[摘要]"近年來(lái)兒童急性髓系白血病(acute"myeloid"leukemia,AML)的發(fā)病率逐漸升高,盡管在診斷和治療方面已取得實(shí)質(zhì)性的進(jìn)展,但AML的治療效果仍不及急性淋巴細(xì)胞白血病。隨著分子生物學(xué)技術(shù)的不斷發(fā)展,發(fā)現(xiàn)兒童AML不同基因突變對(duì)疾病的發(fā)生發(fā)展起重要作用,影響患兒預(yù)后,特別是t(8;21)/AML1-ETO陽(yáng)性的AML患兒。本文旨在探討t(8;21)/AML1-ETO陽(yáng)性AML患兒相關(guān)基因突變對(duì)預(yù)后的影響,以期為臨床治療及預(yù)后預(yù)測(cè)提供依據(jù)。
[關(guān)鍵詞]"急性髓系白血?。籺(8;21)/AML1-ETO;基因突變;預(yù)后
[中圖分類號(hào)]"R725.5""""""[文獻(xiàn)標(biāo)識(shí)碼]"A""""""[DOI]"10.3969/j.issn.1673-9701.2024.22.029
急性髓系白血?。╝cute"myeloid"leukemia,AML)是一種以未成熟的造血祖細(xì)胞成熟障礙和異常增殖為特征的血液系統(tǒng)惡性克隆性疾病,具有高度的遺傳異質(zhì)性,發(fā)病率占兒童白血病的15%~20%,總生存(overall"survival,OS)率近70%[1-2]。t(8;21)(q22;q22)染色體易位是AML中常見(jiàn)的細(xì)胞遺傳學(xué)異常,形成AML1-ETO融合基因,其編碼的融合蛋白作為一種異常轉(zhuǎn)錄因子,損害髓系分化、阻斷正常造血,在兒童t(8;21)/AML1-ETO陽(yáng)性AML的起始和維持中起重要作用[3]。t(8;21)/AML1-ETO陽(yáng)性AML對(duì)化療敏感,有著較好的早期治療反應(yīng),但仍有超過(guò)30%的患者復(fù)發(fā)[4-5]。近年來(lái)隨著二代測(cè)序(next-generation"sequencing,NGS)技術(shù)的發(fā)展,越來(lái)越多與預(yù)后相關(guān)的基因突變被發(fā)現(xiàn)與t(8;21)/AML1-ETO陽(yáng)性AML的發(fā)生發(fā)展相關(guān)。本文就兒童t(8;21)/AML1-"ETO陽(yáng)性AML預(yù)后相關(guān)基因突變的研究進(jìn)展作一綜述。
1nbsp;"t(8;21)/AML1-ETO概述
t(8;21)染色體易位是AML中常見(jiàn)的細(xì)胞遺傳學(xué)異常,該易位導(dǎo)致21號(hào)染色體上的AML1(RUNX1)位點(diǎn)與8號(hào)染色體上的ETO(MTG8,RUNX1T1)位點(diǎn)發(fā)生重排,形成AML1-ETO(RUNX1-ETO,RUNX1-RUNX1T1)融合基因[3]。AML1基因位于染色體21q22區(qū),含12個(gè)外顯子,編碼的核磷酸蛋白結(jié)構(gòu)從氨基端到羧基端依次為Runt同源結(jié)構(gòu)、3個(gè)活化結(jié)構(gòu)域和VWRPY結(jié)構(gòu)域。而ETO基因則位于染色體8q22區(qū),含13個(gè)外顯子,其編碼的核磷酸蛋白結(jié)構(gòu)從氨基端到羧基端分別為NHR"4個(gè)同源結(jié)構(gòu)域。AML1-ETO融合基因形成過(guò)程中,因AML1丟失3個(gè)活化結(jié)構(gòu)域和VWRPY結(jié)構(gòu)域,從而喪失轉(zhuǎn)錄激活能力,而ETO則幾乎完整保留其結(jié)構(gòu)。t(8;21)編碼產(chǎn)生的AML1-ETO融合蛋白作為轉(zhuǎn)錄抑制因子,通過(guò)競(jìng)爭(zhēng)RUNX結(jié)合位點(diǎn)上的異二聚體與DNA結(jié)合,以顯性負(fù)性方式發(fā)揮作用,抑制AML1基因的正常功能,從而導(dǎo)致髓系細(xì)胞的成熟停滯[6]。既往多項(xiàng)研究表明,AML1-ETO融合蛋白本身不足以在小鼠和人類造血細(xì)胞中誘導(dǎo)白血病的發(fā)生,而其他遺傳事件(如酪氨酸激酶相關(guān)基因突變等)對(duì)AML的形成極為重要[7-8]。
