亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        白細胞介素-8與類風濕關節(jié)炎關聯性研究進展

        2024-12-31 00:00:00王振東楊娟娟李浩林金芳梅程偉剛王海東
        中國醫(yī)學創(chuàng)新 2024年16期

        【摘要】 類風濕關節(jié)炎(rheumatoid arthritis,RA)是一種多關節(jié)慢性炎癥性自身免疫性疾病,其發(fā)病機制主要包括炎癥反應、軟骨破壞及骨侵蝕和血管生成,并與炎癥因子密切相關。其中白細胞介素-8(IL-8)為炎癥因子中重要一員,故本文從炎癥、軟骨破壞及骨侵蝕和血管生成三方面對IL-8在RA發(fā)生發(fā)展中的作用機制展開綜述。本文通過闡述IL-8與RA的相關性,明確IL-8在RA發(fā)病機制中的作用,以期為今后深入研究RA提供新的參考依據。

        【關鍵詞】 類風濕關節(jié)炎 白細胞介素-8 趨化因子 炎癥 骨破壞 血管翳

        Research Progress on the Relationship between Interleukin-8 and Rheumatoid Arthritis/WANG Zhendong, YANG Juanjuan, LI Haolin, JIN Fangmei, CHENG Weigang, WANG Haidong. //Medical Innovation of China, 2024, 21(16): -188

        [Abstract] Rheumatoid arthritis (RA) is a polyarticular chronic inflammatory autoimmune disease, and its pathogenesis mainly includes inflammatory response, cartilage destruction and bone erosion and angiogenesis, which are closely related to inflammatory factors. Studies have shown that interleukin-8 (IL-8) is an important member of inflammatory factors, so this paper reviews the mechanism of IL-8 in the occurrence and development of RA from the three aspects of inflammation, cartilage destruction and bone erosion and angiogenesis. The paper clarifies the role of interleukin-8 in the pathogenesis of RA by describing the correlation between interleukin-8 and RA, with the aim of providing a new reference basis for future in-depth research on RA.

        [Key words] Rheumatoid arthritis Interleukin-8 Chemokine Inflammation Bone destruction Pannus

        First-author's address: Gansu University of Chinese Medicine, Lanzhou 730000, China

        doi:10.3969/j.issn.1674-4985.2024.16.041

        類風濕關節(jié)炎(rheumatoid arthritis,RA)是一種多關節(jié)的慢性、炎癥性自身免疫性疾病,全球發(fā)生率為1%,中國大陸地區(qū)的發(fā)生率為0.28%,女性多于男性[1]。RA的病理特點為中性粒細胞浸潤、關節(jié)破壞和功能障礙。目前認為其發(fā)病機制是由自身免疫組織破壞所表現出的一系列關節(jié)炎癥性病理改變[2],由于患者存在的特異性自身抗原不能被完全清除,導致患者關節(jié)一直處于慢性炎癥狀態(tài),繼而引發(fā)滑膜腫脹,逐漸出現疼痛和關節(jié)腫脹等癥狀[3]。此外慢性炎癥反應還會引起被稱為“血管翳”的滑膜血管擴張,其可侵入軟骨-骨連結處的關節(jié)周圍骨,進而導致骨侵蝕和軟骨破壞[2]。因此,炎癥的發(fā)生、骨侵蝕及軟骨破壞和血管生成是RA的重要病理表現。

        白細胞介素-8(interleukin-8,IL-8)又稱為趨化因子CXCL8,屬于C-X-C趨化因子大家族。最初被稱為中性粒細胞激活因子(neutrophil-activating factor,NAF),是被重點關注的趨化因子之一[4-5]。IL-8和相關細胞因子在炎癥刺激下被吞噬細胞和其他各種組織細胞釋放,為中性粒細胞主要組織衍生的趨化劑,對炎癥和免疫有重要的調節(jié)作用[6-7]。本研究討論了IL-8的結構和功能,并總結了IL-8在RA炎癥骨破壞等過程中所發(fā)揮的重要作用。

