摘要目的:探討基于腦源性神經(jīng)營養(yǎng)因子(BDNF)/原肌球蛋白受體激酶B(TrkB)信號(hào)通路介導(dǎo)的線粒體自噬對(duì)心肌缺血再灌注(I/R)損傷的作用。方法:將小鼠隨機(jī)分為假手術(shù)(Sham)+磷酸鹽緩沖液(PBS)組、Sham+7,8-二羥基黃酮(7,8-DHF)組、I/R+PBS組和I/R+7,8-DHF組,每組12只。除Sham組,其余小鼠建立心肌I/R損傷模型(心肌缺血45 min/再灌注2 h)。Sham+7,8-DHF組和I/R+7,8-DHF組小鼠在心肌I/R損傷前7 d腹腔注射7,8-DHF;Sham+PBS組和I/R+PBS組則給予相同體積的PBS。超聲心動(dòng)圖、蘇木精-伊紅(HE)染色和免疫組織化學(xué)用于檢測(cè)心臟功能、組織學(xué)和細(xì)胞間黏附分子-1(ICAM-1)表達(dá)。從各組小鼠心臟中分離心臟微血管內(nèi)皮細(xì)胞(CMEC),通過將TrkB小干擾RNA(si-TrkB)轉(zhuǎn)染到CMEC細(xì)胞中抑制TrkB活化,然后進(jìn)行線粒體膜通透性轉(zhuǎn)換孔(mPTP)開放率測(cè)量。結(jié)果:I/R+PBS組中紅細(xì)胞在I/R損傷后聚集成塊,I/R+7,8-DHF組則維持了紅細(xì)胞的線性形態(tài)并阻止了其在微血管中的會(huì)聚。與I/R+PBS組相比,I/R+7,8-DHF組p-eNOS水平、室間隔厚度、左心室短軸縮短分?jǐn)?shù)、左心室射血分?jǐn)?shù)上調(diào)(P<0.05),內(nèi)皮素-1(ET-1)、ICAM-1、心臟質(zhì)量、心臟質(zhì)量指數(shù)、左心室舒張末期內(nèi)徑、左心室收縮末期內(nèi)徑下調(diào)(P<0.05)。I/R+PBS組CMEC中BDNF、TrkB、FUN14結(jié)構(gòu)域1(FUNDC1)蛋白表達(dá)和酸性自溶酶體形成較Sham+PBS組減少(P<0.05),而I/R+7,8-DHF組CMEC中BDNF、TrkB、FUNDC1蛋白表達(dá)和酸性自溶酶體形成較I/R+PBS組增加(P<0.05)。當(dāng)在7,8-DHF存在的情況下施用si-TrkB以抑制CMEC中的TrkB活化時(shí),F(xiàn)UNDC1的表達(dá)被抑制(P<0.05),并且線粒體輕鏈3(mito-LC3Ⅱ)的線粒體水平和酸性自溶酶體形成減少(P<0.05)。結(jié)論:激活BDNF/TrkB/FUNDC1信號(hào)通路通過恢復(fù)線粒體自噬改善I/R小鼠的內(nèi)皮功能和微血管結(jié)構(gòu)。
關(guān)鍵詞心肌缺血再灌注;線粒體自噬;腦源性神經(jīng)營養(yǎng)因子;原肌球蛋白受體激酶B;7,8-二羥基黃酮;實(shí)驗(yàn)研究
doi:10.12102/j.issn.1672-1349.2024.17.010
Mechanism of Mitochondrial Autophagy Mediated by BDNF/TrkB Signaling Pathway on Myocardial Ischemia-reperfusion Injury
WANG Baoli, LIU Wenjun, LI Ying, LI Chenhui
Xi′an First Hospital(First Affiliated Hospital of Northwest University),Xi′an 710002, Shaanxi, China
Corresponding AuthorLIU Wenjun, E-mail: 3398839255@qq.com