2""預(yù)后相關(guān)基因突變
2.1""C-KIT突變
C-KIT是一種編碼KIT受體酪氨酸蛋白激酶的原癌基因,是Ⅲ型受體酪氨酸激酶(receptor"tyrosine"kinase,RTK)亞家族的成員,在調(diào)節(jié)細(xì)胞存活和增殖與干細(xì)胞維護(hù)、造血和遷移中發(fā)揮關(guān)鍵作用。研究發(fā)現(xiàn)AML1-ETO融合基因參與上調(diào)半乳凝集素3水平,進(jìn)而導(dǎo)致RTK通路的異常激活,促進(jìn)C-KIT表達(dá)從而參與此類白血病的發(fā)生[9]。t(8;21)(q22;q22)患者中,約48%存在C-KIT突變,其2年無(wú)復(fù)發(fā)生存(relapse"free"survive,RFS)率為21%,5年OS率為15.5%,說(shuō)明其與疾病不良結(jié)局和化療后的高復(fù)發(fā)相關(guān)[10]。但亦有研究表明C-KIT突變對(duì)兒童核心結(jié)合因子相關(guān)急性髓系白血?。╟ore-binding"factor"acute"myeloid"leukemia,CBF-AML)的結(jié)局沒(méi)有顯著影響,目前對(duì)其預(yù)后預(yù)測(cè)作用仍存在爭(zhēng)議[3]。
Shafik等[11]研究顯示C-KIT突變對(duì)兒童患者的完全緩解率沒(méi)有影響,但其OS率、無(wú)病生存率和無(wú)進(jìn)展生存率均顯著低于成人,這一結(jié)果支持C-KIT突變是兒童CBF-AML患者預(yù)后不良危險(xiǎn)因素的觀點(diǎn)。國(guó)內(nèi)有學(xué)者使用雙螢光素酶和染色質(zhì)免疫沉淀檢測(cè)證明AML1-ETO蛋白通過(guò)與C-KIT啟動(dòng)子結(jié)合并招募組蛋白乙酰轉(zhuǎn)移酶P300到C-KIT啟動(dòng)子,表觀遺傳學(xué)激活C-KIT,闡明t(8;21)AML患者C-KIT表達(dá)異常增加的機(jī)制[12]。提示P300抑制劑C646可作為RUNX1-ETO陽(yáng)性AML患者的潛在治療方法。而Hu等[13]對(duì)造血干細(xì)胞移植影響高危t(8;21)AML患兒預(yù)后的研究提出C-KIT突變可被用作移植指標(biāo)。
Shafik等[11]通過(guò)對(duì)成人與兒童CBF-AML患者的比較,發(fā)現(xiàn)成人患者C-KIT突變第17外顯子常見(jiàn),兒童則更常見(jiàn)于第8外顯子,說(shuō)明分子遺傳學(xué)異常在不同年齡層的異質(zhì)性,今后需要根據(jù)年齡分層進(jìn)一步擴(kuò)大樣本量深入研究。
2.2""FLT3-ITD突變
FLT3即FMS樣酪氨酸激酶3,屬于Ⅲ型RTK家族,F(xiàn)LT3基因位于染色體13q12,對(duì)早期造血細(xì)胞的抗凋亡和分化發(fā)揮重要作用。FLT3表現(xiàn)為兩種突變類型,即內(nèi)部串聯(lián)重復(fù)(internal"tandem"duplication,ITD)突變和酪氨酸激酶結(jié)構(gòu)域點(diǎn)突變,這兩種類型的突變均可促進(jìn)配體獨(dú)立自磷酸化和受體結(jié)構(gòu)性激活,這種不受調(diào)節(jié)的激活損害正常造血功能,促使白血病的發(fā)生[14]。