        1 IL-8的結構和功能

        1.1 IL-8的結構和表達

        IL-8的蛋白以99個氨基酸殘基組成的前體形式存在,然后在20個殘基信號序列被裂解后從細胞中分泌出來。其主要形式為77個氨基酸和72個氨基酸兩種形式[8]。在基因層面,人類的IL-8基因位于4q12-q21區(qū)域,全長為5 191 bp,由4個外顯子和3個內含子組成,具有單一的“TATA”和“CAT”樣結構,明確地對應為一個二聚體分子[9]。IL-8有兩種受體,分別為CXCR1和CXCR2,在序列上具有76%相似性[4]。其中CXCR1是一種具有代表性的趨化因子受體,可控制中性粒細胞向感染組織的遷移[10],CXCR2主要表達于中性粒細胞,參與中性粒細胞趨化[11]。目前發(fā)現這兩種受體對IL-8具有很高的親和力,CXCL8/CXCR1主要以藥物受體和信號轉導為主,而CXCL8/CXCR2以促進炎癥和血管生成為主[12]。

        IL-8最顯著的特征之一是其表達水平的變化。正常情況下,非誘導細胞中IL-8基因的啟動子受到以下三種抑制:(1)核因子κB(nuclear factor kappa-B,NF-κB)-抑制因子(NF-κB-repressing factor,NRF)與負調控元件(negative regulatory element,NRE)結合,該負調控元件與NF-κB結合位點重疊;(2)八聚體-1(octamer-1,OCT-1)與IL-8基因啟動子的互補鏈在CCAAT-增強子結合蛋白(CCAAT/enhancer binding protein,C/EBP)位點的相反方向結合;(3)組蛋白脫乙酰酶1(histone deacetylase 1,HDAC-1)對組蛋白的脫乙酰化[13]。在適當的刺激下,IL-8可在單核細胞、巨噬細胞和上皮細胞等多種細胞中分泌,并被多種細胞因子、低氧狀態(tài)、活性氧(reactive oxygen species,ROS)、細菌顆粒和其他環(huán)境應激誘導[14]。目前IL-8表達增強的機制有以下三種:(1)IL-8基因啟動子的去抑制作用;(2)NF-κB和c-Jun N端激酶(c-Jun N-terminal kinase,Jnk)途徑對IL-8基因表達的反式激活;(3)p38絲裂原活化蛋白激酶(mitogen-activated protein kinase,MAPK)途徑對IL-8基因的穩(wěn)定作用[15]。

        1.2 IL-8的生物學功能

        IL-8是最有效的趨化劑之一,在炎癥條件下可由單核細胞、淋巴細胞、粒細胞、成纖維細胞和刺激后的軟骨細胞等多種細胞產生。甚至血小板也可儲存IL-8,以在炎癥發(fā)生時迅速釋放[9]。目前研究發(fā)現,IL-8可特異性激活中性粒細胞,促進相關蛋白酶的釋放[16];相比中性粒細胞,IL-8對嗜堿性粒細胞的趨化作用有限,但仍可使嗜堿性粒細胞釋放全身過敏反應介質[17]。IL-8還能促進組織修復、器官移植后的血流恢復和傷口愈合[18],并通過刺激表達CXCR2的新生血管內皮細胞的遷移和增殖來促進血管生成,最后再引導血管生長以誘導血管生成[9]。而在免疫應答中,IL-8還可增強CD4+和CD8+T淋巴細胞的體外趨化性[19]。

        2 IL-8在RA發(fā)病機制中的作用

        早期研究人員就已發(fā)現,在體外人滑膜細胞被白細胞介素-1(interleukin-1,IL-1)刺激后會釋放一種當時未知的低分子量因子,其可刺激中性粒細胞運動[20]。在之后的研究中,這種低分子量因子被證實為IL-8[21]。Brennan等[22]于1990年首次證明了RA患者滑膜液中IL-8生物活性的存在及新鮮分離的滑膜細胞中IL-8 mRNA的表達,這表明IL-8與RA的發(fā)病有密切關聯。另有研究表明,RA患者滑液中IL-8水平與疾病的發(fā)展呈強正相關[23];RA患者受累關節(jié)內的IL-8濃度較未受累關節(jié)增高[24];IL-8為RA關節(jié)血管生成的一種強有力的中介[25]??偠灾?,已有研究證明,IL-8在RA的發(fā)病機制中起著較為重要的作用,其具體作用如下。