AbstractObjective:To explore the mechanism of mitochondrial autophagy mediated by brain-derived neurotrophic factor(BDNF)/tropomyosin receptor kinase B(TrkB) signaling pathway on myocardial ischemia-reperfusion(I/R) injury.Methods:The mice were randomly divided into Sham+phosphate buffer(PBS) group,Sham+7,8-dihydroxyflavone(7,8-DHF) group,I/R+PBS group and I/R+7,8-DHF group,with 12 mice in each group.Myocardial I/R injury model(myocardial ischemia 45 min/reperfusion 2 h) were established in other mice except Sham group.Mice in Sham+7,8-DHF group and I/R+7,8-DHF group were intraperitoneally injected with 7,8-DHF 7 d before myocardial I/R injury.Sham+PBS group and I/R+PBS group were given the same volume of PBS.Echocardiography,hematoxylin-eosin(HE) staining and immunohistochemistry were used to detect cardiac function,histology,and intercellular adhesion molecule-1(ICAM-1) expression.Cardiac microvascular endothelial cells(CMEC) were isolated from the hearts of mice in each group.TrkB small interfering RNA(si-TrkB) was transfected into CMEC cells to inhibit TrkB activation,and then the opening rate of mitochondrial membrane permeability transition pore(mPTP) was measured.Results:In the I/R+PBS group,red blood cells clustered after I/R injury,while in the I/R+7,8-DHF group,the linear morphology of red blood cells were maintained and the convergence in microvessels was prevented.Compared with I/R+PBS group,P-ENOS level,ventricular septal thickness,left ventricular short axis shortening fraction,and left ventricular ejection fraction in I/R+7,8-DHF group increased(P<0.05).Endothelin-1(ET-1),ICAM-1,heart mass,heart mass index,left ventricular end-diastolic diameter and left ventricular end-systolic diameter were down regulated(P<0.05).The expression of BDNF,TrkB,F(xiàn)UN14 domain 1(FUNDC1) protein and the formation of acid autolyssome in CMEC in I/R+PBS group decreased