摘要:核盤菌是一種全球性的破壞性植物病原真菌,其引起的菌核病造成了油菜等作物的嚴重減產(chǎn)。目前核盤菌病害防控主要依賴化學殺菌劑,過度施用不僅容易造成環(huán)境污染而且會增加致病真菌的抗藥性。然而,基于RNAi的宿主誘導基因沉默(HIGS)技術(shù)提供了一種新型有效且環(huán)境友好的菌核病防治方法。因此,筆者重點闡述了HIGS技術(shù)的基本原理、潛在靶標的篩選方法以及該技術(shù)在菌核病防治中的實際應(yīng)用研究進展,討論了應(yīng)用HIGS技術(shù)防治菌核病的優(yōu)缺點并對該技術(shù)的未來發(fā)展進行了展望。
關(guān)鍵詞:宿主誘導的基因沉默;菌核病;靶位點篩選;抗病性
中圖分類號:S432.1 文獻標識碼:A 文章編號:1006-060X(2024)11-0102-05
Research Progress on the Application of Host-Induced Gene Silencing in the Control of
Sclerotinia sclerotiorum
CAO Jian-cheng,NONG Jie-ying,CHEN Yi,XIA Shi-tou
(Hunan Provincial Key Laboratory of Phytohormones and Growth Development, Hunan Agricultural University,
Changsha" 410128, PRC)
Abstract:Sclerotinia sclerotiorum is a global destructive plant pathogenic fungus. Sclerotinia disease caused by Sclerotinia sclerotiorum has resulted in severe yield reduction in crops such as rapeseed. Currently, the control of S. sclerotiorum primarily relies on chemical fungicides. However, excessive usage of these fungicides could not only cause environmental pollution but also increase the fungicide resistance of pathogenic fungus. RNA interference (RNAi)-based host-induced gene silencing (HIGS) technology offers a novel, effective and environmentally friendly approach for controlling fungal diseases in crops. Hence, the basic principles of HIGS, methods for target site selection, as well as the research progress on its application in controlling plant sclerotinia diseases were reviewed in this paper. Additionally, the advantages and disadvantages as well as future development of this technology were also discussed.
Key words: host-induced gene silencing; Sclerotinia sclerotiorum; target site screening; disease resistance
核盤菌(Sclerotinia sclerotiorum)是一種全球性的破壞性植物病原真菌,可以感染700種以上植物,其中包括油菜、大豆和向日葵等重要油料作物以及多種蔬菜[1],造成嚴重的經(jīng)濟損失。核盤菌可引起軟腐病、濕腐病、猝倒病和核盤菌莖腐病等60種以上病害[2]。我國多種作物受到核盤菌引起的菌核病的危害,其中油菜受危害最為嚴重。