一項(xiàng)對(duì)FLT3-ITD陽(yáng)性AML兒童群體進(jìn)行的長(zhǎng)達(dá)10年的隨訪研究發(fā)現(xiàn),F(xiàn)LT3-ITD突變患兒的3年OS率和無(wú)事件生存(event-free"survival,EFS)率分別為26.9%和22.8%,接受同種異體骨髓移植治療的患兒3年OS率和EFS率分別為77.8%和78.8%,提示兒童t(8;21)AML中FLT3-ITD突變與不良結(jié)局相關(guān),復(fù)發(fā)患兒的生存率極差,而首次緩解的同種異體造血干細(xì)胞移植是最好的治療選擇[15]。另一項(xiàng)研究發(fā)現(xiàn)約1/4的AML患兒存在FLT-ITD突變,且與不良結(jié)局相關(guān),表明使用全基因組測(cè)序進(jìn)行FLT3檢測(cè)以識(shí)別更具侵襲性病患,有助于兒童AML的風(fēng)險(xiǎn)分層[16]。
2.3""RAS突變
在信號(hào)轉(zhuǎn)導(dǎo)基因中,RAS是第二常見(jiàn)的突變?cè)┗颍浼易宄蓡T包括NRAS、KRAS和HRAS。在成人患者中,inv(16)/t(16;16)AML患者的NRAS和KRAS突變均多于t(8;21)AML患者,且參與信號(hào)通路的功能突變基因更頻繁[4],而在t(8;21)AML組中,內(nèi)聚突變更常見(jiàn),這一觀點(diǎn)在Madan等[17]的研究中也同樣被提及。既往研究發(fā)現(xiàn)兒童CBF-AML患者中有7.3%和4.9%存在NRAS和KRAS突變[18]。一項(xiàng)日本研究分析328例初發(fā)兒童AML病例,分別在13.4%和3.7%的患兒中發(fā)現(xiàn)NRAS和KRAS突變,且NRAS突變患兒的2年OS率和2年EFS率分別為97.7%和74.9%,明顯優(yōu)于無(wú)NRAS突變患者的79.0%和55.9%;而KRAS突變則對(duì)預(yù)后無(wú)顯著影響。因此提出NRAS是兒童AML患者預(yù)后的獨(dú)立預(yù)測(cè)因子,但該研究并未針對(duì)CBF-AML這一群體進(jìn)一步分組分析[19]。國(guó)內(nèi)研究發(fā)現(xiàn),RAS基因突變與Ba/F3細(xì)胞的甘油磷脂代謝途徑密切相關(guān),雖然目前僅限于體外細(xì)胞實(shí)驗(yàn),但今后可能有助于新的精準(zhǔn)治療策略和AML新治療藥物的開(kāi)發(fā)和應(yīng)用[20]。
2.4""ASXL1和ASXL2突變
ASXL家族成員包括ASXL1、ASXL2和ASXL3。ASXL基因是果蠅Asx的人類同源物,編碼Polycomb和Trithorax家族的染色質(zhì)結(jié)合蛋白,在表觀遺傳和轉(zhuǎn)錄調(diào)控中發(fā)揮多種功能。ASXL1突變目前被認(rèn)為是AML發(fā)生的早期創(chuàng)始事件,歐洲白血病網(wǎng)針對(duì)成人AML建議將其歸類為高危遺傳預(yù)測(cè)因子[21]。Yang等[22]對(duì)176例成人AML患者進(jìn)行研究,19例檢測(cè)到ASXL1突變,平均年齡(60.41±14.03)歲,27例t(8;21)AML患者中有5例檢測(cè)到ASXL1突變。兒童AML患者出現(xiàn)ASXL1突變的報(bào)道較少。Yamato等[23]研究369例初發(fā)AML患者的突變情況,發(fā)現(xiàn)9例發(fā)生ASXL1突變,其中6例在t(8;21)(q22;q22)/"RUNX1-RUNX1T1患者中被發(fā)現(xiàn)。一項(xiàng)來(lái)自成人AML1-ETO陽(yáng)性AML患者的研究證實(shí)C-KIT和ASXL1突變與更高的侵襲性和增殖性疾病有關(guān),在白血病發(fā)生發(fā)展中發(fā)揮協(xié)同作用,可預(yù)測(cè)AML1-ETO陽(yáng)性AML患者的復(fù)發(fā)和生存[24]。