compared with those in Sham+PBS group(P<0.05),the expression of BDNF,TrkB,F(xiàn)UNDC1 protein and the formation of acid autolyssome in CMEC in I/R+7,8-DHF group increased compared with those in I/R+PBS group(P<0.05).When si-TrkB was administered in the presence of 7,8-DHF to inhibit TrkB activation in CMEC,F(xiàn)UNDC1 expression was inhibited(P<0.05),and mitochondrial levels of mito-LC3Ⅱ and acid autolyssome formation were reduced(P<0.05).Conclusion:Activation of the BDNF/TrkB/FUNDC1 signaling pathway improved endothelial function and microvascular structure in I/R mice by restoring mitochondrial autophagy
Keywords myocardial ischemia-reperfusion; mitochondrial autophagy; brain-derived neurotrophic factor; tropomyosin receptor kinase B; 7,8-dihydroxyflavone; experimental study
缺血/再灌注(ischemia/reperfusion,I/R)損傷的發(fā)生增加了心肌梗死的發(fā)病率和死亡率[1]。與心肌細(xì)胞I/R損傷相比,心臟微血管I/R損傷的分子機(jī)制尚不完全清楚[2]。研究發(fā)現(xiàn),腦源性神經(jīng)營養(yǎng)因子(brain-derived neurotrophic factor,BDNF)通過與其高親和力受體原肌球蛋白受體激酶B(tropomyosin receptor kinase B,TrkB)結(jié)合抑制缺血誘導(dǎo)的心臟凋亡和功能障礙[3];因此,BDNF/TrkB通路可能是I/R損傷的治療靶點(diǎn)。線粒體在協(xié)調(diào)細(xì)胞外損傷信號(hào)和維持心臟微血管內(nèi)皮功能中至關(guān)重要[4]。線粒體自噬是發(fā)生在溶酶體的作用下修復(fù)功能受損線粒體的保守過程[5]。研究表明,線粒體自噬可在各種病理生理?xiàng)l件下保護(hù)微血管結(jié)構(gòu)和功能,包括保護(hù)心肌I/R損傷[6]。有研究證實(shí),BDNF/TrkB信號(hào)通路介導(dǎo)的線粒體自噬對(duì)缺血誘導(dǎo)的神經(jīng)損傷具有保護(hù)作用[7]。然而,尚不清楚BDNF/TrkB信號(hào)通路對(duì)I/R損傷的保護(hù)作用是否與線粒體自噬有關(guān)。因此,本研究探討B(tài)DNF模擬物7,8-二羥基黃酮(7,8-dihydroxyflavone,7,8-DHF)是否可以通過激活線粒體自噬來改善I/R誘導(dǎo)的內(nèi)皮線粒體損傷,并評(píng)估其在心臟微血管I/R損傷中的分子機(jī)制。
1材料與方法
1.1實(shí)驗(yàn)動(dòng)物
無特定病原體8周齡雄性C57BL/6小鼠,體質(zhì)量22~26 g,購自北京華阜康生物科技股份有限公司,動(dòng)物許可證號(hào):SCXK(京)2019-0008。在特定的無病原體環(huán)境下飼養(yǎng)小鼠,允許其隨意獲取食物和水,飼養(yǎng)環(huán)境為:12 h的暗/光周期(室溫20~24 ℃,相對(duì)濕度40%~70%)。