因抗性資源缺乏,采用經(jīng)典的育種方法難以獲得具有顯著抗核盤菌特性的種質(zhì)資源[3],因此,菌核病防治目前仍是一項艱巨的任務(wù),主要依賴于化學殺菌劑,這樣不僅容易造成環(huán)境污染而且會增加致病真菌的抗藥性。已有報道稱在田間發(fā)現(xiàn)了對多菌靈和菌核凈具有抗性的核盤菌分離株[4]。
宿主誘導基因沉默(Host-induced gene silencing,HIGS)技術(shù)是探索作物抗病分子遺傳學的有效工具,目前已成功應(yīng)用于大麥[5-6]、小麥[7]、大豆[8]、玉米[9]和香蕉[10]等多種作物,通過HIGS技術(shù)開發(fā)轉(zhuǎn)基因植物可能成為一種新型有效且環(huán)境友好的菌核病防治方法。因此,筆者重點闡述了植物病原體中宿主誘導基因沉默的一般機制,總結(jié)了當前HIGS防治菌核病的潛在靶標的篩選方法和實際應(yīng)用研究進展,最后討論了應(yīng)用HIGS技術(shù)防治菌核病的優(yōu)缺點,并對該技術(shù)的未來發(fā)展進行了展望。
1 HIGS的基本原理
RNA干擾(RNAi)是一種在真核生物中高度保守的轉(zhuǎn)錄后基因沉默機制,這一機制在植物、動物和真菌中普遍存在,并以其高效性和特異性在多個領(lǐng)域發(fā)揮著重要作用[11]。RNA干擾的主要特征之一是產(chǎn)生長度為21~30個核苷酸的小RNA,這些小RNA能夠通過序列特異性指導轉(zhuǎn)錄基因沉默(TGS)和轉(zhuǎn)錄后基因沉默(PTGS)。其中,PTGS涉及細胞質(zhì)中mRNA的識別和沉默,而TGS則涉及RNA介導的啟動子區(qū)DNA甲基化,從而抑制特定基因的表達[12]。RNAi能夠?qū)е驴赡娴耐椿蛞种芠13],最早是在矮牽牛中過表達查爾酮合成酶基因的研究中發(fā)現(xiàn)的。通常情況下,Dicer或Dicer-like(DCL)蛋白識別雙鏈RNA,并將其加工成更小的RNA。Dicer生成的siRNA被整合到RNA誘導沉默復合體(RISC)中,這種多組分蛋白質(zhì)復合體包含Argonaute蛋白(AGO),該蛋白具有sRNA結(jié)合結(jié)構(gòu)域和RNA內(nèi)切酶活性,由ATP依賴的siRNA雙鏈解旋觸發(fā)[14]。siRNA整合到RISC中后,過客鏈被降解,引導鏈與靶mRNA序列結(jié)合,進而刺激內(nèi)切酶切割或抑制翻譯[14]。
隨著RNAi機制研究的不斷深入,有學者發(fā)現(xiàn)外源雙鏈RNA(dsRNA)在大腸桿菌中的表達能夠?qū)е乱云錇槭车男沱愲[桿線蟲實現(xiàn)特定基因的沉默[15],這種現(xiàn)象被稱為跨界RNAi。隨后,越來越多的研究證實了RNAi信號在宿主和病原體之間的自然雙向傳遞。在植物中,dsRNA或RNAi構(gòu)建體的表達已被用來沉默入侵病毒基因[16-18],這一技術(shù)被稱為宿主誘導基因沉默(HIGS)。HIGS技術(shù)是利用RNAi機制,在寄主植物中表達與病原菌關(guān)鍵基因互補的小RNA分子(如siRNA),這些小RNA分子進入病原菌細胞后,特異性識別并降解病原體的靶基因mRNA,從而干擾靶基因的表達。目前已構(gòu)建了多種HIGS載體,用于將長dsRNA以及發(fā)夾序列通過反向重復基因或反向啟動子序列引入植物基因組。外源dsRNA或發(fā)夾序列被引入植物基因組后,被內(nèi)切酶Dicer酶切割成siRNA,這些siRNA被系統(tǒng)性運輸?shù)秸婢毎?,從而實現(xiàn)真菌基因的沉默(圖1)。
2 HIGS靶標的篩選
成功的HIGS策略的關(guān)鍵步驟是鑒定病原體中合適的靶基因[19]。為將HIGS技術(shù)有效應(yīng)用于作物保護,必須確定和評估合適的真菌基因靶標。傳統(tǒng)殺菌劑的生物合成途徑靶標可作為HIGS的重要靶標。廣泛使用的脫甲基抑制劑(DMI)類殺菌劑(如戊唑醇、三唑酮和咪鮮胺)通過抑制細胞色素P450依賴性羊毛甾醇14α-脫甲基酶(CYP51),從而靶向麥角固醇生物合成途徑。研究表明,經(jīng)過分子改造以表達dsRNA的轉(zhuǎn)基因擬南芥和大麥品系,可以直接沉默真菌的3種CYP51轉(zhuǎn)錄剪輯本,從而有效提高宿主對禾谷鐮刀菌的抗性[6]。苯并咪唑等傳統(tǒng)殺菌劑的另一個作用靶點是微管蛋白的形成過程,特別是β-TUB基因家族成員已被證明是通過RNAi控制各種真菌病原體的殺菌劑的有效靶點[20]。通過RNAi技術(shù)在宿主體內(nèi)表達與β2-微管蛋白基因互補的dsRNA,可有效提高大豆對炭疽病的抗性[21]。