        2.1 促進炎癥反應

        RA是一種復雜的慢性、炎癥性自身免疫性疾病,滑膜組織的局部免疫激活會導致局部軟骨和骨骼發(fā)炎、增生和侵襲。IL-8作為誘發(fā)關節(jié)炎癥的促炎細胞因子在RA炎癥發(fā)展中起著重要作用。研究表明,重組草魚IL-8(recombinant grass carp IL-8,rgcIL-8)通過MAPK/NF-κB信號通路調節(jié)促炎細胞因子的轉錄,并通過CXCR1增加NF-κB的活性和IL-1β的轉錄,表明rgcIL-8可介導炎癥反應[26]。當抑制MAPK通路中TNF-α誘導的細胞外調節(jié)蛋白激酶(extracellular signal-regulated protein kinase,ERK)1/2和JNK磷酸化、腫瘤壞死因子-α(TNF-α)誘導的蛋白激酶B(protein kinase B,AKT)/哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)通路中部分蛋白的活化,則可降低IL-8 mRNA的自發(fā)表達和轉錄從而緩解膠原蛋白誘發(fā)關節(jié)炎(CIA)小鼠的滑膜炎和骨破壞[27]。而MAPK、Akt和NF-κB通路均被抑制后可發(fā)現,白介素6(interleukin-6,IL-6)和IL-8的基因和蛋白表達均降低[28]。Liu等[29]在大鼠實驗中還發(fā)現,微核糖核酸-21(microRNAs-21,MiR-21)的過量表達可以通過抑制IL-8的表達可下調Wnt信號,進而緩解RA的癥狀。還有研究表明,db/db小鼠經IL-8的拮抗劑CXCL8(3-72)K11R/G31P(G31P)治療后,db/db小鼠的免疫細胞浸潤和細胞因子釋放減弱,促炎M1和抗炎M2巨噬細胞的比例提高[30],并可通過AKT1-NF-kβ和ERK1/2-AP-1途徑調節(jié)炎癥[31]。當激活PI3K/Akt/mTOR/IL-8信號通路可加強RA中性粒細胞浸潤的作用[32],而在降低IL-8 mRNA水平后可抑制中性粒細胞的遷移,促進中性粒細胞凋亡,減少ROS產生和中性粒細胞胞外陷阱(neutrophil extracellular traps,NETs)形成,可有效地抑制了CIA小鼠的關節(jié)炎[33]。綜上所述,IL-8可通過干預多通路、加強中性粒細胞遷移和浸潤等多種方式干預RA炎癥的進程。

        2.2 促進軟骨破壞和骨侵蝕

        破骨細胞(osteoclasts,OC)為目前唯一已確定的骨吸收細胞,在關節(jié)破壞中起著至關重要的作用。Toll樣受體(Toll-like receptors,TLR)對OC生成和成熟OC的存活具有重要的促進作用[34],而IL-8可誘導RA巨噬細胞中的TLR5的表達促進成熟OC的分化[35]。此外IL-8還可經核受體κB激活受體配體(receptor activator of nuclear factor-κB ligand,RANKL)非依賴性機制直接誘導OC分化[36],當RANKL被抑制則OC生成促進因子會從RANKL轉變?yōu)镮L-8[37],而IL-8又可以上調成骨細胞中的RANKL表達,通過與細胞上的CXCR1結合直接誘導破骨形成[38]。此外抗瓜氨酸蛋白抗體與OC結合、釉母細胞瘤細胞與骨髓基質細胞(bone marrow stromal cell,BMSC)之間的相互作用和IgA自身抗體誘導免疫細胞和OC均可產生IL-8[39-41],并增強OC的成熟和活化。由此可知,IL-8可通過多種途徑促進OC的生成、增強OC的成熟和活化,從而加速RA疾病的進展。