1.2小鼠心肌I/R損傷模型建立
使用耳標(biāo)順序編號(hào)小鼠,建立分配隱藏[8],將小鼠隨機(jī)分為假手術(shù)(Sham)+磷酸鹽緩沖液(PBS)組、Sham+7,8-DHF組、I/R+PBS組和I/R+7,8-DHF組,每組12只。除Sham組,其余小鼠參照文獻(xiàn)[9]建立小鼠心肌I/R損傷模型(心肌缺血45 min/再灌注2 h)。Sham+7,8-DHF組和I/R+7,8-DHF組小鼠在心肌I/R損傷前7 d給予腹腔注射7,8-DHF(每日5 mg/kg,溶于PBS中,購自成都瑞芬思生物科技有限公司,純度≥98%);Sham+PBS組和I/R+PBS組則給予相同體積的PBS[10]。
1.3超聲心動(dòng)圖
使用帶有MS400換能器的Vevo 2100超聲儀在麻醉小鼠(3.0%異氟醚和1.0 L/min的O2流量)中進(jìn)行二維超聲心動(dòng)圖掃描。計(jì)算左心室射血分?jǐn)?shù)、左心室短軸縮短分?jǐn)?shù)、左心室舒張末期內(nèi)徑、左心室收縮末期內(nèi)徑、室間隔厚度、左心室后壁厚度。
1.4心臟質(zhì)量指數(shù)
處死小鼠后收集心臟組織并稱重,計(jì)算心臟質(zhì)量指數(shù)=心臟質(zhì)量/體質(zhì)量。
1.5心臟微血管內(nèi)皮細(xì)胞(cardiac microvascular endothelial cells,CMEC)分離
心肌I/R損傷后分離CMEC[11]。在含有Ca2+和Mg2+的培養(yǎng)皿中用Hanks平衡鹽溶液徹底清洗離體心臟。切除心房和右心室,左心室用于后續(xù)實(shí)驗(yàn)。將左心室的切除部分與0.2%(w/v)I型膠原酶(美國Gibco公司)一起孵育10min,然后在37 ℃下將0.25%(w/v)胰蛋白酶(美國Hyclone公司)搖浴孵育5 min。在解離步驟之后,通過添加500 μL胎牛血清中和膠原酶,并將混合物通過過濾器轉(zhuǎn)移到 50 mL Falcon管中。離心后將管底部沉淀的CMEC重新懸浮在5 mL的Hanks平衡鹽溶液I和牛血清白蛋白中,并在37 ℃置于6 cm2的培養(yǎng)皿中。將CMEC分為Sham+PBS組、Sham+7,8-DHF組、Sham+7,8-DHF+si-TrkB組、I/R+PBS組、I/R+7,8-DHF組、I/R+7,8-DHF+si-TrkB組。其中,Sham+7,8-DHF+si-TrkB組和I/R+7,8-DHF+si-TrkB組轉(zhuǎn)染TrkB小干擾RNA(si-TrkB)。
1.6蛋白質(zhì)印跡檢測(cè)
組織和細(xì)胞在補(bǔ)充有蛋白酶抑制劑(美國Thermo Fisher公司)和磷酸酶抑制劑(美國Sigma-Aldrich公司)的RIPA緩沖液(美國Sigma-Aldrich公司)中在冰上裂解10 min。收集裂解物并在4 ℃下以14 000 r/min離心15 min。通過Bio-Rad蛋白質(zhì)測(cè)定試劑盒(美國Bio Rad公司,Bradford方法)測(cè)定上清液中的總蛋白質(zhì)濃度。添加LDS樣品緩沖液(美國Lifetechnologies" " "公司)后,將樣品在90 ℃下煮沸10 min。通過10%~15%十二烷基硫酸鈉聚丙烯酰胺凝膠電泳(SDS-PAGE)分離20 μg蛋白質(zhì)并轉(zhuǎn)移到0.2 μm硝酸纖維素膜上。在室溫下用5%脫脂牛奶封閉1 h后,將膜與一抗在4 ℃下孵育過夜。第2天,將膜與二抗一起孵育1 h。在用含有0.05% Tween 20(TBST)的Tris緩沖鹽水洗滌3次后,通過PierceTM ECL Plus Western Blotting Substrate(美國Lifetechnologies公司)對(duì)膜進(jìn)行溫育,并在ChemiDoc凝膠成像系統(tǒng)(美國Bio Rad公司)下觀察。使用Image J軟件量化每個(gè)蛋白質(zhì)條的強(qiáng)度。免疫印跡的一抗均購自英國Abcam公司:內(nèi)皮素-1(ET-1)(1∶1 000),一氧化氮合酶(eNOS)(1∶1 000),p-eNOS(1∶1 000),線粒體輕鏈3(mito-LC3Ⅱ)(1∶1 000),F(xiàn)UN14結(jié)構(gòu)域的1(FUNDC1)(1∶1 000),Tom20(1∶1 000),BDNF(1∶1 000),TrkB(1∶1000)和甘油醛-3-磷酸脫氫酶(GAPDH)(1∶1 000)。