作為ASXL家族成員,ASXL2與ASXL1在胚胎發(fā)生和造血過(guò)程中有共同表達(dá)模式,而ASXL3在造血細(xì)胞中不表達(dá)。一項(xiàng)研究納入142例成人CBF-"AML患者,其中8例發(fā)生ASXL2突變,且僅在t(8;21)AML患者中檢測(cè)到ASXL2突變(該比例為15%),研究還發(fā)現(xiàn)ASXL2突變與CBF-AML的不良預(yù)后無(wú)關(guān)[25]。Li等[26]發(fā)現(xiàn)ASXL2只在AML1-ETO表達(dá)的情況下促進(jìn)白血病發(fā)生,且ASXL2是造血系統(tǒng)的重要因子,通過(guò)調(diào)節(jié)SKNO1轉(zhuǎn)錄對(duì)造血功能產(chǎn)生影響,這為未來(lái)白血病治療提供一個(gè)重要信息。Madan等[17]的研究也得到相似結(jié)論。Yamato等[23]對(duì)106例兒童AML合并t(8;21)患者分析發(fā)現(xiàn),ASXL1和ASXL2基因在兒童AML中經(jīng)常發(fā)生突變(分別為5.7%和9.4%),特別是在t(8;21)患者中,與其繼發(fā)性遺傳事件和較好的預(yù)后相關(guān)。但因受限于樣本量不足,且與其他共突變基因的協(xié)同作用尚不明確,還需進(jìn)一步深入研究。
2.5""ZBTB7A突變
ZBTB7A屬于一個(gè)小的轉(zhuǎn)錄因子家族,編碼一種對(duì)造血和腫瘤代謝調(diào)節(jié)重要的轉(zhuǎn)錄因子。Hartmann等[27]分析56例t(8;21)易位的AML患者的突變景觀,13例發(fā)生ZBTB7A突變;同時(shí)對(duì)50例細(xì)胞遺傳學(xué)正常的AML患者及14例除t(8;21)或inv(16)外的染色體畸變患者的外顯子組進(jìn)行測(cè)序,并未發(fā)現(xiàn)任何ZBTB7A突變。提示ZBTB7A的改變與AML1-ETO融合之間存在特異性關(guān)聯(lián),而細(xì)胞遺傳學(xué)正常的AML患者中ZBTB7A高表達(dá)與良好預(yù)后相關(guān),ZBTB7A在AML中可作為腫瘤抑制因子而存在。Abuasab等[25]對(duì)41例t(8;21)和14例inv(16)患者的骨髓樣本進(jìn)行ZBTB7A基因測(cè)序,僅在伴有t(8;21)的AML患者中發(fā)現(xiàn)ZBTB7A突變,進(jìn)一步分析發(fā)現(xiàn)ZBTB7A突變對(duì)OS率或EFS率均無(wú)影響。Redondo"Monte等[28]研究也發(fā)現(xiàn)ZBTB7A突變只存在于核心結(jié)合因子白血病中,主要是t(8;21)AML中。另外,ZBTB7A可通過(guò)抑制糖酵解抵消AML1-ETO依賴的祖細(xì)胞擴(kuò)增。Ren等[29]發(fā)現(xiàn)在t(8;21)AML中,ZBTB7A突變或缺失可增加糖酵解,并幫助腫瘤細(xì)胞產(chǎn)生更多的能力。
2.6""DHX15突變
DHX15是一種與信使RNA前剪接有關(guān)的DEAH-"box"RNA解旋酶,其熱點(diǎn)突變主要影響密碼子R222。Christen等[30]對(duì)331例成人t(8;21)AML患者進(jìn)行分析,發(fā)現(xiàn)6%的患者出現(xiàn)DHX15突變。Pan等[31]發(fā)現(xiàn)DHX15通過(guò)核因子κB信號(hào)通路參與調(diào)控白血病細(xì)胞凋亡;約28.89%的AML患者(39/135)表現(xiàn)為DHX15過(guò)表達(dá),且隨著病情緩解表達(dá)下降,DHX15過(guò)表達(dá)與不良的細(xì)胞遺傳學(xué)預(yù)后和較差的OS率、EFS率相關(guān)。Opatz等[32]對(duì)130例AML1-ETO重排的患者進(jìn)行靶向基因測(cè)序分析,發(fā)現(xiàn)5%的患者(6/130)DHX15復(fù)發(fā)性突變,同時(shí)發(fā)現(xiàn)DHX15突變與AML1-ETO白血病中較差的OS相關(guān),被認(rèn)為是預(yù)后不良的獨(dú)立預(yù)測(cè)因素。研究發(fā)現(xiàn)DHX15與MYC癌蛋白相結(jié)合可增強(qiáng)其蛋白的穩(wěn)定性,從而擴(kuò)增MYC轉(zhuǎn)錄輸出,進(jìn)一步說(shuō)明DHX15-MYC軸的激活作為白血病細(xì)胞存活的作用機(jī)制[33]。