        2.3 促進血管生成

        隨著RA的進展,白細胞會過度遷移到發(fā)炎的關節(jié)中,從而需要形成新的血管來滿足肥大的關節(jié)對營養(yǎng)和氧氣的需求,進而使促血管生成因子對內源性血管抑制介質產生優(yōu)勢,觸發(fā)血管生成新的毛細血管。這種在慢性炎癥浸潤中形成無數新血管的過程被稱為血管生成[42],而這種新滑膜血管的生長、發(fā)育在RA的發(fā)病機制中占據重要地位。目前IL-8已被定義為促血管生成趨化因子[43]。研究證明,CXCR2可識別含有ELR基因列序和具有促炎癥發(fā)生、血管生成的ELR+CXC類趨化因子,在與IL-8結合后,可增強對血管內皮細胞的趨化性和促有絲分裂性[42]。IL-8還可直接與內皮細胞上的CXCR1和CXCR2結合觸發(fā)RA血管生成,但當IL-8被中和后,血管生成活性則明顯降低[44]。還有研究表明,IL-8可將促血管生成的造血細胞和免疫細胞及內皮祖細胞募集到新生血管壁龕來介導血管生成[45],再通過誘導血管內皮生長因子(vascular endothelial growth factor,VEGF)表達上調增強正反饋效應,進一步刺激IL-8的產生,加強血管生成[46]。Koch等[47]的研究也證明,與正?;そM織勻漿相比,RA勻漿可產生更多的IL-8,并在體內可對促進大鼠角膜產生血管生成酶,在體外則對內皮細胞產生顯著的趨化活性,進而加速新血管生成。綜上所述,IL-8可通過與自身受體的多種結合方式,對多種細胞產生影響,從而加速RA新血管的生成。

        3 小結

        RA發(fā)病機制一直是研究的重點和難點,IL-8作為促炎因子參與RA炎癥發(fā)生,作為促血管趨化因子參與血管生成并以直接和間接的方式生成OC,加速RA的發(fā)展,在RA發(fā)病過程中扮演著重要的角色,但是IL-8參與炎癥,血管翳形成的具體機制仍然尚不明確,有待于進一步深入研究。目前研究已經證實,小核RNA(small nuclearRNA,snRNA),微RNA(microRNAs,miRNA)[48],長鏈非編碼RNA(long noncoding RNA,lncRNA)[49],線粒體自噬等在RA的炎癥發(fā)生、骨破壞和血管生成發(fā)揮著重要作用[50],但是IL-8是否通過snRNA、miRNA、lncRNA及線粒體自噬等參與RA炎癥,骨破壞,血管生成等病理過程,目前尚未明確。因此,今后可以IL-8通過snRNA、miRNA、lncRNA及線粒體自噬等參與RA炎癥、骨破壞和血管生成等病理過程為切入點,深入研究IL-8在RA發(fā)生、發(fā)展的作用,明確IL-8在RA的發(fā)病機制中的重要地位,為深入探討RA的發(fā)病機制提供參考。

        參考文獻

        [1] RADU A F,BUNGAU S G.Management of rheumatoid arthritis: an overview[J].Cells,2021,10(11):2857.

        [2] ALETAHA D,SMOLEN J S.Diagnosis and management of rheumatoid arthritis: a review[J].JAMA,2018,320(13):1360-1372.

        [3] SMOLEN J S,BURMESTER G R,COMBE B,et al.Head-to-head comparison of certolizumab pegol versus adalimumab in rheumatoid arthritis: 2-year efficacy and safety results from the randomised EXXELERATE study[J].Lancet,2016,388(10061):2763-2774.

        [4] MISHRA A,SUMAN K H,NAIR N,et al.An updated review on the role of the CXCL8-CXCR1/2 axis in the progression and metastasis of breast cancer[J].Mol Biol Rep,2021,48(9):6551-6561.

        [5] CHANG T T,CHEN J W.The role of chemokines and chemokine receptors in diabetic nephropathy[J].Int J Mol Sci,2020,21(9):3172.

        [6] POHL K,GRIMM X A,CACERES S M,et al.Mycobacterium abscessus clearance by neutrophils is independent of autophagy[J/OL].

        Infect Immun,2020,88(8):e00024-20.https://pubmed.ncbi.nlm.nih.gov/32423916/.

        [7] GURA T.Chemokines take center stage in inflammatory ills[J].Science,1996,272(5264):954-956.