1.7蘇木精-伊紅(HE)染色分析
將心臟組織固定在4%多聚甲醛中并包埋在石蠟中。組織切片脫蠟和再水化后,進(jìn)行HE染色以評(píng)估紅細(xì)胞形態(tài)。用光學(xué)顯微鏡(日本Olympus公司)獲得圖像。
1.8免疫組織化學(xué)分析
對(duì)石蠟包埋的心臟組織樣品的4 μm切片進(jìn)行免疫染色。組織載玻片在二甲苯中脫蠟,并在一系列分級(jí)乙醇中再水化。將載玻片用10%山羊血清封閉,用細(xì)胞間黏附分子-1(ICAM-1)小鼠單克隆抗體(英國Abcam公司)孵育過夜,然后在室溫下與HRP綴合的二抗孵育30 min。通過DAB檢測(cè)抗體結(jié)合,并將載玻片浸入去離子水中抑制反應(yīng)。
1.9線粒體膜通透性轉(zhuǎn)換孔(mPTP)開放率測(cè)量和線粒體自噬測(cè)定
通過向CMEC中加入5 μmol/L Calcein-AM和3 mmol/L氯化鈷(美國Molecular Probes公司)來確定mPTP開放率。結(jié)果表示為相對(duì)于對(duì)照的熒光強(qiáng)度。熒光、pH敏感線粒體自噬報(bào)告基因Keima(pMT-mKeima-Red,美國MBL Medical Biological Laboratories公司)具有雙峰激發(fā)光譜,由中性pH下的458 nm峰和534 nm在酸性pH條件下達(dá)到峰值。按說明書方法,將Kemia-Red質(zhì)粒轉(zhuǎn)染到CMEC細(xì)胞中。線粒體自噬被量化為534 nm/458 nm激發(fā)比[12]。
1.10siRNA轉(zhuǎn)染
在體外,從各治療組小鼠的心臟中分離CMEC。將細(xì)胞培養(yǎng)24 h,使用Lipofectamine RNAiMAX試劑(美國Thermo Fisher公司)將si-TrkB轉(zhuǎn)染到CMEC細(xì)胞中。轉(zhuǎn)染的細(xì)胞在37 ℃下孵育48 h后進(jìn)行功能分析。
1.11統(tǒng)計(jì)學(xué)處理
采用GraphPad Prism(7.01版)軟件進(jìn)行數(shù)據(jù)分析。符合正態(tài)分布的定量資料以均數(shù)±標(biāo)準(zhǔn)差(x±s)表示,根據(jù)定量分析后的平均值選擇每組的代表圖像。多組比較使用單向或雙向方差分析,對(duì)正態(tài)分布數(shù)據(jù)使用Bonferroni或Dunnett多重比較檢驗(yàn)。以P<0.05為差異有統(tǒng)計(jì)學(xué)意義。
2結(jié)果
2.17,8-DHF減少I/R誘導(dǎo)的微血管損傷
HE結(jié)果提示,I/R+PBS組中紅細(xì)胞在I/R損傷后聚集成塊,I/R+7,8-DHF組則維持了紅細(xì)胞的線性形態(tài)并阻止了其在微血管中的會(huì)聚,表明7,8-DHF降低了I/R損傷期間微血栓形成的風(fēng)險(xiǎn)。與Sham+PBS組相比,I/R+ PBS組小鼠I/R損傷后心臟組織中血管舒張劑p-eNOS下調(diào)(P<0.05),而內(nèi)皮血管收縮劑ET-1上調(diào)(P<0.05)。與I/R+PBS組相比,I/R+7,8-DHF組p-eNOS的水平上調(diào)(P<0.05),同時(shí)ET-1表達(dá)下調(diào)(P<0.05)。此外,與Sham+PBS組相比,ICAM-1在I/R+PBS組中上調(diào)(P<0.05)。與I/R+PBS組相比,I/R+7,8-DHF組ICAM-1下調(diào)(P<0.05)。詳見圖1~圖3、表1。