3""預(yù)后相關(guān)基因突變的檢測(cè)
近年來(lái),隨著分子遺傳學(xué)的不斷發(fā)展,NGS技術(shù)作為一種可以邊合成邊測(cè)序的大規(guī)模DNA堿基對(duì)測(cè)定技術(shù),因其高通量、高敏感度、低成本等優(yōu)勢(shì),在兒童血液系統(tǒng)疾病精準(zhǔn)診療領(lǐng)域快速發(fā)展。在不斷的臨床實(shí)踐中,根據(jù)不同的檢測(cè)需求衍生出不同的NGS技術(shù),目前主要有高深度panel、全外顯子組測(cè)序、轉(zhuǎn)錄組測(cè)序(RNA"sequencing,RNA-seq)、全免疫組測(cè)序和單細(xì)胞測(cè)序技術(shù)。這些技術(shù)的整合進(jìn)一步加深對(duì)兒童急性白血病遺傳學(xué)基因圖譜的理解。隨著研究的深入,越來(lái)越多的突變基因被發(fā)現(xiàn),并運(yùn)用于兒童白血病的診斷、風(fēng)險(xiǎn)分層和預(yù)后評(píng)估。
兒童AML雖然臨床緩解率高,但預(yù)后卻表現(xiàn)出較大的異質(zhì)性,從而對(duì)病情評(píng)估提出挑戰(zhàn),也為靶向藥物的開(kāi)發(fā)提供機(jī)遇。以t(8;21)/AML1-ETO陽(yáng)性AML為例,根據(jù)對(duì)其發(fā)病機(jī)制的研究提出“雙重”假設(shè):Ⅱ類突變(包括RUNX1T1/RUNX1融合)經(jīng)常影響細(xì)胞分化和凋亡,而Ⅰ類突變(如KIT突變等)通常賦予造血祖細(xì)胞增殖和生存優(yōu)勢(shì)。Ⅰ類和Ⅱ類突變的合作導(dǎo)致AML的完全發(fā)展[34]。但仍有很多影響預(yù)后的突變未被發(fā)現(xiàn)及闡明。通過(guò)NGS技術(shù),將更好地了解臨床特征與遺傳背景之間的聯(lián)系,為靶向治療提供依據(jù)。
來(lái)自日本的一項(xiàng)研究提出兒童與成人基因突變及靶向治療藥物的差異性,利用基于panel的NGS技術(shù)對(duì)27例兒童AML患者進(jìn)行靶向測(cè)序,發(fā)現(xiàn)有6例患兒在AML診斷時(shí)存在RAS通路突變[35]。但有較高比例的患兒在復(fù)發(fā)時(shí)失去KRAS突變,因而應(yīng)謹(jǐn)慎選擇RAS通路突變作為治療靶點(diǎn)。該研究表明NGS技術(shù)有助于揭示兒童AML的遺傳背景,并有助于準(zhǔn)確預(yù)測(cè)患兒預(yù)后和檢測(cè)藥物基因改變。
4""研究局限及展望
兒童AML的診斷最初僅基于形態(tài)學(xué)評(píng)估,隨著現(xiàn)代遺傳學(xué)技術(shù)的迅速發(fā)展,精準(zhǔn)醫(yī)學(xué)的概念更加清晰,基于細(xì)胞形態(tài)學(xué)、細(xì)胞化學(xué)、免疫表型、細(xì)胞遺傳學(xué)和分子遺傳學(xué)結(jié)果的多學(xué)科協(xié)作模式,讓診斷結(jié)果更為精準(zhǔn)。目前部分遺傳學(xué)研究結(jié)果已作為t(8;21)AML診斷和風(fēng)險(xiǎn)分層的重要依據(jù),新的基因突變也不斷被發(fā)現(xiàn),但與預(yù)后的關(guān)系卻未被充分認(rèn)識(shí);同時(shí)兒童與成人在遺傳背景及預(yù)后上的差異也逐漸顯露,因此未來(lái)仍需更多t(8;21)AML相關(guān)突變基因預(yù)后影響及發(fā)病機(jī)制的研究,以加深醫(yī)務(wù)工作者對(duì)t(8;21)AML的認(rèn)知,為臨床開(kāi)發(fā)新的治療藥物及預(yù)后預(yù)測(cè)提供依據(jù)。
