚,因此其生物學(xué)功能研究尚不充分。本研究結(jié)果表明,莖膨大中后期萵苣LsSBP14和LsSBP25的表達水平明顯高于莖膨大初期。隨著莖的膨大,LsSBP25的表達水平持續(xù)增加,說明LsSBP25在莖膨大過程中可能起著正向調(diào)控的作用;而LsSBP10和LsSBP22在莖膨大中后期的表達水平明顯低于莖膨大初期,說明這2個基因在莖膨大過程中可能起著負向調(diào)控的作用。
SBP轉(zhuǎn)錄因子具有與miRNA互補的識別位點,因此miRNA可以作為上游調(diào)控因子調(diào)控SBP轉(zhuǎn)錄因子的表達[33]。擬南芥中10多個AtSPL被報道為miRNA156的潛在靶基因,miRNA156可通過調(diào)控下游靶標的SBP轉(zhuǎn)錄因子參與多種非生物脅迫(鹽、寒冷、干旱)及生物脅迫(病原菌侵染)響應(yīng)過程[34-35]。SPL轉(zhuǎn)錄因子通過miR156f-OsSPL7-OsGH3.8通路調(diào)節(jié)水稻分蘗數(shù)和株高[36]。擬南芥AtSPL14、AtSPL1、AtSPL12在抵抗毒素及耐熱過程中發(fā)揮著重要作用[37-38]。系統(tǒng)進化樹分析結(jié)果表明,參與莖膨大的LsSBP11、LsSBP14、LsSBP25基因同屬于G7亞族,但其對莖膨大的調(diào)控機制尚不明確,有待進一步分析。
4 結(jié)論
在萵苣基因組中共鑒定到27個SBP家族基因,可分為7個亞族,不均勻分布在8條染色體上。萵苣莖膨大增粗過程中,13個SBP基因的表達水平發(fā)生明顯變化,其中LsSBP25基因的表達水平在莖膨大中后期的表達水平明顯高于莖膨大初期,說明該基因可能正向調(diào)控萵苣莖膨大增粗過程,而LsSBP10和LsSBP22基因的表達水平在莖膨大初期表達量較高,中后期表達量較低,說明這2個基因在莖膨大增粗過程可能起著負向調(diào)控作用。
參考文獻:
[1] YANG X, GIL M I, YANG Q C, et al. Bioactive compounds in lettuce:highlighting the benefits to human health and impacts of preharvest and postharvest practices[J]. Comprehensive Reviews in Food Science and Food Safety,2022,21(1):4-45.
[2] 趙盈盈,秦曉曉,韓瑩琰,等. 萵苣LsMYB44基因的克隆及表達分析[J]. 北京農(nóng)學(xué)院學(xué)報,2022,37(2):39-44.
[3] 王麗慧,張廣楠,孫雪梅,等. 24份莖用萵苣種質(zhì)資源表型性狀的遺傳多樣性分析[J]. 分子植物育種,2020,18(19):6530-6538.
[4] XIE X, YUE S, SHI B, et al. Comprehensive analysis of the SBP family in blueberry and their regulatory mechanism controlling chlorophyll accumulation[J]. Frontier in Plant Science,2021,12:703994.
[5] LI Z W, YANG Y J, CHEN B, et al. Genome-wide identification and expression analysis of SBP-box gene family reveal their involvement in hormone response and abiotic stresses in Chrysanthemum nankingense[J]. Peer J,2022,10:e14241.
[6] MA Y, XUE H, ZHANG F, et al. The miR156/SPL module regulates apple salt stress tolerance by activating MdWRKY100 expression[J]. Plant Biotechnology Journal,2021,19(2):311-323.
[7] LAN T, ZHENG Y L, SU Z L, et al. OsSPL10,a SBP-box gene,plays a dual role in salt tolerance and trichome formation in rice (Oryza sativa L.)[J]. Genes Genomes Genetic,2019,9(12):4107-4114.
[8] LI H S, MA B, LUO Y W, et al. The mulberry SPL gene family and the response of MnSPL7 to silkworm herbivory through activating the transcription of MnTT2L2 in the catechin biosynthesis pathway[J]. International Journal of Molecular Science,2022,23(3):1141.
[9] SCHWARZ S, GRANDE A, BUJDOSO N S, et al. The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis[J]. Plant Molecular Biology,2008,67(1/2):183-195.
[10]ZHAO X, ZHANG M, HE X, et al. Genome-wide identification and expression analysis of the SPL gene family in three orchids[J]. International Journal of Molecular Science,2023,24(12):10039.
[11]GAO J, PENG H, CHEN F, et al. Genome-wide identification and characterization,phylogenetic comparison and expression profiles of SPL transcription factor family in B. juncea (Cruciferae) [J]. PLoS One,2019,14(11):e0224704.
[12]ZHENG C, YE M, SANG M, et al. A regulatory network for miR156-SPL module in Arabidopsis thaliana[J]. International Journal of Molecular Science,2019,20(24):6166.
[13]XIE K B, WU C Q, XIONG L Z. Genomic organization, differential expression, and interaction of SQUAMOSA promoter-binding-like transcription factors and microRNA156 in rice[J]. Plant Physiology,2006,142(1):280-293.