推斷HIGS有效真菌靶標的另一種方法是選擇在附著胞、吸器或感染早期階段優(yōu)先表達的基因。這樣可以在至關(guān)重要的感染早期階段就抑制真菌生長,從而增強抗性。Yin等[22]研究表明,通過HIGS靶向優(yōu)先在吸器中表達的真菌基因而非組成性表達的基因時,能更有效地提高大麥對條銹病的抗性。Yin等[23]篩選了86個優(yōu)先在吸器中表達的潛在小麥柄銹病菌靶標,發(fā)現(xiàn)其中10個基因表現(xiàn)出對病害癥狀的抑制作用,并且這種抑制作用與靶標轉(zhuǎn)錄本豐度的降低相關(guān);進一步研究表明,蛋白激酶A(PsCPK1)亞基在感染的早期階段(接種后18 h)顯著上調(diào),病毒介導的PsCPK1瞬時沉默導致附著胞發(fā)育減少約50%[24]。
效應(yīng)因子在植物與病原菌的互作中發(fā)揮了至關(guān)重要的作用。因此,真菌分泌的效應(yīng)因子也可作為HIGS的重要靶標。在小麥中,白粉病抗性基因座Pm3受到SvrPm3 a1/f1(一種白粉病真菌的RNase樣效應(yīng)物)的抑制,從而削弱了Pm3抗性基因?qū)φ婢淖R別。在經(jīng)過分子改造以表達針對RNase樣效應(yīng)物SvrPm3 a1/f1的hpRNA編碼轉(zhuǎn)基因的小麥植株中,觀察到顯著的mRNA敲低現(xiàn)象,并且小麥植株對白粉病的抗性得到部分恢復[25]。在小麥中,PR2基因編碼β-1,3-葡聚糖酶(EC3.2.1.39)[26],該酶通過水解真菌細胞壁的β-葡聚糖來幫助防御真菌病原體。在小麥條銹病菌(Pst)中,真菌milRNA Pst-milR1被發(fā)現(xiàn)是介導真菌感染小麥的重要毒力因子,它能誘導PR2基因表達沉默[27]。此外,HIGS可以靶向真菌Pst-milR1的前體RNA序列,從而賦予植物對病原體的抗性。
RNA測序數(shù)據(jù)也可用于指導HIGS靶基因的選擇。已發(fā)表的轉(zhuǎn)錄組數(shù)據(jù)結(jié)合廣泛使用的dsRNA處理不僅可以加速有效靶標的篩選過程,還能為HIGS技術(shù)在農(nóng)業(yè)病害防治中的應(yīng)用提供更多的理論基礎(chǔ)和實踐指導。在篩選油菜菌核病防治靶點時,研究人員挑選了一系列與致病性相關(guān)的基因家族,例如活性氧反應(yīng)、轉(zhuǎn)錄和宿主定植以及其他病原菌類似的致病必需基因,對59個靶標基因進行篩選,最終發(fā)現(xiàn)其中20個基因能夠顯著減輕病害癥狀[28]。Donaldson等[29]通過噴霧法測試了一系列針對桃金娘銹病致病菌(Austropuccinia psidii)構(gòu)建的dsRNA轉(zhuǎn)化株對致病菌的抑制作用,發(fā)現(xiàn)細胞色素P450單加氧酶(CYP450)、28S核糖體RNA(28S rRNA)、β-微管蛋白(β-TUB)、翻譯延伸因子1-α(EF1-α)、絲裂原活化蛋白激酶(MAPK)、乙酰輔酶A轉(zhuǎn)移酶(ATC)、甘氨酸裂解系統(tǒng)-H(GCS-H)以及3個未表征但在吸器中上調(diào)的基因可作為該病原菌的防治靶標。在這10個靶標基因中,有8個在離體葉片侵染測定中顯著減緩了附著胞的發(fā)育,其中28S rRNA、β-TUB和EF1-α被確定為3個最有希望的靶標[29]。
3 HIGS技術(shù)在菌核病防治中的應(yīng)用
幾丁質(zhì)合酶基因(CHS)編碼的幾丁質(zhì)是大多數(shù)真菌細胞壁的主要成分,在生長和發(fā)育的各個階段組裝而成,為細胞提供結(jié)構(gòu)支持和保護。幾丁質(zhì)生物合成過程也是抗真菌藥物的作用靶點之一[30]。