利益沖突:所有作者均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1] CHEN"J,"GLASSER"C"L."New"and"emerging"targeted"therapies"for"pediatric"acute"myeloid"leukemia"(AML)[J]."Children"(Basel),"2020,"7(2):"12.
[2] LIU"S,"HU"B,"ZHANG"J."Epidemiological"characteristics"and"influencing"factors"of"acute"leukemia"in"children"and"adolescents"and"adults:"A"large"population-based"study[J]."Hematology,"2024,"29(1):"2327916.
[3] JOHNSON"D"T,"DAVIS"A"G,"ZHOU"J"H,"et"al."MicroRNA"let-7b"downregulates"AML1-ETO"oncogene"expression"in"t(8;21)"AML"by"targeting"its"3'UTR[J]."Exp"Hematol"Oncol,"2021,"10(1):"8.
[4] QIN"W,"CHEN"X,"SHEN"H"J,"et"al."Comprehensive"mutation"profile"in"acute"myeloid"leukemia"patients"with"RUNX1-RUNX1T1"or"CBFB-MYH11"fusions[J]."Turk"J"Haematol,"2022,"39(2):"84–93.
[5] YANG"Y"L,"JIANG"T"H,"CHEN"S"H,"et"al."Treatment"outcomes"of"pediatric"acute"myeloid"leukemia:"A"retrospective"analysis"from"1996"to"2019"in"Taiwan[J]."Sci"Rep,"2021,"11(1):"5893.
[6] ZHOU"W,"LI"S,"WANG"H,"et"al."A"novel"AML1-"ETO/FTO"positive"feedback"loop"promotes"leukemogenesis"and"Ara-C"resistance"via"stabilizing"IGFBP2"in"t(8;21)"acute"myeloid"leukemia[J]."Exp"Hematol"Oncol,"2024,"13(1):"9.
[7] SU"K"W,"OU"D"L,"FU"Y"H,"et"al."Repurposing"cabozantinib"with"therapeutic"potential"in"KIT-driven"t(8;21)"acute"myeloid"leukaemias[J]."Cancer"Gene"Ther,"2022","29(5):"519–532.
[8] SABATIER"M,"BIRSEN"R,"LAUTURE"L,"et"al."C/EBPα"confers"dependence"to"fatty"acid"anabolic"pathways"and"vulnerability"to"lipid"oxidative"stress-Induced"ferroptosis"in"FLT3-mutant"leukemia[J]."Cancer"Discov,"2023,"13(7):"1720–1747.
[9] WANG"J,"GAO"N,"WANG"X,"et"al."Prognostic"factors"in"acute"myeloid"leukemia"with"t(8;21)/AML1-ETO:"Strategies"to"define"high-risk"patients[J]."Indian"J"Hematol"Blood"Transfus,"2022,"38(4):"631–637.