[14]ZHU T, LIU Y, MA L L, et al. Genome-wide identification, phylogeny and expression analysis of the SPL gene family in wheat[J]. BMC Plant Biology,2020,20(1):420.
[15]蔡 倩,趙甜甜,劉夢迪,等. 大麥SBP轉(zhuǎn)錄因子的鑒定與表達分析[J]. 麥類作物學(xué)報,2020,40(1):65-74.
[16]ZHANG D Y, HANZ L, LI J Q, et al. Genome-wide analysis of the SBP-box gene family transcription factors and their responses to abiotic stresses in tea (Camellia sinensis)[J]. Genomics,2020,112(3):2194-2202.
[17]WANG Y Z, RUAN Q, ZHU X L, et al. Identification of Alfalfa SPL gene family and expression analysis under biotic and abiotic stresses[J]. Science Reports,2023,13(1):84.
[18]LI J, FAN R, WU B D, et al. Genome-wide identification and functional exploration of SBP-box gene family in black pepper (Piper nigrum L)[J]. Genes,2021,12(11):1740.
[19]SONG N, CHENG Y L, PENG W Y, et al. Genome-wide characterization and expression analysis of the SBP-box gene family in sweet orange (Citrus sinensis)[J]. International Journal of Molecular Science,2021,22(16):8918.
[20]HUANG Y, LI Y, LIU Z, et al. Combined analysis of the transcriptome and metabolome provides insights into the fleshy stem expansion mechanism in stem lettuce[J]. Frontier in Plant Science,2022,13:1101199.
[21]YAMAGUCHI N. LEAFY, a pioneer transcription factor in plants:a mini-review[J]. Frontier in Plant Science,2021,12:701406.
[22]CARDON G, HOHMANN S, KLEIN J, et al. Molecular characterization of the Arabidopsis SBP-box genes[J]. Gene,1999,237:91-104.
[23]TRIOATHIR K, OVERBEEK W, SINGH J. Global analysis of SBP gene family in Brachypodium distachyon reveals its association with spike development[J]. Science Report,2020,10(1):15032.
[24]LI J, HOU H, LI X, et al. Genome-wide identification and analysis of the SBP-box family genes in apple (Malus×domestica Borkh)[J]. Plant Physiology Biochemistry,2013,70:100-114.
[25]SALINAS M, XING S, HOHMANN S, et al. Genomic organization, phylogenetic comparison and differential expression of the SBP-box family of transcription factors in tomato[J]. Planta,2012,235(6):1171-1184.
[26]LIU Y H, ASLAM M, YAO L A, et al. Genomic analysis of SBP gene family in Saccharum spontaneum reveals their association with vegetative and reproductive development[J]. BMC Genomics,2021,22:767.
[27]CARDON G H, HOHMANN S, NETTESHEIM K, et al. Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3:a novel gene involved in the floral transition[J]. Plant Journal,1997,12(2):367-377.
[28]UNTE U S, SORENSEN A M, PESARESI P, et al. SPL8, an SBP-box gene that affects pollen sac development in Arabidopsis[J]. Plant Cell,2003,15(4):1009-1019.
[29]XING S, SALINAS M, GARCIA-MOLONA A, et al. SPL8 and miR156-targeted SPL genes redundantly regulate Arabidopsis gynoecium differential patterning[J]. Plant Journal,2013,75(4):566-577.
[30]MIURA K, IKEDA M, MATSUBARA A, et al. OsSPL14 promotes panicle branching and higher grain productivity in rice[J]. Nature Genetics,2010,42(6):545-549.
[31]WANG S, WU K, YUAN Q, et al. Control of grain size, shape and quality by OsSPL16 in rice[J]. Nature Genetics,2012,44(8):950-954.
[32]CHUCK G S, BROWN P J, MEELEY R, et al. Maize SBP-box transcription factors unbranched2 and unbranched3 affect yield traits by regulating the rate of lateral primordia initiation[J]. Proceedings of National Academy Sciences,2014,111(52):18775-18780.
[33]WAHEED S, ZENG L. The critical role of miRNAs in regulation of flowering time and flower development[J]. Genes,2020,11(3):319.
[34]LI C, LU S. Molecular characterization of the SPL gene family in Populus trichocarpa[J]. BMC Plant Biology,2014,14:131.
[35]YAMAGUCHI A, ABE M. Regulation of reproductive development by non-coding RNA in Arabidopsis:to flower or not to flower[J]. Journal Plant Research,2012,125(6):693-704.
[36]DAI Z, WANG J, YANG X, et al. Modulation of plant architecture by the miR156f-OsSPL7-OsGH3.8 pathway in rice[J]. Journal of Experimental Botany,2018,69(21):5117-5130.
[37]STIONE J M, LIANG X, NEKL E R, et al. Arabidopsis AtSPL14,a plant-specific SBP-domain transcription factor, participates in plant development and sensitivity to fumonisin B1[J]. Plant Journal,2005,1(5):744-754.
[38]CHAO L M, LIU Y Q, CHEN D Y, et al. Arabidopsis transcription factors SPL1 and SPL12 confer plant thermotolerance at reproductive stage[J]. Molecular Plant,2017,10(5):735-748.
(責任編輯:石春林)