        [8] KANY S,VOLLRATH J T,RELJA B.Cytokines in inflammatory disease[J].Int J Mol Sci,2019,20(23):6008.

        [9] MATSUSHIMA K,YANG D,OPPENHEIM J J.Interleukin-8: an evolving chemokine[J].Cytokine,2022,153:155828.

        [10] KHARCHE S,JOSHI M,CHATTOPADHYAY A,et al.Conformational plasticity and dynamic interactions of the N-terminal domain of the chemokine receptor CXCR1[J/OL].PLoS Comput Biol,2021,17(5):e1008593.https://pubmed.ncbi.nlm.nih.gov/34014914/.

        [11] SHI X,WAN Y,WANG N,et al.Selection of a picomolar antibody that targets CXCR2-mediated neutrophil activation and alleviates EAE symptoms[J].Nat Commun, 2021,12(1):2547.

        [12] HE J,JIANG Z,LEI J,et al.Prognostic value and therapeutic perspectives of cxcr members in the glioma microenvironment[J].Front Genet,2022,13:787141.

        [13] XIONG X,LIAO X,QIU S,et al.CXCL8 in tumor biology and its implications for clinical translation[J].Front Mol Biosci,2022,9:723846.

        [14] RIZZO M,VARNIER L,PEZZICOLI G,et al.IL-8 and its role as a potential biomarker of resistance to anti-angiogenic agents and immune checkpoint inhibitors in metastatic renal cell carcinoma[J].Front Oncol,2022,12:990568.

        [15] VACCHINI A,MORTIER A,PROOST P,et al.Differential effects of posttranslational modifications of CXCL8/interleukin-8 on CXCR1 and CXCR2 internalization and signaling properties[J].Int J Mol Sci,2018,19(12):3768.

        [16] AN Z,LI J,YU J,et al.Neutrophil extracellular traps induced by IL-8 aggravate atherosclerosis via activation NF-κB signaling in macrophages[J].Cell Cycle,2019,18(21):2928-2938.

        [17] KOPER-LENKIEWICZ O M,SUTKOWSKA K,WAWRUSIEWICZ-KURYLONEK N,et al.Proinflammatory cytokines (IL-1, -6, -8, -15, -17, -18, -23, TNF-alpha) single nucleotide polymorphisms in rheumatoid arthritis-a literature review[J].Int J Mol Sci,2022,23(4):2106.

        [18] CAMBIER S,GOUWY M,PROOST P.The chemokines CXCL8 and CXCL12: molecular and functional properties, role in disease and efforts towards pharmacological intervention[J].Cell Mol Immunol,2023,20(3):217-251.

        [19] KIMATA H,YOSHIDA A,ISHIOKA C,et al.Interleukin 8 (IL-8) selectively inhibits immunoglobulin E production induced by IL-4 in human B cells[J].J Exp Med,1992,176(4):1227-1231.

        [20] WATSON M L,LEWIS G P,WESTWICK J.PMN stimulation by factors from IL-1-treated human synovial cell cultures[J].Agents Actions,1989,27(3-4):448-450.

        [21] DE GENDT C M,DE CLERCK L S,BRIDTS C H,et al.

        Relationship between interleukin-8 and neutrophil adhesion molecules in rheumatoid arthritis[J].Rheumatol Int,1996,16(4):169-173.

        [22] BRENNAN F M,ZACHARIAE C O,CHANTRY D,et al.

        Detection of interleukin 8 biological activity in synovial fluids from patients with rheumatoid arthritis and production of interleukin 8 mRNA by isolated synovial cells[J].Eur J Immunol,1990,20(9):2141-2144.

        [23] GORLINO C V,DAVE M N,BLAS R,et al.Association between levels of synovial anti-citrullinated peptide antibodies and neutrophil response in patients with rheumatoid arthritis[J].Eur J Immunol,2018,48(9):1563-1572.

        [24] ENDO H,AKAHOSHI T,TAKAGISHI K,et al.Elevation of interleukin-8 (IL-8) levels in joint fluids of patients with rheumatoid arthritis and the induction by IL-8 of leukocyte infiltration and synovitis in rabbit joints[J].Lymphokine Cytokine Res,1991,10(4):245-252.