Andrade等[31]首次證明HIGS介導的CHS能夠增強煙草T1代對菌核病的抗性。硫氧還蛋白-1(Thioredoxin-1,Trx1)是一種巰基-二硫鍵氧化還原酶,在細胞內(nèi)氧化還原狀態(tài)的調(diào)控及抵抗氧化應(yīng)激損傷過程中發(fā)揮重要作用?。SsTrx1參與核盤菌的致病性和氧化應(yīng)激耐受性等生理過程,構(gòu)建基于SsTrx1的HIGS載體,并將其轉(zhuǎn)移到擬南芥和本氏煙草中可顯著提高宿主對核盤菌的抗性[32]。Qin等[33]發(fā)現(xiàn)SsCak1缺失會導致菌絲體缺陷,從而影響菌核發(fā)育、附著胞形成和宿主滲透等過程,進而使核盤菌的毒力完全喪失,通過HIGS載體將SsCak1作為控制的潛在目標,可有效降低感染期間核盤菌中SsCak1的表達量,從而降低核盤菌的侵染能力。SsSte12是核盤菌中進化保守的絲裂原活化蛋白激酶(MAPK)級聯(lián)的一員,控制菌絲生長、菌核發(fā)育、復合附著胞形成、毒力和菌絲融合,使用宿主表達的雙鏈RNA靶向SsSte50可大大降低核盤菌對本氏煙葉和轉(zhuǎn)基因擬南芥植物的毒力[34]。核盤菌草酰乙酸乙酰水解酶(Ssoha1)是核盤菌重要致病因子草酸的調(diào)控基因,Rana等[35]通過構(gòu)建Ssoah1的HIGS載體并將其轉(zhuǎn)化到擬南芥中,轉(zhuǎn)基因擬南芥株系致病性檢測結(jié)果表明,與非轉(zhuǎn)基因擬南芥相比,3種T3轉(zhuǎn)化體對核盤菌的抗性顯著增強,轉(zhuǎn)基因株系的壞死區(qū)域中Ssoah1的表達同時減少,草酸積累隨之增加。以豆莢斑駁病毒為載體,通過宿主誘導的Ssoha1基因沉默可減輕大豆菌核病的發(fā)病程度[36]。在擬南芥表達靶向核菌ABHYDROLASE-3的發(fā)夾(hp)RNA,并通過宿主誘導的基因沉默可顯著減緩核盤菌感染[37];在油菜中組成性表達發(fā)夾(hp)RNA分子,以沉默核盤菌中的ABHYRDOLASE-3,通過葉片、莖和整株植物感染試驗,證明HIGS可保護油菜免受核盤菌感染[38]。此外,通過HIGS靶向沉默核盤菌的SsCnd1[39]、SsGAP1[40]、SsCCS[41]、SsPac1和SsSmk1[42]等一系列靶標基因,均證明HIGS技術(shù)在植物病害防治中極具潛力。
4 HIGS技術(shù)的優(yōu)勢和挑戰(zhàn)
近年來,通過HIGS技術(shù)已成功揭示了許多植物病原體的基因功能,并利用其開展作物病害防治工作,取得了一定進展。與其他植物病害控制方法相比,HIGS具有多種潛在優(yōu)勢。首先,HIGS提供了一種有效的作物保護策略,可替代昂貴且對環(huán)境不友好的化學藥劑。其次,與傳統(tǒng)的R基因相比,基于HIGS的抗性可更持久,因為傳統(tǒng)R基因賦予的抗性通常會因病原體Avr基因的補償突變迅速被克服。此外,HIGS可用于控制給定作物的多種疾病,并且可輕松設(shè)計新的HIGS靶標基因以同步共同進化的病原體。
盡管具有這些優(yōu)勢,但帶有HIGS轉(zhuǎn)基因的農(nóng)作物目前尚未允許進入市場,可能是因為HIGS技術(shù)需要轉(zhuǎn)基因作為輔助手段[43]?,F(xiàn)階段對轉(zhuǎn)基因作物的嚴格立法延緩了基于HIGS的作物改良手段的推廣應(yīng)用。但隨著公眾對轉(zhuǎn)基因技術(shù)的逐步認可,相信在不久的未來有望迎來新機遇。由于HIGS技術(shù)依賴于siRNA從宿主植物成功移動到病原體,因此某些病原體可能不適合使用此方法進行操作,脫靶效應(yīng)是HIGS技術(shù)需要面對的另一個挑戰(zhàn)。如果未正確選擇目標區(qū)域,由此產(chǎn)生的功能冗余和mRNA的不完全沉默可能會導致策略失敗。此外,病原體可能僅在植物的根和果實等特定部位引起疾病,而HIGS系統(tǒng)可能無法特異性地靶向這些組織。Cai等[44]研究表明,外泌體樣的細胞外囊泡參與生物體間的siRNA運輸。然而,目前有關(guān)這方面的知識仍然較為欠缺,尚不清楚所有植物-微生物相互作用是否都依賴于相同的機制。對跨界RNA沉默基本機制的進一步研究,也是促進HIGS技術(shù)在疾病控制領(lǐng)域簡化應(yīng)用的基礎(chǔ)。
通過人工合成SiRNA并噴施在植物表面,待植物吸收后也可以起到沉默病原體基因的效果,這一方案被稱為噴霧誘導基因沉默(Spray-induced gene silencing,SIGS)。與目前的疾病控制方法相比,SIGS可持續(xù)且環(huán)保,并且提供了一種適用于收獲前和收獲后作物保護的快速方法。作為一種非轉(zhuǎn)基因方法,SIGS可能更容易被消費者接受。此外,由于SIGS針對特定基因,會降低脫靶效應(yīng),并且可針對特定害蟲或病原體定制噴霧劑以增強特異性。然而,由于RNA在自然環(huán)境中較易降解,SIGS對植物的作用可能僅持續(xù)數(shù)天,并且保護性RNA劑量可能受植物攝取限制,因此可能需要定期多次施用sRNA,或者受dsRNA大小的限制,需要進行尺寸優(yōu)化。此外,還應(yīng)注意,真核微生物和細胞類型吸收dsRNA的效率可能因真菌或卵菌物種而異;某些遞送方法(例如高壓噴灑dsRNA)可能無法產(chǎn)生預期的基因沉默。為了克服這些問題,需開發(fā)新方法,例如使用細菌生產(chǎn)siRNA。