2.27,8-DHF改善I/R誘導(dǎo)的心臟功能損傷
為了了解微血管結(jié)構(gòu)和內(nèi)皮功能的改善是否與心臟功能的增加有關(guān),使用超聲心動(dòng)圖分析心臟功能的改變。與Sham+PBS組相比,I/R+PBS組小鼠心臟質(zhì)量、心臟質(zhì)量指數(shù)、左心室舒張末期內(nèi)徑、左心室收縮末期內(nèi)徑增加(P<0.05),室間隔厚度、左心室短軸縮短分?jǐn)?shù)、左心室射血分?jǐn)?shù)降低(P<0.05)。與I/R+PBS組相比,I/R+7,8-DHF組小鼠心臟質(zhì)量、心臟質(zhì)量指數(shù)、左心室舒張末期內(nèi)徑、左心室收縮末期內(nèi)徑降低(P<0.05),室間隔厚度、左心室短軸縮短分?jǐn)?shù)、左心室射血分?jǐn)?shù)增加(P<0.05)。詳見表2。
2.37,8-DHF在I/R損傷中誘導(dǎo)線粒體自噬
線粒體自噬標(biāo)志物的蛋白質(zhì)印跡分析表明,I/R+PBS組中微管相關(guān)蛋白mito-LC3Ⅱ的線粒體水平較Sham+PBS組降低(P<0.05),而I/R+7,8-DHF組mito-LC3Ⅱ水平較I/R+PBS組增加(P<0.05)。在I/R處理的CMEC中,將mt-Kemia檢測(cè)酸性線粒體作為溶酶體吞噬線粒體的標(biāo)志物,結(jié)果表明,I/R+PBS組CMEC中酸性自溶酶體形成較Sham+PBS組減少(P<0.05),而I/R+7,8-DHF組CMEC中酸性自溶酶體形成較I/R+PBS組增加(P<0.05)。表明7,8-DHF可在心臟微血管I/R損傷中誘導(dǎo)線粒體自噬。詳見圖4、圖5、表3。
2.4BDNF/TrkB信號(hào)通路激活FUNDC1依賴性線粒體自噬
蛋白質(zhì)印跡分析顯示,I/R+PBS組CMEC中BDNF、TrkB、FUNDC1蛋白表達(dá)較Sham+PBS組降低(P<0.05),而I/R+7,8-DHF組BDNF、TrkB、FUNDC1蛋白表達(dá)較I/R+PBS組增加(P<0.05)。當(dāng)在7,8-DHF存在的情況下施用si-TrkB以抑制CMEC中的TrkB活化時(shí),F(xiàn)UNDC1的表達(dá)被抑制(P<0.05),并且mito-LC3Ⅱ的線粒體水平和酸性自溶酶體形成減少(P<0.05)。表明BDNF/TrkB/FUNDC1通路激活I(lǐng)/R處理的CMEC中的線粒體自噬。詳見圖6、表4。
3討論
本研究表明,BDNF/TrkB/FUNDC1介導(dǎo)的線粒體自噬在微血管I/R損傷期間有重要價(jià)值,其有助于維持內(nèi)皮細(xì)胞穩(wěn)態(tài)和微血管完整性;BDNF模擬物7,8-DHF可以作為一種內(nèi)皮特異性保護(hù)藥物,通過維持內(nèi)皮功能和結(jié)構(gòu)來幫助心臟微血管對(duì)抗I/R損傷;7,8-DHF通過增加線粒體自噬來預(yù)防I/R誘導(dǎo)的微血管功能障礙。
研究表明,在橫向主動(dòng)脈縮窄引起的心力衰竭中,7,8-DHF可通過蛋白激酶B(AKT)/心肌組織eNOS/一氧化氮途徑抑制內(nèi)皮細(xì)胞凋亡并維持毛細(xì)血管化,從而提高心臟功能[13]。7,8-DHF通過抑制炎性細(xì)胞因子的產(chǎn)生來抑制實(shí)驗(yàn)性腦出血期間白細(xì)胞-內(nèi)皮細(xì)胞的相互作用[14]。這些研究表明,7,8-DHF激活特定的信號(hào)級(jí)聯(lián)以改善線粒體抗氧化活性,增強(qiáng)抗炎能力并誘導(dǎo)內(nèi)皮細(xì)胞的促存活程序。本研究結(jié)果表明,7,8-DHF對(duì)內(nèi)皮功能和結(jié)構(gòu)具有多效性,7,8-DHF在心臟I/R損傷的情況下增強(qiáng)了內(nèi)皮完整性、屏障功能和松弛因子的產(chǎn)生。另一方面,7,8-DHF顯著抑制內(nèi)皮黏附蛋白表達(dá),使局部流體力學(xué)正?;?,維持組織良好的血管壁并改善微血管灌注。