        [25] PAUSCH T M,AUE E,WIRSIK N M,et al.Metastasis-associated fibroblasts promote angiogenesis in metastasized pancreatic cancer via the CXCL8 and the CCL2 axes[J].Sci Rep,2020,10(1):5420.

        [26] ZHAO M,LIU Y,GAO Y,et al.Insights into the functional role of grass carp IL-8 in head kidney leukocytes: pro-inflammatory effects and signalling mechanisms[J].J Fish Biol,2022,100(1):192-202.

        [27] CHEN X,LIN H,CHEN J,et al.Paclitaxel inhibits synoviocyte migration and inflammatory mediator production in rheumatoid arthritis[J].Front Pharmacol,2021,12:714566.

        [28] YU H H,LI M,LI Y B,et al.Benzoylaconitine inhibits production of IL-6 and IL-8 via MAPK, Akt, NF-κB signaling in IL-1β-induced human synovial cells[J].Biol Pharm Bull,2020,43(2):334-339.

        [29] LIU X G,ZHANG Y,JU W F,et al.MiR-21 relieves rheumatoid arthritis in rats via targeting Wnt signaling pathway[J].Eur Rev Med Pharmacol Sci,2019,23(3):96-103.

        [30] CUI S,QIAO L,YU S,et al.The antagonist of CXCR1 and CXCR2 protects db/db mice from metabolic diseases through modulating inflammation[J/OL].Am J Physiol Endocrinol Metab,2019,317(6):E1205-E1217.https://pubmed.ncbi.nlm.nih.gov/31573846/.

        [31] WALANA W,WANG J J,YABASIN I B,et al.IL-8 analogue CXCL8 (3-72) K11R/G31P, modulates LPS-induced inflammation via AKT1-NF-kbeta and ERK1/2-AP-1 pathways in THP-1 monocytes[J].Hum Immunol,2018,79(11):809-816.

        [32] LIN J,HE Y,WANG B,et al.Blocking of YY1 reduce neutrophil infiltration by inhibiting IL-8 production via the PI3K-Akt-mTOR signaling pathway in rheumatoid arthritis[J].Clin Exp Immunol,2019,195(2):226-236.

        [33] JIE S S,SUN H J,LIU J X,et al.Simiao Yong'an decoction ameliorates murine collagen-induced arthritis by modulating neutrophil activities: an in vitro and in vivo study[J].

        J Ethnopharmacol,2023,305:116119.

        [34] SOUZA P,LERNER U H.Finding a toll on the route: the fate of osteoclast progenitors after toll-like receptor activation[J].Front Immunol,2019,10:1663.

        [35] PANAGOPOULOS P K,LAMBROU G I.Bone erosions in rheumatoid arthritis: recent developments in pathogenesis and therapeutic implications[J].J Musculoskelet Neuronal Interact,2018,18(3):304-319.

        [36] DI POMPO G,ERRANI C,GILLIES R,et al.Acid-induced inflammatory cytokines in osteoblasts: a guided path to osteolysis in bone metastasis[J].Front Cell Dev Biol,2021,9:678532.

        [37] MORITA T,SHIMA Y,FUJIMOTO K,et al.Anti-receptor activator of nuclear factor κB ligand antibody treatment increases osteoclastogenesis-promoting IL-8 in patients with rheumatoid arthritis[J].Int Immunol,2019,31(5):277-285.

        [38] BENDRE M S,MONTAGUE D C,PEERY T,et al.

        Interleukin-8 stimulation of osteoclastogenesis and bone resorption is a mechanism for the increased osteolysis of metastatic bone disease[J].Bone,2003,33(1):28-37.

        [39] KITAURA H,MARAHLEH A,OHORI F,et al.Osteocyte-related cytokines regulate osteoclast formation and bone resorption[J].Int J Mol Sci,2020,21(14):5169.

        [40] LIU X,CHEN Z,LAN T,et al.Upregulation of interleukin-8 and activin A induces osteoclastogenesis in ameloblastoma[J]. Int J Mol Med, 2019,43(6):2329-2340.