[10] CHIN"P"S,"ASSI"S"A,"PTASINSKA"A,"et"al."RUNX1/ETO"and"mutant"KIT"both"contribute"to"programming"the"transcriptional"and"chromatin"landscape"in"t(8;21)"acute"myeloid"leukemia[J]."Exp"Hematol,"2020,"92:"62–74.
[11] SHAFIK"N"F,"IBRAHEEM"D,"SELIM"M"M,"et"al."The"prognostic"significance"of"C-KIT"mutations"in"core"binding"factor"acute"myeloid"leukemia[J]."Clin"Lymphoma"Myeloma"Leuk,"2022,"22(6):"e363–e375.
[12] CHEN"G,"LIU"A,"XU"Y,"et"al."The"RUNX1-ETO"fusion"protein"trans-activates"C-KIT"expression"by"recruiting"histone"acetyltransferase"P300"on"its"promoter[J]."FEBS"J,"2019,"286(5):"901–912.
[13] HU"G"H,"CHENG"Y"F,"LU"A"D,"et"al."Allogeneic"hematopoietic"stem"cell"transplantation"can"improve"the"prognosis"of"high-risk"pediatric"t(8;21)"acute"myeloid"leukemia"in"first"remission"based"on"MRD-guided"treatment[J]."BMC"Cancer,"2020,"20(1):"553.
[14] MACE?KOVá"D,"VA?KOVá"L,"HOLUBOVá"M,"et"al."Current"knowledge"about"FLT3"gene"mutations,"exploring"the"isoforms,"and"protein"importance"in"AML[J]."Mol"Biol"Rep,"2024,"51(1):"521.
[15] SEMARY"S"F,"HAMMAD"M,"SOLIMAN"S,"et"al."Outcome"of"childhood"acute"myeloid"leukemia"with"FLT3-ITD"mutation:"The"experience"of"children’s"cancer"hospital"Egypt,"2007-17[J]."Clin"Lymphoma"Myeloma"Leuk,"2020,"20(8):"e529–e541.
[16] MOLINA"GARAY"C,"CARRILLO"SáNCHEZ"K,"FLORES"LAGUNES"L"L,"et"al."Profiling"FLT3"mutations"in"Mexican"acute"myeloid"leukemia"pediatric"patients:"Impact"on"overall"survival[J]."Front"Pediatr,"2020,"8:"586.
[17] MADAN"V,"HAN"L,"HATTORI"N,"et"al."ASXL2"regulates"hematopoiesis"in"mice"and"its"deficiency"promotes"myeloid"expansion"[J]."Haematologica,"2018,"103(12):"1980–1990.
[18] SHIH"L"Y,"LIANG"D"C,"HUANG"C"F,"et"al."Cooperating"mutations"of"receptor"tyrosine"kinases"and"RAS"genes"in"childhood"core-binding"factor"acute"myeloid"leukemia"and"a"comparative"analysis"on"paired"diagnosis"and"relapse"samples[J]."Leukemia,"2008,"22:"303–307.
[19] KABURAGI"T,"YAMATO"G,"SHIBA"N,"Clinical"significance"of"RAS"pathway"alterations"in"pediatric"acute"myeloid"leukemia[J]."Haematologica,"2022,"107(3):"583–592.
[20] LIANG"T,"KONG"Y,"XUE"H,"et"al."Mutations"of"RAS"genes"identified"in"acute"myeloid"leukemia"affect"glycerophospholipid"metabolism"pathway[J]."Front"Oncol,"2023,"13:"1280192.
[21] D?HNER"H,"WEI"A"H,"APPELBAUM"F"R,"et"al."Diagnosis"and"management"of"AML"in"adults:"2022"recommendations"from"an"international"expert"panel"on"behalf"of"the"ELN[J]."Blood,"2022,"140(12):"1345–1377.
[22] YANG"L,"WEI"X,"GONG"Y."Prognosis"and"risk"factors"for"ASXL1"mutations"in"patients"with"newly"diagnosed"acute"myeloid"leukemia"and"myelodysplastic"syndrome[J]."Cancer"Med,"2023,"13(1):"e6871.