目前為止,化學手段仍然是防治菌核病最直接有效的方法。然而,公眾對化學藥品過度使用的擔憂日益加劇,以及殺菌劑抗性菌株的普遍出現(xiàn),導致迫切需要新的替代方法。HIGS技術(shù)不僅為基因功能研究提供了新方法,也為菌核病防治提供了一種新的環(huán)境友好型的工具。隨著越來越多植物和病原體基因組序列的公布,設(shè)計針對靶標的HIGS將變得更加容易。CRISPR/Cas9編輯技術(shù)的最新發(fā)展可與HIGS相結(jié)合,使作物具有更持久的抗病性[45]。因此,基于RNAi的HIGS將有望成為防治菌核病的一個重要工具,從而推動現(xiàn)代有機和可持續(xù)農(nóng)業(yè)的發(fā)展。
參考文獻:
[1] BOLAND G J,HALL R. Index of plant hosts of Sclerotinia sclerotiorum[J]. Canadian Journal of Plant Pathology,1994,16(2):93-108.
[2] PURDY L H. Sclerotinia sclerotiorum:history,diseases and symptomatology,host range,geographic distribution,and impact[J]. Phytopathology,1979,69(8):875-880.
[3] WANG Z,BAO L L,ZHAO F Y,et al. BnaMPK3 is a key regulator of defense responses to the devastating plant pathogen Sclerotinia sclerotiorum in oilseed rape[J]. Frontiers in Plant Science,2019,10:91.
[4] WANG Y,HOU Y P,CHEN C J,et al. Detection of resistance in Sclerotinia sclerotiorum to carbendazim and dimethachlon in Jiangsu Province of China[J]. Australasian Plant Pathology,2014,43(3):307-312.
[5] NOWARA D,GAY A,LACOMME C,et al. HIGS:host-induced gene silencing in the obligate biotrophic fungal pathogen Blumeria graminis[J]. The Plant Cell,2010,22(9):3130-3141.
[6] KOCH A,KUMAR N,WEBER L,et al. Host-induced gene silencing of cytochrome P450 lanosterol C14α-demethylase-encoding genes confers strong resistance to Fusarium species[J]. Proceedings of the National Academy of Sciences of the United States of America,2013,110(48):19324-19329.
[7] PANWAR V,MCCALLUM B,BAKKEREN G. Host-induced gene silencing of wheat leaf rust fungus Puccinia triticina pathogenicity genes mediated by the Barley stripe mosaic virus[J]. Plant Molecular Biology,2013,81(6):595-608.