        [41] BREEDVELD A C,Van GOOL M,Van DELFT M,et al.IgA immune complexes induce osteoclast-mediated bone resorption[J].Front Immunol,2021,12:651049.

        [42] SZEKANECZ Z,KOCH A E.Vascular involvement in rheumatic diseases: 'vascular rheumatology'[J].Arthritis Res Ther, 2008,10(5):224.

        [43] CHENG Y, MA X L,WEI Y Q,et al.Potential roles and targeted therapy of the CXCLs/CXCR2 axis in cancer and inflammatory diseases[J].Biochim Biophys Acta Rev Cancer,2019,1871(2):289-312.

        [44] KOCH A E,POLVERINI P J,KUNKEL S L,et al.Interleukin-8 as a macrophage-derived mediator of angiogenesis[J].Science,1992,258(5089):1798-1801.

        [45] GROBLEWSKA M,MROCZKO B.Pro- and antiangiogenic factors in gliomas: implications for novel therapeutic possibilities[J].Int J Mol Sci,2021,22(11):6126.

        [46] BULE P,AGUIAR S I,AIRES-DA-SILVA F,et al.Chemokine-directed tumor microenvironment modulation in cancer immunotherapy[J].Int J Mol Sci,2021,22(18):9804.

        [47] KOCH A E,VOLIN M V,WOODS J M,et al.Regulation of angiogenesis by the C-X-C chemokines interleukin-8 and epithelial neutrophil activating peptide 78 in the rheumatoid joint[J].Arthritis Rheum,2001,44(1):31-40.

        [48] ORMSETH M J,SOLUS J F,SHENG Q,et al.The endogenous plasma small rnaome of rheumatoid arthritis[J].ACR Open Rheumatol,2020,2(2):97-105.

        [49] ASSADIASL S,RAJABINEJAD M,SOLEIMANIFAR N,et al.MicroRNAs-mediated regulation pathways in rheumatic diseases[J].Inflammopharmacology,2023,31(1):129-144.

        [50] WANG S,DENG Z,MA Y,et al.The role of autophagy and mitophagy in bone metabolic disorders[J].Int J Biol Sci,2020,16(14):2675-2691.

        (收稿日期:2023-10-18) (本文編輯:白雅茹)

        *基金項目:國自然科學基金項目(82260880);甘肅省名中醫(yī)傳承工作室建設項目(國中醫(yī)藥規(guī)財函〔2021〕242號)

        ①甘肅中醫(yī)藥大學 甘肅 蘭州 730000

        ②甘肅省中醫(yī)院風濕骨病中心 甘肅 蘭州 730050

        通信作者:王海東

        手机在线看永久av片免费| 最新69国产精品视频| 日本精品一区二区三区福利视频| 亚洲综合在线一区二区三区| 免费又黄又爽又猛的毛片| www.亚洲天堂.com| 国产精品一区二区黄色片| 久久精品国产亚洲av网| 中字幕人妻一区二区三区| 五月天综合网站| 亚洲一区二区女优av| 青青草在线这里只有精品| 国产精品久久久久久久妇| 高清国产日韩欧美| 亚洲一区二区三区美女av| 蜜桃成熟时在线观看免费视频 | 中国人妻被两个老外三p| 亚洲VA中文字幕无码毛片春药| 视频在线播放观看免费| 亚洲一区二区女搞男| 狠狠色综合网站久久久久久久| 成人国产在线观看高清不卡| av在线不卡免费中文网| 国产精品无码一区二区三区| 又爽又黄禁片视频1000免费| 秀人网嫩模李梓熙大尺度| 亚洲av综合av一区| 伊人久久久精品区aaa片| 在线精品日韩一区二区三区| 后入少妇免费在线观看| 日韩精品无码一区二区三区四区 | 91久久国产综合精品| 国产午夜福利小视频在线观看| 中文字幕网伦射乱中文| 亚洲欧美国产日韩制服bt| 久久这里只有精品黄色| 午夜视频在线观看视频在线播放 | 国产性猛交╳xxx乱大交| 亚洲av综合日韩精品久久久| 青青草免费在线爽视频| 久久久久久亚洲精品中文字幕|