[23] YAMATO"G,"SHIBA"N,"YOSHIDA"K,"et"al."ASXL2"mutations"are"frequently"found"in"pediatric"AML"patients"with"t(8;21)/"RUNX1-RUNX1T1"and"associated"with"a"better"prognosis[J]."Genes"Chromosomes"Cancer,"2017,"56(5):"382–393.
[24] XU"D,"YANG"Y,"YIN"Z,"et"al."Risk-directed"therapy"based"on"genetics"and"MRD"improves"the"outcomes"of"AML1-ETO-positive"AML"patients,"a"multi-center"prospective"cohort"study[J]."Blood"Cancer"J,"2023,"13(1):"168.
[25] ABUASAB"T,"BORTHAKUR"G,"KANAGAL-SHAMANNA"R,"et"al."Exploring"the"landscape"of"somatic"ASXL2"mutations"in"myeloid"neoplasms:"Frequency"and"clinical"implications[J]."Am"J"Hematol,"2024,"4(1):"1–3.
[26] LI"M,"XU"L,"ZHANG"R,"et"al."Epigenetic"regulator"ASXL2:"Structure,"function"and"its"predictive"value"in"diseases[J]."Curr"Protein"Pept"Sci,"2023,"24(1):"22–30.
[27] HARTMANN"L,"DUTTA"S,"OPATZ"S,"et"al."ZBTB7A"mutations"in"acute"myeloid"leukaemia"with"t(8;21)"translocation[J]."Nat"Commun,"2016,"7:"11733.
[28] REDONDO"MONTE"E,"WILDING"A,"LEUBOLT"G,"et"al."ZBTB7A"prevents"RUNX1-RUNX1T1-dependentnbsp;clonal"expansion"of"human"hematopoietic"stem"and"progenitor"cells[J]."Oncogene,"2020,"39(15):"3195–3205.
[29] REN"R,"HORTON"J"R,"CHEN"Q,"et"al."Structural"basis"for"transcription"factor"ZBTB7A"recognition"of"DNA"and"effects"of"ZBTB7A"somatic"mutations"that"occur"in"human"acute"myeloid"leukemia[J]."J"Biol"Chem,"2023,"299(2):"102885.
[30] CHRISTN"F,"HOYER"K,"YOSHIDA"K,"et"al."Genomic"landscape"and"clonal"evolution"of"acute"myeloid"leukemia"with"t(8;21):"An"international"study"on"331"patients[J]."Blood,"2019,"133(10):"1140–1151.
[31] PAN"L,"LI"Y,"ZHANG"H"Y."DHX15"is"associated"with"poor"prognosis"in"acute"myeloid"leukemia"(AML)"and"regulates"cell"apoptosis"via"the"NF-kB"signaling"pathway[J]."Oncotarget,"2017,"8(52):"89643–89654.
[32] OPATZ"S,"BAMOPOULOS"S"A,"METZELER"K"H,"et"al."The"clinical"mutatome"of"core"binding"factor"leukemia[J]."Leukemia,"2020,"34(6):"1553–1562.
[33] LI"Q,"GIO"H,"XU"J,"et"al."A"helicase-independent"role"of"DHX15"promotes"MYC"stability"and"acute"leukemia"cell"survival[J]."iScience,"2024,"27(1):"108571.
[34] XIE"W,"WANG"S"A,"YIN"C"C,"et"al."Acute"myeloid"leukemia"with"t(8;21)(q22;q22.1)/RUNX1-RUNX1T1"and"KIT"Exon"8"mutation"is"associated"with"characteristic"mastocytosis"and"dismal"outcomes[J]."Exp"Mol"Pathol,"2019,"108:"131–136.
[35] ISHIDA"H,"IGUCHI"A,"AOE"M,"et"al."Panel-based"next-generation"sequencing"facilitates"the"characterization"of"childhood"acute"myeloid"leukemia"in"clinical"settings[J]."Biomed"Rep,"2020,"13(5):"46.
(收稿日期:2024–04–21)
(修回日期:2024–07–08)