[8] KONG L G,SHI X,CHEN D,et al. Host-induced silencing of a nematode chitin synthase gene enhances resistance of soybeans to both pathogenic Heterodera glycines and Fusarium oxysporum[J]. Plant Biotechnology Journal,2022,20(5):809-811.
[9] RARUANG Y,OMOLEHIN O,HU D F,et al. Host induced gene silencing targeting Aspergillus flavus aflM reduced aflatoxin contamination in transgenic maize under field conditions[J]. Frontiers in Microbiology,2020,11:754.
[10] GHAG S B,SHEKHAWAT U K S,GANAPATHI T R. Host-induced post-transcriptional hairpin RNA-mediated gene silencing of vital fungal genes confers efficient resistance against Fusarium wilt in banana[J]. Plant Biotechnology Journal,2014,12(5):541-553.
[11] BAULCOMBE D. RNA silencing in plants[J]. Nature,2004,431:356-363.
[12] DE FELIPPES F F. Gene regulation mediated by microRNA-triggered secondary small RNAs in plants[J]. Plants,2019,8(5)):112.
[13] NAPOLI C,LEMIEUX C,JORGENSEN R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in trans[J]. The Plant Cell,1990,2(4):279-289.
[14] WATERHOUSE P M,WANG M B,LOUGH T. Gene silencing as an adaptive defence against viruses[J]. Nature,2001,411:834-842.
[15] TIMMONS L,F(xiàn)IRE A. Specific interference by ingested dsRNA[J]. Nature,1998,395:854.
[16] GUO H S,GARCíA J A. Delayed resistance to plum pox potyvirus mediated by a mutated RNA replicase gene:involvement of a gene-silencing mechanism[J]. Molecular Plant-Microbe Interactions,1997,10(2):160-170.
[17] QU J,YE J,F(xiàn)ANG R X. Artificial microRNA-mediated virus resistance in plants[J]. Journal of Virology,2007,81(12):6690-6699.
[18] DUAN C G,WANG C H,F(xiàn)ANG R X,et al. Artificial microRNAs highly accessible to targets confer efficient virus resistance in plants[J]. Journal of Virology,2008,82(22):11084-11095.
[19] KOCH A,KOGEL K H. New wind in the sails: improving the agronomic value of crop plants through RNAi-mediated gene silencing[J]. Plant Biotechnology Journal,2014,12(7):821-831.
[20] ZHAO Z T,LIU H Q,LUO Y P,et al. Molecular evolution and functional divergence of tubulin superfamily in the fungal tree of life[J]. Scientific Reports,2014,4:6746.
[21] GU K X,SONG X S,XIAO X M,et al. A β2-tubulin dsRNA derived from Fusarium asiaticum confers plant resistance to multiple phytopathogens and reduces fungicide resistance[J]. Pesticide Biochemistry and Physiology,2019,153:36-46.
[22] YIN C T,JURGENSON J E,HULBERT S H. Development of a host-induced RNAi system in the wheat stripe rust fungus Puccinia striiformis f. sp. tritici[J]. Molecular Plant-Microbe Interactions:MPMI,2011,24(5):554-561.
[23] YIN C T,DOWNEY S I,KLAGES-MUNDT N L,et al. Identification of promising host-induced silencing targets among genes preferentially transcribed in haustoria of Puccinia[J]. BMC Genomics,2015,16(1):579.
[24] QI T,ZHU X G,TAN C L,et al. Host-induced gene silencing of an important pathogenicity factor PsCPK1 in Puccinia striiformis f.sp. tritici enhances resistance of wheat to stripe rust[J]. Plant Biotechnology Journal,2018,16(3):797-807.
[25] SCHAEFER L K,PARLANGE F,BUCHMANN G,et al. Cross-Kingdom RNAi of pathogen effectors leads to quantitative adult plant resistance in wheat[J]. Frontiers in Plant Science,2020,11:253.
[26] LI W L,F(xiàn)ARIS J D,MUTHUKRISHNAN S,et al. Isolation and characterization of novel cDNA clones of acidic chitinases and β-1,3-glucanases from wheat spikes infected by Fusarium graminearum[J]. Theoretical and Applied Genetics,2001,102(2):353-362.
[27] WANG B,SUN Y F,SONG N,et al. Puccinia striiformis f.sp. tritici microRNA-like RNA 1 (Pst-milR1),an important pathogenicity factor of Pst,impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene[J]. The New Phytologist,2017,215(1):338-350.