線粒體除了執(zhí)行葡萄糖代謝和能量產(chǎn)生的經(jīng)典功能外,還可充當(dāng)細(xì)胞適應(yīng)環(huán)境壓力的傳感器[15]。線粒體損傷會(huì)導(dǎo)致內(nèi)皮功能障礙和心臟微血管I/R損傷[16]。心肌再灌注迅速增強(qiáng)線粒體裂變因子誘導(dǎo)的線粒體裂變,導(dǎo)致mtDNA損傷和內(nèi)皮氧化應(yīng)激[16]。此外,再灌注通過誘導(dǎo)線粒體膜高滲透性、mPTP開放和細(xì)胞色素c滲漏來激活線粒體凋亡[17]。線粒體自噬被認(rèn)為是通過維持線粒體裂變/融合正?;瘉硇迯?fù)受損和功能失調(diào)的線粒體[18]。增加的線粒體裂變和/或減少的線粒體融合會(huì)促進(jìn)碎片線粒體的形成,促進(jìn)細(xì)胞氧化應(yīng)激或?qū)⒋俚蛲鲆蜃樱ㄈ缂?xì)胞色素C)釋放到細(xì)胞質(zhì)中,從而誘導(dǎo)線粒體依賴性細(xì)胞凋亡[19]。線粒體自噬通過去除碎片化線粒體在內(nèi)皮細(xì)胞中發(fā)揮抗氧化和/或抗凋亡作用[20]。然而,在心肌再灌注階段,線粒體自噬受到抑制[21]。本研究發(fā)現(xiàn),7,8-DHF在I/R損傷期間通過誘導(dǎo)BDNF/TrkB/FUNDC1信號(hào)通路恢復(fù)線粒體自噬,從而減少CMEC中的線粒體損傷。TrkB的基因消融可逆轉(zhuǎn)7,8-DHF誘導(dǎo)線粒體自噬。這些發(fā)現(xiàn)表明,7,8-DHF主要通過在I/R損傷下保持線粒體自噬來維持內(nèi)皮線粒體的性能。
綜上所述,本研究揭示了激活BDNF/TrkB/FUNDC1信號(hào)通路通過恢復(fù)線粒體自噬來改善I/R損傷小鼠的內(nèi)皮功能和微血管結(jié)構(gòu),BDNF/TrkB/FUNDC1/線粒體自噬軸和內(nèi)皮保護(hù)之間的聯(lián)系,將有助于探索心臟微血管I/R損傷的新治療靶點(diǎn)和藥物。
參考文獻(xiàn):
[1]邱珍,張藝,明浩,等.Rev-erbα/Bmal1信號(hào)通路在糖尿病大鼠心肌缺血再灌注損傷中的作用及其與自噬的關(guān)系[J].中華麻醉學(xué)雜志,2021,41(2):234-238.
[2]高路,姚瑞,李亞彭,等.溶酶體組織蛋白酶B增加自噬保護(hù)缺氧誘導(dǎo)的心臟微血管內(nèi)皮細(xì)胞損傷[J].中國藥理學(xué)通報(bào),2022,38(1):53-60.
[3]GENG Y,CHEN Y T,SUN W,et al.Electroacupuncture ameliorates cerebral I/R-induced inflammation through DOR-BDNF/TrkB pathway[J].Evidence-Based Complementary and Alternative Medicine,2020,2020:3495836.
[4]羅靖瑩,郭陽,黃瑋瑋,等.間充質(zhì)干細(xì)胞傳遞線粒體對(duì)肺微血管內(nèi)皮細(xì)胞的修復(fù)作用[J].醫(yī)學(xué)研究生學(xué)報(bào),2019,32(9):931-936.
[5]WANG J,ZHU P J,LI R B,et al.Fundc1-dependent mitophagy is obligatory to ischemic preconditioning-conferred renoprotection in ischemic AKI via suppression of Drp1-mediated mitochondrial fission[J].Redox Biology,2020,30:101415.