[28] MCLOUGHLIN A G,WYTINCK N,WALKER P L,et al. Identification and application of exogenous dsRNA confers plant protection against Sclerotinia sclerotiorum and Botrytis cinerea[J]. Scientific Reports,2018,8:7320.
[29] DONALDSON M E,SAVILLE B J. Ustilago maydis natural antisense transcript expression alters mRNA stability and pathogenesis[J]. Molecular Microbiology,2013,89(1):29-51.
[30] RUIZ-HERRERA J,SAN-BLAS G. Chitin synthesis as target for antifungal drugs[J]. Current Drug Targets Infectious Disorders,2003,3(1):77-91.
[31] ANDRADE C M,TINOCO M L P,RIETH A F,et al. Host-induced gene silencing in the necrotrophic fungal pathogen Sclerotinia sclerotiorum[J]. Plant Pathology,2016,65(4):626-632.
[32] RANA K,DING Y J,BANGA S S,et al. Sclerotinia sclerotiorum Thioredoxin1(SsTrx1)is required for pathogenicity and oxidative stress tolerance[J]. Molecular Plant Pathology,2021,22(11):1413-1426.
[33] QIN L,NONG J Y,CUI K,et al. SsCak1 regulates growth and pathogenicity in Sclerotinia sclerotiorum[J]. International Journal of Molecular Sciences,2023,24(16):12610.
[34] TIAN L,LI J,XU Y,et al. A MAP kinase cascade broadly regulates the lifestyle of Sclerotinia sclerotiorum and can be targeted by HIGS for disease control[J]. The Plant Journal:for Cell and Molecular Biology,2024,118(2):324-344.
[35] RANA K,YUAN J H,LIAO H M,et al. Host-induced gene silencing reveals the role of Sclerotinia sclerotiorum oxaloacetate acetylhydrolase gene in fungal oxalic acid accumulation and virulence[J]. Microbiological Research,2022,258:126981.
[36] MCCAGHEY M,SHAO D D,KURCEZEWSKI J,et al. Host-induced gene silencing of a Sclerotinia sclerotiorum oxaloacetate acetylhydrolase using bean pod mottle virus as a vehicle reduces disease on soybean[J]. Frontiers in Plant Science,2021,12:677631.
[37] WALKER P L,ZIEGLER D J,GIESBRECHT S,et al. Control of white mold(Sclerotinia sclerotiorum)through plant-mediated RNA interference[J]. Scientific Reports,2023,13:6477.
[38] WYTINCK N,ZIEGLER D J,WALKER P L,et al. Host induced gene silencing of the Sclerotinia sclerotiorum ABHYDROLASE-3 gene reduces disease severity in Brassica napus[J]. PLoS One,2022,17(8): e0261102.
[39] DING Y J,CHEN Y G,YAN B Q,et al. Host-induced gene silencing of a multifunction gene Sscnd1 enhances plant resistance against Sclerotinia sclerotiorum[J]. Frontiers in Microbiology,2021,12:693334.
[40] XU Y,TAN J Y,LU J X,et al. RAS signalling genes can be used as host-induced gene silencing targets to control fungal diseases caused by Sclerotinia sclerotiorum and Botrytis cinerea[J]. Plant Biotechnology Journal,2024,22(1):262-277.
[41] 柴亞茹,丁一娟,周思鈺,等. HIGS-SsCCS轉(zhuǎn)基因擬南芥的菌核病抗性鑒定[J]. 中國農(nóng)業(yè)科學,2020,53(4):761-770.
[42] PANT P,KAUR J. Control of Sclerotinia sclerotiorum via an RNA interference(RNAi)-mediated targeting of SsPac1 and SsSmk1[J]. Planta,2024,259(6):153.
[43] SANTALA J,VALKONEN J P T. Sensitivity of small RNA-based detection of plant viruses[J]. Frontiers in Microbiology,2018,9:939.
[44] CAI Q,QIAO L L,WANG M,et al. Plants send small RNAs in extracellular vesicles to fungal pathogen to silence virulence genes[J]. Science,2018,360(6393):1126-1129.
[45] IQBAL A,KHAN R S,ALI KHAN M,et al. Genetic engineering approaches for enhanced insect pest resistance in sugarcane[J]. Molecular Biotechnology,2021,63(7):557-568.
(責任編輯:王婷)