[6]LI Y B,MENG W Z,HOU Y X,et al.Dual role of mitophagy in cardiovascular diseases[J].Journal of Cardiovascular Pharmacology,2021,78(1):e30-e39.
[7]JIN H,ZHU Y,LI Y P,et al.BDNF-mediated mitophagy alleviates high-glucose-induced brain microvascular endothelial cell injury[J].Apoptosis,2019,24(5/6):511-528.
[8]YANG X,F(xiàn)ANG Y,HOU J B,et al.The heart as a target for deltamethrin toxicity:inhibition of Nrf2/HO-1 pathway induces oxidative stress and results in inflammation and apoptosis[J].Chemosphere,2022,300:134479.
[9]孫麗爽,于洋,陳苗,等.心肌特異性絲裂原活化蛋白激酶激活的蛋白激酶2基因敲除對(duì)小鼠心肌缺血/再灌注損傷的影響及其機(jī)制[J].上海醫(yī)學(xué),2023,46(4):201-207.
[10]ZHAO J,DU J J,PAN Y,et al.Activation of cardiac TrkB receptor by its small molecular agonist 7,8-dihydroxyflavone inhibits doxorubicin-induced cardiotoxicity via enhancing mitochondrial oxidative phosphorylation[J].Free Radical Biology amp; Medicine,2019,130:557-567.
[11]WU D,JI H Z,DU W J,et al.Mitophagy alleviates ischemia/reperfusion-induced microvascular damage through improving mitochondrial quality control[J].Bioengineered,2022,13(2):3596-3607.
[12]ZHU P J,HU S Y,JIN Q H,et al.Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury:a mechanism involving calcium overload/XO/ROS/mPTP pathway[J].Redox Biology,2018,16:157-168.
[13]WANG Z,WANG S P,SHAO Q,et al.Brain-derived neurotrophic factor mimetic,7,8-dihydroxyflavone,protects against myocardial ischemia by rebalancing optic atrophy 1 processing[J].Free Radical Biology amp; Medicine,2019,145:187-197.
[14]WU C H,CHEN C C,HUNG T H,et al.Activation of TrkB/AKT signaling by a TrkB receptor agonist improves long-term histological and functional outcomes in experimental intracerebral hemorrhage[J].Journal of Biomedical Science,2019,26(1):53.
[15]閆明靜,沈濤.線粒體功能障礙與血管內(nèi)皮損傷的研究進(jìn)展[J].中國動(dòng)脈硬化雜志,2021,29(10):829-837.
[16]WANG J,TOAN S,ZHOU H.New insights into the role of mitochondria in cardiac microvascular ischemia/reperfusion injury[J].Angiogenesis,2020,23(3):299-314.
[17]WANG J,TOAN S,ZHOU H.Mitochondrial quality control in cardiac microvascular ischemia-reperfusion injury:new insights into the mechanisms and therapeutic potentials[J].Pharmacological Research,2020,156:104771.
[18]YU W C,XU M,ZHANG T,et al.Mst1 promotes cardiac ischemia-reperfusion injury by inhibiting the ERK-CREB pathway and repressing FUNDC1-mediated mitophagy[J].The Journal of Physiological Sciences,2019,69(1):113-127.
[19]WANG J,ZHOU H.Mitochondrial quality control mechanisms as molecular targets in cardiac ischemia-reperfusion injury[J].Acta Pharmaceutica Sinica B,2020,10(10):1866-1879.
[20]ZHAO F J,SATYANARAYANA G,ZHANG Z,et al.Endothelial autophagy in coronary microvascular dysfunction and cardiovascular disease[J].Cells,2022,11(13):2081.
[21]YING L,BENJANUWATTRA J,CHATTIPAKORN S C,et al.The role of RIPK3-regulated cell death pathways and necroptosis in the pathogenesis of cardiac ischaemia-reperfusion injury[J].Acta Physiologica,2021,231(2):e13541.
(收稿日期:2022-10-06)
(本文編輯鄒麗)